
Barbara Sianesi 
Institute for Fiscal Studies 

December, 2003

An introductory guide to 
 
 
 
 
 
 
OVERVIEW 
 Stata resources 
 General syntax 
 Printing and preserving output 

PROGRAMMING A SEQUENCE OF TASKS: DO-FILES 
 Some useful commands & features 
 Macros 

ACCESSING DATA 
 Opening and saving Stata files 
 Increasing memory 
 Looking at the dataset 

DATA MANAGEMENT 
 Renaming, dropping and documenting variables 
 Generating and replacing variables 
 Dealing with categorical and dummy variables 
 Dealing with string variables 
 Dealing with date variables 
 Combining and reshaping datasets 

TAKING A FIRST LOOK AT THE DATA 
 Summarising the data 
 Exploratory data analysis 

ESTIMATION 
 Overview 
 Regression analysis 
  OLS 
  Dummy variables 
  Predicted values and residuals 
  Hypothesis testing 
  Robust regression 
 Instrumental Variables 
 Binary qualitative outcome model 



 1

OVERVIEW 
 
Stata resources 

• For installed commands: 
help  command 
view help  command  displays the help in the Viewer window 

• To look for user-written Stata programs over the Internet: 
net search  keywords 

• Powerful search to find information on Stata material, both installed and over the 
Internet: 
findit  keywords 

 
General syntax 
 

[by varlist:] command [varlist] [=exp] [weight]  [if  exp] [in  range] [, options] 

the square brackets denote optional elements, varlist a list of variables, command a Stata 
command, exp an algebraic expression, range an observation range and options a list of 
options.  
 
• Stata’s syntax is case sensitive. 

• varlist 

If no variables are specified, the command is applied to all the variables in the dataset, 
equivalent to _all 

varB-varF → all the variables stored in between (to see: desc; to change: order) 
*   → 0 or more characters go here 
edu*  → all variables whose names start with edu 
*78 → all variables whose names end with 78 
?   → 1 character goes here 
?*  → 1 or more characters etc. 

 
• if and in allow to restrict the command to a specific subset of the data:  

- in range specifies the observations numbers. Note: as presently sorted! 
Examples: 

in 1 
in -1  
in 5  

the 1st observation 
the last observation  
only the 5th observation 

in 5/10  
in –3 
in –9/-1 

5th through 10th observation  
the 3rd-from-last observation 
the last 9 observations 

      
- if exp selects observations based on specific variable values, which must satisfy 

the if condition(s) 
== != > >= < <= & | ! 

 
equal 

 
unequal 

 
larger than larger or 

equal 
smaller 

than 
smaller or 

equal 

 
and 

 
or 

 
not 

 
 
 



 2

Examples:  
if wage<1000 
if place==“Canada” & age!=. 

• by varlist: command 
repeat the command for each subset of the data for which the values of the variables in 
varlist are equal  
If data not sorted by varlist use either: 
by varlist, sort  
bysort  varlist. 

Example:  
bysort foreign: summarize wage 

 
 
• Subscripts:    

var[2] → the 2nd observation on var 
_n → the number of the current observation 
_N → the total number of observations 
Very handy if combined with the by varlist: prefix. More on this below. 

 
 
• A dot (.) denotes a missing value.  

Note: a missing variable is always considered larger than any other value.  
 
 

• Stata commands and variable names can be abbreviated, as long as no confusion arises. 
 
 
• accessing Stata output 

From the last-run model: 
_b[varname] → the coefficient of varname  
_se[varname] → the std error of the coefficient of varname 
From the last-run command: 
Estimation command:  estimates list 
    e(name) 
General command:  return list 
    r(name) 
 
 

• list of numbers 
1/3 → 1, 2, 3  5(10)35 → 5, 15, 25, 35 
1 2 3 → 1, 2, 3  8(-2)2  → 8, 6, 4, 2 
and combinations thereof 

• quotes “ ” are used for strings, also for names of paths if they contain spaces 

• to stop what Stata is doing: press the Break button 

• to retrieve previous commands typed in: PgUp 

• to delete a full line of a command: Esc 



 3

• Note: to handle weights (not considered in this handout): see  help weights 
 
 
Printing and preserving output 

• just a table, list of data, etc. 
select with mouse in the Results Window and Edit/Copy or Edit/Copy Table to put it into 
the Windows Clipboard. Can then Edit/Paste it e.g. in Excel. 
 

• whole sessions: Using Log files 

[capture] log using filename[.log]  
[capture] log using filename[.log] , append 
[capture] log using filename[.log] , replace 
log off  to temporarily suspend the recording of the session 

log on   to resume 
[capture] log close  

Note: If the .log extension is specified, the corresponding log-files can be opened, 
viewed, edited and printed from any text editor. 
The default otherwise is to create a .smcl file, which can be opened, viewed and printed 
in the Stata viewer: File/View…  

 

PROGRAMMING A SEQUENCE OF TASKS: DO- FILES 
instead of typing commands at the keyboard: 
place all the commands you want to perform in a file 

• can write it in any text editor (save with .do extension) 
• Stata’s do-file editor is very handy; click the button or type doedit. 
• can save Review contents as a do-file 
• Do-file editor: can do just a selection, even without saving 
• launch do-file (from Do-file editor or within Stata with: do  filename) and minimise 

Stata 
 
Some useful commands & features 

in creating, debugging and using do-files 

• version 7 
→ Stata is continually being developed; this ensures that your program will continue to work 
under future releases 
 
• set more off 
→ preventing Stata to stop and wait for key to be hit  
 
• clear 
→ to start from a clean slate  
Note: can also be used as an option in use newdata, clear 
 



 4

• capture command 
→ perform the command if it can, if not, then just moves on to the next instruction. E.g.: 
cap log close  before log using … 
cap drop varname  before generate varname = … 
 
• Comments 

* this line is not executed (a line commencing with * is ignored) 

/* from here to below 
these lines 
are not executed */ 
 
 
• Long lines 

Option (a): comment out the carriage return (line break): 

quietly replace lnf = theta2-  /* 
 */  ln(1+exp(theta1)+exp(theta2)+exp(theta3)+  /* 
 */  exp(theta4)) if treatment==3 
 
Option (b): change the end-of-line delimiter from carriage return (cr) to ; 

use mydata 
#delimit ; 
quietly replace lnf = theta2-   
  ln(1+exp(theta1)+exp(theta2)+exp(theta3)+  
  exp(theta4)) if treatment==3 ; 
sum lnf ; 
#delimit cr 
tab treatment 
 
 
• quietly  command 
→ to suppress output  
 
 
• display 
→ can be use as calculator,   e.g.     di 3*6.8 
→ can be used to re-display specific results,   e.g.  summarize  xvar  

di r(mean)*r(N) 

 

• logging the output of a do-file 
can either open a log, launch the do-file and then close the log  
or can incorporate these commands in the do-file itself 
 
 
• calling other do-files 
do-files can call other do-files, which in turn can call other do-files and so on  
Need to be careful with location of the necessary do-files;  



 5

Macros 

are names that can stand for expressions, strings, variables, numbers, results from the program 
or results defined by the user 
 
local macros 

- are local to the program, i.e. exist only within the program that defines them 
- created by:  local name = exp 

local name “string” 
- to refer to their content: `name’ 

 
global macros 

- once defined, they remain in memory and can be used by other programs 
- created by:  global name = exp 

global name “string” 
- to refer to their content: $name 

A useful use for global macros: to store lists of regressors 

global Xreg “age age2 sex edu2-edu4” 
then at any time in the do-file/session: 
regress logw $Xreg  
then do other things, then: 
probit group $Xreg duration  
 
A useful use for local macros: as temporary variables 

- will not clash with other variables with the same name 
- automatically dropped when the program is terminated  

tempvar  varname 

then refer to it as `varname’ 
 
 

ACCESSING DATA  
Opening and saving Stata files  

• opening a Stata file:  
use filename [, clear] 

• reading a subset of the data: 
use varlist [if  exp] [in  range]  using  filename [, clear] 

• saving a Stata file:  
save filename  
save filename , replace 
save, replace 

 
 
Increasing memory  

set memory # 
 
 



 6

Looking at the dataset 

• Describing the contents of the data 
describe 
describe using  filename  → for data on disk 

 
• Counting observations 

count [if exp] 

E.g. to count the number of individuals in a datset with >1 observation per individual: 
sort persid 
count if persid==persid[_n-1]   
 
• Listing data 

list [varlist] [in range] [if exp] 
 
 

DATA MANAGEMENT  
Renaming, dropping and documenting variables  
 
Renaming a variable 

rename  oldname  newname 
 
Documenting  
• a dataset: 

label data “data label” 
• a variable: 

label variable varname “varlabel” 
• the values of a categorical variable: 

label define  glbl  0 “male” 1 “female” 
label values  gender glbl 

 
Dropping variables 

drop varlist 
drop [varlist] in range 
drop [varlist] if exp 
[by varlist:] drop varlist 

 
Sometimes it’s simpler to specify which ones to keep: 

[by varlist:] keep varlist  [in range] [if exp] 
 
 

Generating and replacing variables 
 
to modify the values of an existing variable: 

replace oldvar=exp  [if  exp] [in  range] 
 
to create new variables: 

generate [type] newvar=exp  [if  exp] [in  range] 



 7

type: storage type of the (numerical) variable being created: 

 Bytes Min Max
byte 1 -127 126
int 2 -32,767 32,766
long 4 -2,147,483,647 2,147,483,646
float 4 1E+36 10^36
double 8 1E+308 10^308

After having generated variables: compress 
 
 
Examples (note the abbreviations): 

replace rate = rate*100 
replace age=25 if age==250   
 
g constant=5       
g logw = log(wage) 
g age2 = age*age /* or:    g age2 = age^2  */ 
 
sort idcode year 
by id: g ustate = sum(union) 
lab var ustate “cumulative periods of union membership” 
drop constant ustate 
 

Useful functions (see help functions): 

log(), abs(), int(), round(), sqrt(), min(), max(), sum() 
statistical functions 
string functions (to manipulate strings and to convert between strings and numbers) 
date functions 
and more  
 
 
Accessing Stata output (see above, general syntax): 

summarize wage if sex==1 
g maxincmale=r(max) 

count if female==1 
g number_fem=r(N) 
 
 
Subscripts (see above, general syntax) 

by id: g unionlag = union[_n-1]   
by id: g dxvar = xvar-xvar[_n-1]  
 
sort id year 
by id: g entryage = age[1] 
by id: g exitage  = age[_N] 
 



 8

Extended generate (see help egen): 

egen meangrade = mean(grade), by(id)  
egen income85  = pctile(income), p(85) by(region)  
 

Recoding variables: 

recode varname  rule [if  exp] [in  range] 
(see help recode for examples) 

 
Dealing with categorical and dummy variables 

Creating dummy (0-1) variables: 
g varname = exp 
→ dummy varname = 1 if exp is true and = 0 otherwise 
 
g wagehigh = wage>=1000 if wage!=. 
g age30=age==30 
 
From continuous to categorical variables: 

g age_gr = 1+(age>35)+(age>45) 
 
− recode(oldvar, x1, x2,…,xk) 
g age_gr1 = recode(age, 35, 45, 55) 
 
− autocode(oldvar, #groups, xmin, xmax) 
g age_gr2 = autocode(age, 3, 25, 55) 
 
− group(#) 
g age_gr3 = group(3) 
 
 
From categorical to dummy: 

tab varname, g(varname2) 
xi varlist_with_i. (see p.15) 
 
 
Dealing with string variables 
encode, recode 
 
 
Dealing with date variables  
date, mdy 
 
 
Combining and reshaping datasets 

Combining: append, merge 

Reshaping: stack, xpose, reshape, collapse 
 



 9

• sorting data  
sort varlist 
→ in ascending order of varlist – NB: missing values last! 

gsort –varname1  varname2 
→ if -, then in descending order 
 

 

TAKING A FIRST LOOK AT THE DATA 
Summarising the data 

summarize [varlist] [in range] [if exp] 
→ no. of non-missing obs, mean, std deviation, min and max 

, detail 
→ quantiles , 4 smallest and largest values, variance, mean, skewness and kurtosis  
 
 

Exploratory data analysis 

• Means 

means [varlist] [in range] [if exp] 
→ arithmetic, geometric and harmonic means and corresponding confidence intervals 
 

• Centiles 

centile [varlist] [in range] [if exp],  c(numlist) 
e.g. c(5)   → the 5th centile 
 c(10(10)90) → the 10th, 20th, …, 80th and 90th centile 
→ centiles and confidence intervals 
 

• Correlations 

correlate [varlist] [in range] [if exp] 
[,covariance] → instead of correlation coefficients 
 
pwcorr [varlist] [in range] [if exp] 
→ all the pairwise correlation coefficients between the variables in varlist 
[,sig → include significance level 
 star(#)] → star all the coefficients significant at the #*100% or more 



 10

• Tables  

1. One-way tables: frequencies 

tabulate varname  [in range] [if exp] 
[,missing → include missing values  
 nolab → numeric codes instead of labels 
 plot ] → bar chart of relative frequencies 
 
sum wage 
tab age if wage>r(mean) 
→ age distribution for above mean-wage earners 
 

2. Two-way tables: frequencies and measures of association 

tabulate var1 var2  [in range] [if exp] 
[,missing → include missing values  
 nolab → numeric codes instead of labels 
 row  → relative frequency of that cell within its row 
 col  → relative frequency of that cell within its column 
 nofreq → frequencies not displayed 
 all ] → display all measures of association: 
   Pearson chi2, likelihood-ratio chi2, Cramer's V, gamma, Kendall's tau-b 
  (tests of the hyp that row and col variables are independent) 
 

3. Summary statistics 

tabulate var1 [var2]  [in range] [if exp], sum(var3) 
→ summaries of var3 – mean, std dev and frequency – by (i.e. conditional on) var1 (and 
var2)  
 
Are there differences in wage and wage dispersion by county? 
tab county, sum(wage) nofreq 
 
table rowvar [colvar [supercolvar]] [in range] [if exp] 
, c(clist) → mean/sd/count/max/min/med/sum/p# varname,  
 row  → total across rows 
 col  → total across columns 
 by(superrowvar) 
 
table  edcat, c(count  wage mean  wage sd wage) 
table  edcat foreign, c(mean  wage) row col 
table  foreign, c(mean  wage) by(edcat) row  
  
 



 11

ESTIMATION 
 
 
Overview 

 [by varlist:]   command   yvar   xvarlist  [if  exp]  [in  range]  [, options] 
 
if and in define the estimation sub-sample 
Note: in order not to clutter notation, in the following, they are omitted. 
 
 
Useful options: 
, robust    → robust standard errors (White correction for heteroskedasticity) 
 cluster(persid) → if repeated obs per individual, with robust  
 level(#)  → set significance level for confidence intervals. Default = 95 
 
 
• To replay the last results (at any time before a new estimation or a clear): 

command 
 
• To display the V/Cov matrix of β

)
 after estimation: 

vce[, corr] 
 
• To retrieve the  

V/Cov matrix  →  e(V) 
coeff on var  →  _b[var] 
std err of coeff on var →  _se[var] 

 
 
 
Regression analysis 
 
OLS 
regress yvar xvarlist  
 
 
Dummy variables 
xi : command varlist 
with varlist of the form: 
i.var   → created dummies for categorical var 
i.var1*i.var2 → creates dummies for categorical var1 and var2 plus all  

interactions 
i.var1*var3 → creates dummies for categorical var1 and continuous var3 plus all 

interactions 

Manually: 
g foreign_2 = foreign*(agecat==2) 
g foreign_3 = foreign*(agecat==3) 



 12

Predicted values and residuals 
predict newvar [,  statistic: in particular 

xb  → default: predicted value of dependent variable 
residual] → the residuals 

 
xi: regr logw age age2 i.sex*i.edcat 
predict fitted 
predict resid, residual 
graph resid fitted, yline(0) ylabel xlabel 
graph logw fitted age, by(sex) c(.l) s(oi) sort 
 

 

Hypothesis testing  
Note: regress already provides overall F test and individual t tests 
 
1) linear hypothesis (Wald test) 

test exp=exp 
test coefficientlist 
, accumulate → jointly with previous test 
 
Note: for test, both varname and _b[varname] denote the coefficient on varname. 
 
Examples: 
regr logw age group sex edu2-edu4 
test age group sex edu2-edu4 
test group 
test age=1 
test 2*(age+sex) = -3*(edu2-(edu3+1)) 

test _b[x1]=0 
test _b[x2]=0, acc 

test x1 x2 x3 
 
2) non-linear hypothesis (Wald test) 

testnl exp=exp 

testnl (3*_b[age]^2=_b[sex]) (_b[sex]/_b[foreign]=4) 
→ testing two hypotheses jointly 
 
 
Robust regression 
xi: regr logw group age age2 sex i.edcat, robust 
 

 



 13

Instrumental Variables 

ivreg depvar  [exogvarlist] (endogvarlist = IVvarlist) 

→ estimates a linear regression model of depvar on exogvarlist and endogvarlist  using 
IVvarlist (along with exogvarlist) as instruments for endogvarlist. 
 
 
 
Binary qualitative outcome model 
 
probit depvar indepvarlist   [, robust] 
→ estimate maximum-likelihood probit models 
 
dprobit 
→ same as probit but instead of reporting coefficients, it reports the change in the 
probability for an infinitesimal change in each independent, continuous variable and, by 
default, the discrete change in the probability for dummy variables 
 
logit depvar indepvarlist 
[, robust 
  or  ] → report coefficients β transformed to odds ratios exp(β)  

Note: logistic is identical command, with some minor differences 
 


