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Panel Data Models - part II

(Wooldridge, chapter 11)

1 Relaxing the strict exogeneity assumption

• The strict exogeneity assumption can be very strong and is often violated in economic problems.

It states that,

E(uit|xi1, . . . ,xiT ) = 0

• We will start by considering the implications of non-strictly exogenous regressors on the WG

estimator (see also Nickell, 1981, Econometrica)

• Take the simple model with a single explanatory variable, the lagged dependent variable (xit =

yit−1):

yit = αyit−1 + fi + uit (1)

and therefore

E(uit|xit+1) = E(uit|yit) = E(uit|αyit−1 + fi + uit) 6= 0

• However, if uit is serially uncorrelated for all i, then

E(uit|xi1, . . . , xit) = E(uit|yi0, . . . , yit−1) = 0

since yij is a function of ui1, . . . , uij but not of uij+1, . . . , uiT and therefore uit is mean indepen-

dent of the explanatory variables up to time t, yi0, . . . , yit−1.

2 The WG estimator when the strict exogeneity assumption does

not hold

• We start by applying the WG transformation to model (1):

yit − yi+ = α(yit−1 − yi−) + (uit − ui+)

where,

yi+ =
1
T

T∑

t=1

yit, yi− =
1
T

T−1∑

t=0

yit, ui+ =
1
T

T∑

t=1

uit

and will now check what the consequences are of relaxing the strict exogeneity assumption.
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• Suppose α > 0 (you can perform a similar analysis for the case α < 0). Then the past values

of u will have a positive effect on yit while, from the model, the contemporaneous uit partially

determines yit.

• Let vit = fi + uit. Successive replacements yield,

yit = αyit−1 + vit

= α2yit−2 + vit + αvit−1

= . . .

= αtyi0 +
t−1∑

s=0

αsvit−s

= αtyi0 +
t−1∑

s=0

αsfi +
t−1∑

s=0

αsuit−s

• Take j > 0. The model implies

E(uijyit) = E

[
uij

(
αtyi0 +

t−1∑

s=0

αsfi +
t−1∑

s=0

αsuit−s

)]

=





E
[
αt−ju2

ij

]
= αt−jσ2

u > 0 if j < t

E
[
αt−tu2

it

]
= σ2

u > 0 if j = t

0 if j > t

• But then, yi− will be positively affected by uit:

E(uijyi−) =
1
T

T−1∑

s=j

αs−jσ2
u > 0

• As a consequence, uij will be negatively related with the regressor yit−1 − yi− when j > t− 1,

E
(
uij

(
yit−1 − yi−

))
= −E

(
uijyi−

)

= − 1
T

T−1∑

s=j

αs−jσ2
u < 0

and in particular for j = t,

E
(
uit

(
yit−1 − yi−

))
= − 1

T

T−1∑
s=t

αs−tσ2
u < 0

implying that the WG estimator is downward biased.

• However, as T grows, the bias vanishes (under the assumption that |α| < 1). But this is typically

not of much use in the practical applications in microeconometrics as T is usually small.
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3 The Anderson Hsiao Estimator: first differencing methods

• We need an alternative to within groups.

• Take again the basic model in the general notation,

yit = xitβ + fi + uit for i = 1, ...N and t = 1, ...T

• We can take first differences over time to obtain,

∆yit = ∆xitβ + ∆uit

where ∆yit = yit − yit−1, ∆xit = xit − xit−1 and ∆uit = uit − uit−1.

• Notice that by differencing the regression equation, we got rid of the fixed effect.

• However, we now have to deal with past values of the error term.

• In the absence of strict exogeneity, which was what lead us here, it is possible that past shocks

predict contemporaneous regressors. In such case, E(uit−1|xit) 6= 0.

• Hence in general E(∆uit|∆xit) 6= 0.

• Solution: instrumental variables.

4 The Instrumental Variables approach

• We consider the system of equations with N iid observations, {yi1, . . . , yiT ,xi1, . . . ,xiT }

yit = xitβ + uit for t = 1, . . . , T

• We can write it in the system of equations format,

yi = Xiβ + ui

4.1 Classical IV

Just identified case

• This occurs when the number of instruments equals the number of regressors (notice that Z

includes the exogenous variables in X).

• In this case, the IV assumptions are,
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IV1: Rank condition: E(Z ′iXi) is of order K.

IV2: Exclusion restriction: E(Z ′iui) = 0.

and the IV estimator is,

βIV = (Z ′X)−1Z ′Y

Over identified case

• This occurs when the number of instruments is higher than the number of regressors and the

IV method is the 2SLS.

• The IV assumptions are,

IV1’: Rank condition: E(Z ′iXi) is of order K, which is the number of regressors in X, and

E(Z ′iZi) is of order L, which is the number of instruments in Z and where L > K.

IV2’: Exclusion restriction: E(Ziui) = 0.

• The IV estimator explicitly uses the linear projection of X onto Z,

X̂ = Z(Z ′Z)−1Z ′X

• We then notice that E(X̂ ′u) = 0 since E(Z ′u) = 0. This means that X̂ excludes the part of X

that is related with the error term.

• But then, X̂ can be used as an instrument in the second step regression to yield,

β2SLS =
(
X ′Z(Z ′Z)−1Z ′X

)−1
X ′Z(Z ′Z)−1Z ′Y

=
(
X̂ ′X

)−1
X̂ ′Y

=
(
X̂ ′X̂

)−1
X̂ ′Y

=

(
N∑

i=1

T∑

t=1

x̂′itx̂it

)−1 (
N∑

i=1

T∑

t=1

x̂′ityit

)

That is, this is the 2SLS estimator for pooled regressions.

The asymptotic distribution of the IV estimator
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• The 2SLS estimator is

β2SLS = β +
(
X ′Z(Z ′Z)−1Z ′X

)−1
X ′Z(Z ′Z)−1Z ′u

= β +




(
N∑

i=1

1
N

X ′
iZi

)(
N∑

i=1

1
N

Z ′iZi

)−1 (
N∑

i=1

1
N

Z ′iXi

)

−1

(
N∑

i=1

1
N

X ′
iZi

) (
N∑

i=1

1
N

Z ′iZi

)−1 (
N∑

i=1

1
N

Z ′iui

)

• Under IV1’ and IV2’, 2SLS is consistent.

• Under the exclusion restriction we can apply the CLT to guarantee that

1√
N

N∑

i=1

Z ′iui
a∼ N (

0, E
(
Z ′iuiu

′
iZi

))

• As for the rest of the matrices composing the estimator β2SLS , the rank condition ensures that

plim
N→∞

1
N

N∑

i=1

X ′
iZi = E(X ′

iZi) = MXZ of rank K.

plim
N→∞

1
N

N∑

i=1

Z ′iZi = E(Z ′iZi) = MZZ of rank L > K.

• Hence,

√
N

(
β2SLS − β

) a∼ N (0, V )

where,

V =
(
MXZM−1

ZZM ′
XZ

)−1
MXZM−1

ZZE
(
Z ′iΩiZi

)
M−1

ZZM ′
XZ

(
MXZM−1

ZZM ′
XZ

)−1

and Ωi = E (uiu
′
i)

A few notes about the 2SLS

• 2SLS is equivalent to GLS applied to the transformed model,

Z ′iyi = Z ′iXiβ + Z ′iui

under the additional assumption that E (Z ′iuiu
′
iZi) = σ2

uE (Z ′iZi).

• In panel data models, this is generally not the case. As a consequence, the estimate of the

variance of β is not consistent as it is based on this assumption.
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• One alternative is to use the White estimator (Econometrica, 1980) for the covariance matrix

when there are suspicions of heteroscedasticity or serial correlation.

• The basic result for heteroscedasticity states that (in a cross section setup),

plim
N→∞

1
N

N∑

i=1

û2
i z
′
izi = plim

N→∞
1
N

N∑

i=1

u2
i z
′
izi

where ûi are the residuals obtained using a consistent estimator.

• In the context of panel data, this result extends to,

plim
N→∞

1
N

N∑

i=1

Z ′iûiû
′
iZi = plim

N→∞
1
N

N∑

i=1

Z ′iuiu
′
iZi

= E(Z ′iΩiZi)

• In practice, we need to estimate E(Z ′iΩiZi) and we will use the analogy principle as before,

̂(
Z ′ΩZ

N

)
=

1
N

N∑

i=1

Z ′iûiû
′
iZi

where the û are residuals from the consistent 2SLS procedure. This matrix should replace

E(Z ′iΩiZi) in the covariance expression.

4.2 GMM estimation

• The 2SLS may not be efficient as it does not take into account possible correlations of the

unobservable u over time for the same individual.

• To solve the endogeneity problem we transform our system of equations to,

Z ′iyi = Z ′iXiβ + Z ′iui (2)

exploring the exclusion restriction IV2’.

• The 2SLS estimator is the GLS estimator under the assumption that

E
(
Z ′iuiu

′
iZi

)
= σ2

uE
(
Z ′iZi

)

which excludes serial correlation in uit.

• The GMM estimator (3SLS) is the GLS estimator of model (2) without restricting the variance

of Z ′iui.

• Let Ω = var(Z ′iui). Then

βGMM =

[(
N∑

i=1

X ′
iZi

)
Ω−1

(
N∑

i=1

Z ′iXi

)]−1 (
N∑

i=1

X ′
iZi

)
Ω−1

(
N∑

i=1

Z ′iyi

)
(3)
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Two-step GMM

• However, Ω is not known at the start of the estimation procedure.

• So we can implement GMM in two steps. This is called feasible GMM (FGMM):

1. Estimate the model using a consistent but not efficient estimator. A possibility is to use

2SLS. Then use the residuals from the first step to estimate Ω

Ω̂ =

[
1
N

N∑

i=1

Z ′iûiûi
′Zi

]

with ûit = yit − xitβ
2SLS .

2. Replace Ω̂ in (3) to obtain

βFGMM =

[(
N∑

i=1

X ′
iZi

)
Ω̂−1

(
N∑

i=1

Z ′iXi

)]−1 (
N∑

i=1

X ′
iZi

)
Ω̂−1

(
N∑

i=1

Z ′iyi

)

Some notes of caution for two step GMM

• It has been shown that in finite samples one should avoid using too many orthogonality con-

ditions. IV with too many orthogonality conditions for the sample size N produces estimates

biased towards OLS (projecting X on Z when the number of instruments is large yields X̂ close

to X).

• FGMM gives hopelessly biased estimates of the standard errors: they tend to come out much

too small relative to the true variance of the estimator. Adjustments have been derived by

Windmeijer (IFS working paper) and also based on the bootstrap.

5 The choice of the instrument(s) in dynamic panel data models

• Consider the simple dynamic model we have used before,

yit = β0 + β1yit−1 + fi + uit

and take first differences to get rid of the fixed effect,

∆yit = β1∆yit−1 + ∆uit
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• If uit are uncorrelated over time, ∆uit follows an MA(1) process and we can, in principle, choose

as instrument zit = ∆yit−2, and obtain,

βIV
1 =

cov(zit, ∆yit)
cov(zit,∆xit)

=
cov(∆yit−2,∆yit)

cov(∆yit−2, ∆yit−1)

which is the one-regressor/one-instrument estimator of β1.

• The exclusion restriction holds under the serially uncorrelated error terms assumption, which

implies

E (∆yit−2∆uit) = E [(β1∆yit−3 + ∆uit−2)∆uit] = 0

• However, to guarantee the validity of this procedure we also need to make sure that the rank

condition holds.

• In general, it does. But there are cases where it does not.

• Consider the special case of the model above where uit are iid and β1 = 1,

yit = yit−1 + uit

and notice that,

∆yit = uit

• Thus, if we use ∆yit−2 to instrument ∆yit−1 the rank condition is not satisfied,

E (∆yit−2∆yit−1) = E (uit−2ut−1) = 0

• The estimator fails in this case because ∆yit−2 fails to predict ∆yit−1 since ∆yit−1 is an unpre-

dictable shock.

The efficient choice of instruments

• Suppose we wish to estimate efficiently (asymptotically) the following dynamic panel data model

with iid errors and fixed effects,

yit = βyit−1 + fi + uit where β 6= 1

• If uit is serially uncorrelated, we have seen that ∆yit−2 is a valid instrument in general.
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• However, there may be more valid instruments available.

• Suppose T > 2. At each period t we have t− 2 orthogonality (order) conditions,

E (yit−2∆uit) = 0

E (yit−3∆uit) = 0
...

E (yi1∆uit) = 0

• Efficiency requires that we use all the information contained in the above relationship. To see

exactly how many orthogonality conditions we have, suppose we have a panel of dimension

T = 5. We lose two observations by lagging and differencing. Then we get,

t = 3 t = 4 t = 5

E (yi1∆ui3) = 0 E (y1∆ui4) = 0 E (yi1∆ui5) = 0

E (y2∆ui4) = 0 E (yi2∆ui5) = 0

E (yi3∆ui5) = 0

• We have 6 orthogonality conditions and wish to use them all: each orthogonality condition

defines a different estimator; the efficient estimator that combines all restrictions together is

called GMM.

• To apply it, we need to construct Z such that Z ′∆u =
∑N

i=1 Z ′i∆ui = 0 is the collection of all

orthogonality conditions.

• In our example we can write

Z =




Z1

Z2

...

ZN




where Zi =




yi1 0 0 0 0 0

0 yi1 yi2 0 0 0

0 0 0 yi1 yi2 yi3




and

∆ui =




∆ui3

∆ui4

∆ui5




6 The cost of first differencing

• Taking differences is not an innocuous procedure. To see why we consider a model with one

strictly exogenous regressor, no fixed effect and an iid error. Moreover, suppose we have just

two time periods T = 2 for N individuals.
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• More explicitly, the model is,

yit = xitβ + uit for i = 1, . . . , N and t = 1, 2

where, uit| (xi1, xi2) ∼ iid
(
0, σ2

u

)
.

• In this model, OLS is the best estimator (BLUE), with variance being

var
(
βOLS

)
=

σ2
u

2Nvar (xit)

• The first differencing (FD) estimator is,

βFD =
cov(∆xit∆yit)

var(∆xit)

which has variance,

var(βFD) =
2σ2

u

Nvar(∆xit)

=
2σ2

u

N [var(xi1) + var(xi2)− 2cov(xi1, xi2)]

• By first differencing we get twice the noise (2σ2
u). If cov (xi1, xi2) > 0 (as is likely for many

economic variables) then we also get less signal. Finally we lose N observations.

• First differencing can reduce precision greatly. So it should be used only when properly justified.
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