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Panel Data Models - part I

(Wooldridge, chapters 10)

1 What is Panel Data

• A time series of cross sections where the same individual units are followed over a number of

time periods - that is, a collection of N time series.

• Two sample dimensions: Cross-sectional (N, indexed by i = 1, ...N) and Time-series (T, indexed

by t = 1, ...T ).

• Two processes can be used,

– Individual units observed until “lost”.

– Individual units observed for a finite number of time periods and then dropped. If there

is no attrition, this is a balanced panel.

• Unbalanced panels usually result from attrition, whereby individual units can be lost at some

point.

– If the attrition process is independent of the dependent variable, then attrition is exogenous

and balanced and unbalanced panels share the same properties. This is the maintained

assumption in this course and we assume Ti = T , ∀i, to simplify the notation.

– Otherwise, attrition is endogenous (for example, the dependent variable is firm profit and

firm failure results from negative profits). As time passes the sample of individuals becomes

less and less representative of the population. This selection process must be modelled.
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• The observable information in a balanced panel with K explanatory variables is,

y =




y1

y2

...

yN




=




y11

...

y1T

y21

...

y2T

...

yNT




and X =




X1

X2

...

XN




=




x111 x112 . . . x11K

...
...

...

x1T1 x1T2 . . . x1TK

x211 x212 . . . x21K

...
...

...

x2T1 x2T2 . . . x2TK

...
...

...

xNT1 xNT2 . . . xNTK




where we use small letters for variables, small bold letter for vectors and capital letters for

matrices. Above, y is a column of dimension NT , yi is a column of dimension T for each

i = 1, . . . , N , X is a matrix NT ×K and Xi is a matrix T ×K for i = 1, . . . , N .

• Different types of panel data,

1. Household panels.

2. Individual level panels.

3. Firm level panels.

4. Countries followed over time.

5. Industries followed over time.

2 Why/When do we need Panel Data

1. Endogeneity: panel data may offer the solution to deal with unobserved heterogeneity across

individuals when IV is not adequate.

• Omitted variable problem: if an important explanatory variable is unobservable and related

with the observables, then the fundamental OLS assumption of no-correlation between the

error term and the regressors is violated. As a consequence, OLS is inconsistent.

• The cross-sectional solution is to use IV.

• When Panel Data is available, we may have other alternatives.
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• To exemplify, suppose the omitted variable f is constant over time. The model is,

yit = xitβ + fi + uit

• Taking first differences eliminates f ,

∆yit = ∆xitβ + ∆uit

• OLS can be applied to consistently estimate β for as long as,

E(∆x′∆u) = 0

2. Dynamics: panel data is required in the estimation of dynamic economic models in the presence

of individual level heterogeneity.

• Most economic decisions are dynamic in nature. Consider the following examples,

– Labour supply and human capital formation: an agent deciding about labour supply

takes into account his previous labour market experience (which affects human capital)

and expectations of future gains from present work (which again affects human capital).

So past earnings (reflecting human capital) affect future earnings.

– Habit formation: past consumption patterns affect the utility of consumption in the

future. So past levels of consumption affect future levels of consumption.

• In these examples, present decisions are a function of non-contemporaneous variables as

well as of contemporaneous variables.

3 Three types of estimators

1. Consistent for fixed T (time dimension) as N →∞ (cross section dimension). Suitable for cases

where N is large and T is relatively small.

2. Consistent as T → ∞ and N is fixed. Suitable for cases where T is large and N is relatively

small.

3. Consistent as both N and T →∞. Suitable for cases where both N and T are large.

We will study case 1. One must be careful when applying these estimators to the other cases since

some of the arguments do not hold in the other cases. In particular when T is small we do not

generally need to worry about non-stationarity of the regressors.
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4 The observation sample

• Sample of observations
{
(yit,xit) ∈ R× RK , i = 1, ..., N, t = 1, ..., T

}
.

• We assume Random sampling - sample is iid across individuals:

1. (yit,xit)t=1,...,T ⊥⊥ (yjt,xjt)t=1,...,T , ∀i 6=j ;

2. (yit,xit)t=1,...,T and (yjt,xjt)t=1,...,T have the same distribution, ∀i6=j .

5 The model

The basic model we consider is:

yit = xitβ + eit

= xitβ + fi + uit

for i = 1, ..., N and t = 1, ..., T and where

• eit = fi + uit is the unobservable component. fi is the unobserved effect and uit is the idiosyn-

cratic time-varying shock.

• The absence of a t subscript from fi implies that it does not vary over time.

• The regressors xit may or may not vary over time.

• xit is 1×K and β is K × 1.

6 Alternative assumptions on the error components

6.1 Strict versus weak exogeneity

Or how u is related with x.

• Strict exogeneity

E
(
uit

∣∣∣{xis}s=1,...,T

)
= E (uit|Xi)

= E (uit) = 0
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Notice that E(xituis) = 0 is implied by this assumption.

• Weak exogeneity or predetermined regressors

E
(
uit

∣∣{xis}s6t

)
= 0

Notice that we are always assuming that E
(
uit

∣∣∣{Xj}j=1,...,N

)
= E (uit |Xi ) - random sampling.

6.2 Random effects versus fixed effects

Or how f is related with x.

• Random effects

E(fi|xi1, ...xiT ) = E(fi) = 0

The implication is that

corr(xit, fi) = 0

• Fixed effects

E(fi|xi1, ...xiT ) = E(fi|Xi) = g(Xi)

where g is a non-constant function of Xi. The implication is that generally,

corr(xit, fi) 6= 0

7 The random effects model

7.1 Assumptions

1. Random individual effects: E (fi|xi1, ...,xiT ) = E (fi) = 0.

2. Strictly exogenous regressors: E (uit|xi1, ...,xiT ) = E (uit) = 0.
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3. Homoscedasticity:

var (fi|xi1, ...,xiT ) = σ2
f

var (uit|xi1, ...,xiT ) = σ2
u

cov (uit, uis|xi1, ...,xiT ) = 0 (t 6= s)

4. Linearly independent regressors:

plimN→∞
1
N

X ′X = E
(
X ′

iXi

)
= MXX

is positive definite for all T .

Assumptions 1 to 3 imply that,

E (eit|xi1, ...,xiT ) = 0

cov (eit, eis|xi1, ...,xiT ) = σ2
f + δtsσ

2
u

where δts = 1 if t = s and 0 otherwise (Kronecker delta).

7.2 The OLS estimator

The OLS estimator is,

βOLS = (X ′X)−1X ′y

= (X ′X)−1X ′(Xβ + e)

= β + (X ′X)−1X ′e

where e = [e′1, . . . , e
′
N ]′ and ei = [ei1, . . . , eiT ]′ for i = 1, . . . , N .

Properties of OLS under assumptions 1 to 4

• It is unbiased : E
[
βOLS |X]

= β since E [e|X] = 0

• It is consistent :

plim
N→∞

βOLS = β +
(

plim
N→∞

1
N

X ′X
)−1 (

plim
N→∞

1
N

X ′e
)
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By the LLN,

plim
N→∞

1
N

X ′X = plim
N→∞

1
N

N∑

i=1

X ′
iXi

= E
(
X ′

iXi

)
= MXX

and by assumption 4, MXX is pd, and hence invertible.

On the other hand, assumptions 1 and 2 ensure that,

plim
N→∞

1
N

X ′e = plim
N→∞

1
N

N∑

i=1

X ′
iei

= E
(
X ′

iei

)
= 0

which proves consistency.

Remark: OLS requires less than strict exogeneity for consistency: only contemporaneous corre-

lation needs to be excluded.

• But it is not efficient : since it does not explore the structure of the error term.

7.3 Variance of the error

• Under assumption 3, the elements of the covariance matrix for ei are,

E
(
e2
it|Xi

)
= σ2

f + σ2
u

E (eiteis|Xi) = σ2
f for t 6= s

• Thus for each individual i we can write the T × T covariance matrix as

V = E(eie′i|Xi)

= σ2
uIT + σ2

fJT

where IT is the identity matrix of size T × T and JT is a T × T matrix of 1’s.

7.4 The Generalised Least Squares Estimator (GLS)

• The GLS estimator can be applied under assumptions 1-3 and the following alternative to

assumption 4:
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4’. Linearly independent regressors:

plim
N→∞

1
N

X ′V−1X =
1
N

plim
N→∞

N∑

i=1

X ′
iV

−1Xi

= E
(
X ′

iV
−1Xi

)
= MXV X

is positive definite for all T .

where V = diag {V1, V2, ..., VN} = diag {V, V, ..., V } is NT ×NT .

• The GLS estimator is obtained from the transformation of the model,

V − 1
2 yi = V − 1

2 Xiβ + V − 1
2 ei

which if estimated by OLS yields,

βGLS =

(
N∑

i=1

X ′
iV

−1Xi

)−1 (
N∑

i=1

X ′
iV

−1yi

)

Properties of GLS under assumptions 1 to 3 and 4’

• It is consistent

plim
N→∞

βGLS = β +
(

plim
N→∞

1
N

X ′V−1X

)−1 (
plim
N→∞

1
N

X ′V−1e
)

By the LLN,

plim
N→∞

1
N

X ′V−1X = plim
N→∞

1
N

N∑

i=1

X ′
iV

−1Xi

= E
(
X ′

iV
−1Xi

)
= MXV X

which by assumption 4’ is pd.

On the other hand, the LLN and the LIE ensure that

plim
N→∞

1
N

X ′V−1e = plim
N→∞

1
N

N∑

i=1

X ′
iV

−1ei

= E
(
X ′

iV
−1ei

)

= E
(
X ′

iV
−1E (ei|Xi)

)
= 0

which proves consistency.
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• It is asymptotically normally distributed

√
N

(
βGLS − β

)
=

(
1
N

N∑

i=1

X ′
iV

−1Xi

)−1 (
1√
N

N∑

i=1

X ′
iV

−1ei

)

By the CLT

1√
N

N∑

i=1

X ′
iV

−1ei
d→ N (

0, var
(
X ′

iV
−1ei

))

where

var
(
X ′

iV
−1ei

)
= E

[
X ′

iV
−1eie′iV

−1Xi

]

= E
[
X ′

iV
−1E

(
eie′i|Xi

)
V −1Xi

]

= E
[
X ′

iV
−1V V −1Xi

]

= E
[
X ′

iV
−1Xi

]

But then,
√

N
(
βGLS − β

) d→ N
(
0, E

[
X ′

iV
−1Xi

]−1
)

7.5 Feasible GLS - FGLS

• The GLS estimator above is not implementable because the σu and σf are not known. We

develop a feasible procedure.

• The resulting estimator will no longer be unbiased, but in general it will be consistent and

asymptotically efficient.

• Using the fact that OLS is consistent under assumptions 1 to 4, we can use its predicted residuals

to estimate the variance of eit:

̂E
(
e2
it|Xi

)
= ̂σ2

u + σ2
f

=
1

NT

N∑

i=1

T∑

t=1

ê2
it

and the covariance between eit and eis for any t 6= s:

̂E (eiteis|Xi) = σ̂2
f

=
1

N(T − 1)

N∑

i=1

T∑

t=1,t6=s

êitêis
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• Then

σ̂2
u = ̂σ2

f + σ2
u − σ̂2

f

• We can now construct V̂ and substitute it into the GLS formula.

• This “works” because OLS is consistent. The feasible estimator is neither linear nor unbiased.

This is because the estimated quantity V̂ is a function of the dependent variable y.

8 The fixed effects model with strict exogeneity

• Consider the model,

yit = xitβ + ziγ + fi + uit i = 1, ..., N and t = 1, ..., T

where we have distinguished between those explanatory variables that vary with time (xit) and

those that do not vary over time (zi).

• We now consider the case where some of the x’s are endogenous but the endogeneity can be

modelled as a dependence between the regressors and an unobserved component that is fixed

over time. This is of course a modelling assumption and in practice would have to be justified

by an economic model.

• We continue considering assumption 2 but relax assumption 1 by considering,

E(fi|Xi) 6= 0

where f is constant over time.

8.1 The Within Groups estimator

• To tackle the endogeneity problem, we define the individual-specific means,

yi =
1
T

T∑

t=1

yit, xi =
1
T

T∑

t=1

xit, zi =
1
T

T∑

t=1

zi = zi

• The Within Groups (WG) estimator uses centered observations,

ỹit = yit − yi, x̃it = xit − xi, z̃i = zi − zi = 0
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• The average model is

yi = xiβ + ziγ + fi + ui

and the centered model is,

ỹi = X̃iβ + ũi

• The WG estimator of β is the OLS estimator applied to the centered model:

βWG =

(
N∑

i=1

X̃ ′
iX̃i

)−1 (
N∑

i=1

X̃ ′
iỹi

)

• Note that all covariates that are time-independent disappear from the centered model, so we

will not be able to identify their impact.

8.2 The WG matrix operator

• The centered observations are the residuals of the regressions of the variable on a constant only:

ỹit = yit − ŷit where ŷi = 1T

(
1′T1T

)−1 1′Tyi

x̃itk = xitk − x̂itk where x̂ik = 1T

(
1′T1T

)−1 1′Txik for k = 1, ...,K

and where 1T is a column vector of size T filled with 1’s.

• Define

PT = 1T

(
1′T1T

)−1 1′T

QT = IT − PT

We can write, in matrix notation,

ỹi = QTyi

X̃i = QT Xi

• Since QT is symmetric and idempotent (QT QT = QT ), the WG estimator can be re-written as

βWG =

(
N∑

i=1

X̃ ′
iX̃i

)−1 (
N∑

i=1

X̃ ′
iỹi

)

=

(
N∑

i=1

X ′
iQT Xi

)−1 (
N∑

i=1

X ′
iQTyi

)
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8.3 Properties of the WG estimator

WG assumptions

2. Strictly exogenous regressors: E (uit|xi1, ...,xiT ) = E (uit) = 0.

3”. Homoscedasticity:

var (uit|xi1, ...,xiT ) = σ2
u

cov (uit, uis|xi1, ...,xiT ) = 0 (t 6= s)

4”. Linearly independent regressors:

plim
N→∞

1
N

X̃ ′X̃ = E
(
X̃ ′

iX̃i

)
= M

X̃X̃

is positive definite for all T . Note that X̃ can only include the time-varying regressors for this

assumption to hold.

Properties of the WG estimator under assumptions 2, 3” and 4”

• It is unbiased : E
[
βWG|X]

= β since E [u|X] = 0.

• It is consistent :

plim
N→∞

βWG = β +
(

plim
N→∞

1
N

X̃ ′X̃
)−1 (

plim
N→∞

1
N

X̃ ′ũ
)

= β +
(

plim
N→∞

1
N

X̃ ′X̃
)−1 (

plim
N→∞

1
N

X̃ ′u
)

By the LLN,

plim
N→∞

1
N

X̃ ′X̃ = plim
N→∞

1
N

N∑

i=1

X̃ ′
iX̃i

= E
(
X̃ ′

iX̃i

)
= M

X̃X̃

which is pd by assumption 4”.

On the other hand, assumption 2” ensures that,

plim
N→∞

1
N

X̃ ′u = plim
N→∞

1
N

N∑

i=1

X̃ ′
iui

= E
(
X̃ ′

iui

)
= 0
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which proves consistency.

• It is asymptotically normally distributed

√
N

(
βWG − β

)
=

(
1
N

N∑

i=1

X̃ ′
iX̃i

)−1 (
1√
N

N∑

i=1

X̃ ′
iui

)

By the CLT

1√
N

N∑

i=1

X̃ ′
iui

d→ N
(
0, var

(
X̃ ′

iui

))

where

var
(
X̃ ′

iui

)
= E

[
X̃ ′

iuiu
′
iX̃i

]

= E
[
X̃ ′

iE
(
uiu

′
i|Xi

)
X̃i

]

= E
[
X̃ ′

i

(
σ2

uIT

)
X̃i

]

= σ2
uE

[
X̃ ′

iX̃i

]

And then,
√

N
(
βWG − β

) d→ N
(

0, σ2E
[
X̃ ′

iX̃i

]−1
)

9 Comparing the GLS and WG estimators

• Start by considering the GLS estimator,

βGLS =

(
N∑

i=1

X ′
iV

−1Xi

)−1 (
N∑

i=1

X ′
iV

−1yi

)

where V is the covariance matrix of the error term and we have seen that,

V = σ2
uIT + σ2

fJT

• But then,

V = σ2
uIT + σ2

fJT

= σ2
uIT + Tσ2

fPT

= σ2
u(PT + QT ) + Tσ2

fPT

= σ2
u(QT + ηPT )

where η =
σ2

u+Tσ2
f

σ2
u

and QT = IT − PT .
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• You can check that,

V −1 =
1
σ2

u

(
QT +

1
η
PT

)

• The GLS estimator can be re-written as,

βGLS =




N∑

i=1

X ′
iQT Xi

︸ ︷︷ ︸
within group

+
1
η

N∑

i=1

X ′
iPT Xi

︸ ︷︷ ︸
between group




−1 


N∑

i=1

X ′
iQTyi

︸ ︷︷ ︸
within group

+
1
η

N∑

i=1

X ′
iPTyi

︸ ︷︷ ︸
between group




• And the estimator for the asymptotic covariance matrix of the GLS estimator is,

v̂ar
(
βGLS

)
=

(
N∑

i=1

X ′
iV Xi

)−1

= σ2
u




N∑

i=1

X ′
iQT Xi

︸ ︷︷ ︸
within group

+
1
η

N∑

i=1

X ′
iPT Xi

︸ ︷︷ ︸
between group




−1

• To compare with the variance of the WG estimator suppose for simplicity that all regressors

are time varying. The estimator for the asymptotic covariance matrix of the WG estimator is,

v̂ar
(
βWG

)
= σ2

u

(
N∑

i=1

X ′
iQT Xi

)−1

• Now note that for any two positive definite matrices of the same dimensions, A and B, the

matrix A−B is positive semi definite if and only if B−1 −A−1 is positive semi-definite.

• We apply this to compare the covariance matrices for the two estimators:

σ2
u

[
v̂ar

(
βGLS

)−1 − v̂ar
(
βWG

)−1
]

=
1
η

N∑

i=1

X ′
iPT Xi

which is positive semi-definite since PT is symmetric and idempotent and η > 0

• Thus, GLS is at least as efficient as WG and identifies all the parameters of the model while

WG only identifies the parameters attached to time-varying regressors.

• But WG is more robust as it does not require mean independence between f and the regressors.
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