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Instrumental Variables
(Wooldridge, chapter 5)

1 Introduction

We consider the model,

y = xβ + e (1)

where the subscript for observation has been withdrawn for ease of notation and will be used only

when necessary for clarity. y is the dependent variable, x is a vector of explanatory variables of

size 1 ∗ k, β is a vector of size k ∗ 1 containing the unknown coefficients and e is the unobservable

component of y.

The OLS estimator is based on two assumptions,

OLS1. E(x′e) = 0

OLS2. E(x′x) = Mxx where Mxx is positive definite (with rank equal to k).

In this note we study the solution to the problem of estimating β when OLS1 fails - we say there is

an endogeneity problem.

2 When does OLS1 fail to hold?

2.1 Omitted variables

Consider a Mincer model of returns to schooling,

y = xβ + sα + e (2)

s = zv + u (3)

where y is earnings, s is schooling, x is a vector of k − 1 observable variables explaining earnings

(excluding education, s) and z is a vector of variables explaining education achievement. x and z

may or not be the same set of variables. We separate s from the other regressors x to emphasise that

endogeneity problems arise from s. (e, u) are the unobservable components of the model.

In this model we might expect s to be correlated with e. This may happen through some correlation

between e and some variable(s) in z not included in x or through some correlation between u and e.
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The first case can be solved by enlarging x with the observable variables that cause the problem. The

second case requires more care. It is caused by some unobservable component that simultaneously

determines earnings and schooling. In this example we typically think of it as ability.

2.2 Measurement error

Suppose our model is,

y = xβ + sα + e (4)

but s is observed with error, so that what we observe is,

s∗ = s− v (5)

We may think of using the observable measure of s instead of the true s to estimate the unknown

parameters of model (4). The new equation is,

y = xβ + s∗α + vα + e (6)

where vα + e is now the unobserved component of the model.

However, even if the OLS assumptions hold when applied to equation (4), this is generally no longer

true with respect to equation (6) since v determines s∗. Such violation occurs independently of

whether or not the measurement error v is related to s. In fact, it is generally assumed that v is

independent of s, x and e.

2.3 Serially correlated residuals in the presence of lagged dependent variable

Suppose we have a time series model,

yt = xtβ + yt−1α + et (7)

where et is serially correlated and the subscript t denotes the time period. At time t − 1, the value

of the dependent variable y is partly determined by the unobservable component at time t− 1,

yt−1 = xt−1β + yt−2α + et−1

But since et and et−1 are correlated, we expect yt−1 to be correlated with et through its dependence

on et−1.
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3 What do we do when OLS1 does not hold?

The two most commonly used approaches are:

1. Instrumental Variable (IV) estimation.

2. Maximum Likelihood Estimation (MLE).

In this note we look at IV estimation.

4 Why does OLS fail when OLS1 does not hold?

Intuitively, the problem is that the failure of OLS1 precludes changes in x keeping everything else

constant, particularly e, and this will confound the effect of x.

To see this more precisely, notice that the OLS estimator, bOLS , is defined as a solution to the system:

0 =
1
N

N∑

i=1

x′iei

(
bOLS

)
(8)

=
1
N

N∑

i=1

x′i
(
yi − xib

OLS
)

which is a set of k equations.

Condition (8) is the sample analog of assumption OLS1, which states that

0 = E
(
x′iei

(
bOLS

))
(9)

Under OLS2, the unique solution to (9) is bOLS = β, the true set of parameters. However, if (9) does

not hold then β will not solve (9) and the OLS estimator will now be based on a condition that does

not hold for the true β. As a consequence, it will yield inconsistent estimates of the parameters β:

bOLS =

(
N∑

i=1

x′ixi

)−1 N∑

i=1

x′iyi

=

(
N∑

i=1

x′ixi

)−1 N∑

i=1

x′i (xiβ + ei)

= β +

(
N∑

i=1

x′ixi

)−1 N∑

i=1

x′iei

= β +

(
1
N

N∑

i=1

x′ixi

)−1
1
N

N∑

i=1

x′iei

p→ β + M−1
xx E

(
x′iei

)
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which is different from β since E (x′iei) 6= 0.

5 The IV solution

Consider model (1) when condition OLS1 fails to hold. In general, let x = (x1, ...xk−1, xk) and

assume xk is the only endogenous regressor. Now consider an alternative k-dimensional random

vector, z = (z1, . . . , zk−1, zk) = (x1, ...xk−1, zk) where z is called the vector of instruments under some

assumptions to be introduced below. In the present case, both x and z are of size 1 ∗ k but we will

later see the possibility of having more instruments than regressors.

For z to be a valid set of instruments, a condition similar to OLS1 must hold with respect to z:

E(z′e) = 0 (10)

This means that all variables in z are exogenous in the equation for y, including the regressors

x1 . . . , xk−1 and the additional instrument zk. Assumption (10) implies that z has no explanatory

power of y conditional on the x’s.

We can now use assumption (10) within model (1) to derive:

z′y = z′xβ + z′e implying that

E(z′y) = E(z′x)β

To be able to solve for β we need an additional assumption guaranteing that zk does indeed explain

xk conditional on (x1, ..., xk−1). As will be made clear in the next section, this is equivalent to assume

that

rank
(
E(z′x)

) 6= k (11)

which implies that E(z′x) is invertible. This is known as the rank condition.

We can now use assumption (11) to write

β = E(z′x)−1E(z′y)

The expectations E(z′x) and E(z′y) can be consistently estimated, yielding the IV estimator,

bIV = (Z ′X)−1(Z ′y)

In the returns to education example, z is formed by the exogenous regressors in the earnings equa-

tion (2) and one additional regressor in the educational attainment equation (3). Taken together,
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assumptions (10) and (11) require the existence of (at least) one element in z not in (x, s). For this

reason, taken together these conditions are typically known as the exclusion restriction: for each

endogenous regressor in (2) we need at least one variable explaining such regressor that does not

affect the dependent variable y otherwise.

6 Two-Stage Least Squares

6.1 Same number of instruments as explanatory variables

The IV estimator can be derived as the two-stage least squares (2SLS) estimator. To show this,

take the model as detailed above, where xk is endogenous but all the other explanatory variables are

exogenous:

y = β1x1 + ... + βk−1xk−1 + βkxk + e (12)

As above, suppose there exists an additional variable zk that is correlated with xk conditionally on

all other explanatory variables, x1, ..., xk−1 but does not explain y conditional on x1, ..., xk. The later

means that zk and e are uncorrelated. The former implies that if we write a reduced form model for

xk as follows,

xk = α1x1 + ... + αk−1xk − 1 + αkzk + u (13)

the coefficient αk is different from zero.

By construction u has mean zero and is uncorrelated with z = (x1, ..., xk−1, zk). Notice that (13) is a

reduced form equation for xk and we have no intention of recovering structural parameters here. So

we can run an OLS regression to estimate the parameters in (13) and obtain the fitted values,

x̂k = α̂1x1 + ... + α̂k−1xk − 1 + α̂kzk

Since all variables in z are uncorrelated with e, so is x̂k. So we can replace xk with x̂k in (14) and

estimate the transformed model

y = β1x1 + ... + βk−1xk−1 + βkx̂k + e (14)

using OLS. This is the 2SLS and in the present case (equal number of explanatory variables and

instruments), it is the same as the IV estimator we presented above.
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To see why, define as α̂ the following k ∗ k matrix of coefficients

α̂ =




1 0 . . . α̂1

0 1 . . . α̂2

...
...

...

0 0 . . . α̂k




We can now write

X̂ = Zα̂

= Z(Z ′Z)−1Z ′X

where X is the N ∗ k matrix of regressors, X̂ is the N ∗ k matrix of fitted regressors and Z is the

N ∗ k matrix of instruments (for each individual i, xi = (xi1, ..., xik−1, xik), x̂i = (xi1, ..., xik−1, x̂ik)

and zi = (xi1, ..., xik−1, zik)).

The OLS estimator on the second stage is,

b2SLS =
(
X̂ ′X̂

)−1
X̂ ′y

=
[
X ′Z(Z ′Z)−1Z ′Z(Z ′Z)−1Z ′X

]−1
X ′Z(Z ′Z)−1Z ′y

=
[
X ′Z(Z ′Z)−1Z ′X

]−1
X ′Z(Z ′Z)−1Z ′y

= (Z ′X)−1Z ′Z(X ′Z)−1X ′Z(Z ′Z)−1Z ′y

= (Z ′X)−1Z ′y = bIV

which is precisely the IV estimator as presented before. That is, the two approaches are the same in

this case.

Thus, the IV estimator can be implemented as a 2 steps procedure (2SLS) as follows,

1. regress xk on (x1, ..., xk−1, zk) and get x̂k;

2. regress y on (x1, ..., xk−1, x̂k) to obtain b2SLS .

6.2 What to do when we have more than k instruments?

Although the standard IV procedure above cannot be applied when we have more instruments than

regressors (Z ′X would not be a square matrix and, therefore, would not be invertible), the 2SLS

estimator is easily extensible to this case. Suppose we have l = (k − 1) + m instruments (the k − 1

exogenous regressors plus some additional m variables explaining xk but excluded from the equation

for y conditional on x1, ..., xk. The two stages are now,
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1. regress xk on (x1, ..., xk−1, zk, ..., zm) and get x̂k;

2. regress y on (x1, ..., xk−1, x̂k) to obtain b2SLS .

Notice that 2SLS can still be applied as a simple IV estimator by noticing that, for as long as the

number of instruments is at least as large as the number of regressors, then,

b2SLS =
(
X̂ ′X̂

)−1
X̂ ′y

=
[
X ′Z(Z ′Z)−1Z ′Z(Z ′Z)−1Z ′X

]−1
X ′Z(Z ′Z)−1Z ′y

=
[
X ′Z(Z ′Z)−1Z ′X

]−1
X ′Z(Z ′Z)−1Z ′y

= (X̂ ′X)−1X̂ ′y

which is the IV estimator using X̂ as instruments.

The 2 steps procedure described above provides consistent estimates of the parameters β. However,

one should be careful applying it since the outcome from the second stage regression will not report

the correct standard errors for the estimates, b2SLS . This is because it will not take into account

that the instruments, X̂, have themselves been estimated. Instead, one should directly apply a 2SLS

routine, which takes into account the whole procedure. In what follows we derive some properties of

the 2SLS estimator and it will be clear that the OLS standard errors are not the correct ones.

6.3 Properties of 2SLS

Consider the estimation of model (1) under the assumption E(x′e) 6= 0. Suppose there exists a set

of l variables, z, with l > k where k is the number of regressors in x. The 2SLS assumptions are,

2SLS1. E(z′e) = 0

2SLS2. rank (E(z′x)) = k

2SLS3. rank (E(z′z)) = l

2SLS4. E(e2z′z) = E(e2)E(z′z) = σ2
eE(z′z)

Bias The 2SLS estimator is,

b2SLS = β +
[
X ′Z (Z ′Z)−1

Z ′X
]−1

X ′Z (Z ′Z)−1
Z ′e

= β +




(
1
N

N∑

i=1

x′izi

)(
1
N

N∑

i=1

z′izi

)−1 (
1
N

N∑

i=1

z′ixi

)

−1 (

1
N

N∑

i=1

x′izi

)(
1
N

N∑

i=1

z′izi

)−1 (
1
N

N∑

i=1

z′iei

)
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with expected value,

E
[
b2SLS |X, Z

]
= β +

[
X ′Z(Z ′Z)−1Z ′X

]
X ′Z(Z ′Z)−1Z ′E[e|X,Z]

where E[e|X,Z] 6= 0 at least for some (X, Z) since E[e|X] 6= 0. Thus, the estimator is biased,

E
[
b2SLS |X, Z

] 6= β

Consistency Assuming the sample is iid from a sample with finite variances:

1
N

N∑

i=1

x′izi
p→ E

[
x′izi

]

1
N

N∑

i=1

z′izi
p→ E

[
z′izi

]

and under (2SLS1)

1
N

N∑

i=1

z′iei
p→ E

[
z′iei

]
= 0

Then under (2SLS2)-(2SLS3), b2SLS p→ β.

Distribution From the above expressions

√
N

(
b2SLS − β

)
=




(
1
N

N∑

i=1

x′izi

)(
1
N

N∑

i=1

z′izi

)−1 (
1
N

N∑

i=1

z′ixi

)

−1 (

1
N

N∑

i=1

x′izi

)(
1
N

N∑

i=1

z′izi

)−1 (
1√
N

N∑

i=1

z′iei

)

and from the CLT under (2SLS1) and (2SLS4),

1√
N

N∑

i=1

z′iei
d→ N (

0, σ2
eE(ziz′i)

)

But then, under (2SLS2) and (2SLS3),

√
N

(
b2SLS − β

) d→ N
(
0, σ2

e

[
E(xz′)E(zz′)−1E(zx′)

]−1
)

Exercise: Can you derive the properties for the standard IV estimator?
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