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Generalised Method of Moments

(Wooldridge, chapter 8)

1 Introduction
Again we consider the model,
y = xB+e (1)

where x is a k* 1 vector of explanatory variables and some are endogenous so that the OLS1 assump-
tion, E(x'e) = 0, does not hold.
And again, we assume there exists a set of variables z of size [ > k that satisfy the 2SLS assumptions,

which we now call the GMM assumptions,
GMM1: E(z'e) =0
GMM2: rank (E(z'x)) =k
When [ = k the IV estimator is the solution of the sample counterpart of the moment
E (z'e (blv)) = 0 (2)

However, if [ > k this defines a set of [ equations to determine k parameters. Thus, the system has

no solution (over-identification).

2 The GMM solution

The GMM procedure aims at solving the moment conditions (2) as closely as possible. Closeness is

measured in terms of a weighted squared error:

N ! N
pin (s ) w (S i) )
(2 (y - XU W (2 (y - x40

where W is an [ % | matrix of weights. The additional assumption of GMM is the following:

GMM3: W is a non-random, symmetric and positive definite matrix.
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The purpose of introducing W is to produce an estimator as precise as possible, as we will see below.

The foc for the above minimisation problem are
X' ZW (Z'y — Z' XpCMMy =
which under (GMM?2) and (GMM3) can be explicitly solved for b6&MM .

VMM — (X'ZWZ' X)X ZW Z'y

3 Asymptotic properties of the GMM estimator

Typically W is not known and instead we need to estimate it. In such case, we replace (GMM3) by

the alternative assumption,

GMMS3’: A consistent estimator W of W exists, where W is a non-random, symmetric and positive

definite matrix.

Consistency of GMM Under (GMM1), (GMM2) and (GMM3’), the GMM estimator is consistent.

To see why, write
MM — (X' ZWZ' X)X ZW 2y
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The LLN ensures that,
1 N
N Z Xiz; 5 E(xlz)
i=1
which has rank k£ under (GMM2). (GMM3’) ensures that W 2 W where W is pd. Thus,
1 (1
(N ngzl) W (N Z z;xi> L, BE(xlz)WE(zx;)
i=1 i=1
which has rank k and is, therefore, invertible.
Using the same reasoning,

N

1 —~

NE xiz,W L E(xlz)W
=1



UCL - Department of Economics MAS8 - Microeconometrics
Médnica Costa Dias Spring 2008

The LLN ensures that,

1 N
LS e Bl
=1

which under (GMM1) equals zero.

Thus b¢MM 2, 3

bGMM

Asymptotic normality of GMM From the above expression for we can write

i L X (1N -1 L [ X
VN (b -p) = [(N ngzZ) W (N Zzix)] (N ZX;zZ) w (\/N Zz;ei> (3)
i=1 i=1 i=1 i=1
We have seen that
1Y (1 -
(5Exn) 7 (55| st
and

i=1

Applying the CLT to the last term in (3) yields

N
1 ; a
fy=— Z Z,L'ei ~ N (0, E)
VN i=1
where ¥ = E(e?z!z;). But then
VN (MM _ ) L AN (0,Q)
where the variance covariance matrix €2 is,

Q = [E(X/Z)WE(Z/X)}ilE(X/Z)WZWE(Z/X) [E(x'z)WE(z'x)]fl

4 What is the optimal choice of W?

The optimal choice of W is the one that minimises the variance of the GMM estimator. It can be

proved that the optimal choice is (exercise)
w o= x!
2 711
= F [e Z z]

= var(z'e)™!
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In this case, the asymptotic covariance of vV N (bGM M _ ﬂ) simplifies to,

avar (\/N (bCMM ﬂ)) = [E(X'z)E_IE(Z’X)]71

5 Homoscedastic case

Suppose E [e?z'z] = ¢2E [z'z]. This is assumption (25LS4). In this case

— 0'2 / _1
= (77
v = (577)

and the GMM estimator is

-1

—1 -1
oMM — | x'z Uéz’z 7'X X'Z igz’z VA
- N N y

That is, the 2SLS is efficient under homoscedastic residuals.

6 Implementing GMM

Since generally we do not know W beforehand, we need to follow some steps to produce the GMM

estimator. The procedure proposed by Hansen is,
stepl: estimate the model using 2SLS (consistent but not efficient under the GMM assumptions);

_ -1
step2: obtain W = (% N é\zzézz) ;

i=1"1

stepl: estimate 8 by GMM using W,



