The Empirical Implications of Self-Enforceable Insurance Contracts:

Measuring the Size of Sticks and Carrots in Mexican Villages.

Orazio P. Attanasio

UCL, IFS, NBER & BREAD o.attanasio@ucl.ac.uk

The Walras-Bowley Lecture at the World Congress of the Econometric Society - Shanghai August 2010

<ロ> (四) (四) (四) (四) (四) (四) (四)

tro		

0000000

heory Empirical stra

Data En

Empirical Specifications & Results

Conclusions

www.qeconomics.org

anaging Editor			
o-Editors Steven Durlauf Jose-Victor Rios-Rull	Repart Fried, the fors precision of the <u>Econometric Society</u> , environd mit society as promoting usines that all not invitations of the theoretical quantization and the empirical-quantitative approach to economic probe that are generatized by constructive and regroups thinking. Quantizative Economics, a new journal sponsore to the teconomic for designent to provide a home for papares that fulf the vision. As each, it we complement the net designment paper share that the teconomic con-	ins and iety, is	Main page Editorial Standards Submit a paper Become an ES member
Jaap Abbring Joseph Altoniji Abhiji Banerjee Stephane Bonhomme Moshe Buchinski Kan Chay Victor Chernozhukov Liran Einav Eric French Han Hong Caroline Hoxby Shachar Karlv Dean Karlan	Current Issue: Volume 1, Issue 1 (July 2010) Table Of Cortents Main Second Payment Second Payments 4 A Second Payment Second Payment 4 A Second Pa	PDF PDF PDF	
Felix Kubler Hanno Lustig Aviv Nevo Muriel Niederle Fabrizio Perri Luigi Pistaferri Fabien Postel- Vinga Vingenzo Quadrini Michael Reiter Emmanuel Saez Frank	Approx, Appagi Sahi Tanga kang kang hang kang kang kang kang kang kang kang k	PDF PDF PDF	

Orazio P. Attanasio

IFS/UCL

3

イロン イヨン イヨン イヨン

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
o ●ooooooo	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
Introduction					

 Low-income agriculture societies are characterized by large income fluctuations.

イロト イヨト イヨト イヨト

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
o ●ooooooo	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
Introduction					

- Low-income agriculture societies are characterized by large income fluctuations.
- Consumption fluctuates less than income, but more than under perfect insurance.

イロト イ団ト イヨト イヨト

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
o ●ooooooo	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
Introduction					

- Low-income agriculture societies are characterized by large income fluctuations.
- Consumption fluctuates less than income, but more than under perfect insurance.

(日) (同) (三) (三)

IFS/UCL

Perfect insurance is strongly rejected.

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
o ●ooooooo	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
Introduction					

- Low-income agriculture societies are characterized by large income fluctuations.
- Consumption fluctuates less than income, but more than under perfect insurance.

< ロト < 同ト < ヨト < ヨト

- Perfect insurance is strongly rejected.
- We therefore need models of partial risk sharing.

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
o ●ooooooo	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
Introduction					

- Low-income agriculture societies are characterized by large income fluctuations.
- Consumption fluctuates less than income, but more than under perfect insurance.

< ロト < 同ト < ヨト < ヨト

IFS/UCL

- Perfect insurance is strongly rejected.
- We therefore need models of partial risk sharing.
- This is essential for policy analysis.

Orazio P. Attanasio

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
0 0000000	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	

The literature has focused on two types of imperfections:

イロト イヨト イヨト イヨト

IFS/UCL

- Imperfect Information;
- Imperfect Enforceability of Contracts.

Orazio P. Attanasio

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
0 0000000	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	

- The literature has focused on two types of imperfections:
 - Imperfect Information;
 - Imperfect Enforceability of Contracts.
- We focus on the second class of models of imperfect insurance:
 - those where first best is not achieved because of imperfect enforceability.

(日) (同) (三) (三)

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
0 0000000	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	

- The literature has focused on two types of imperfections:
 - Imperfect Information;
 - Imperfect Enforceability of Contracts.
- We focus on the second class of models of imperfect insurance:
 - those where first best is not achieved because of imperfect enforceability.

< ロト < 同ト < ヨト < ヨト

IFS/UCL

 These models are particularly useful to study consumption smoothing behaviour in village economies.

Orazio P. Attanasio

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
0 0000000	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	

Why is this framework interesting/useful?

Assumptions seem 'appropriate' for some village economies:

イロト イヨト イヨト イヨト

- Perfect information;
- Difficulty to convey information outside the village;
- Opportunity for risk sharing;
- Repeated interactions.

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
0 0000000	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	

Why is this framework interesting/useful?

Assumptions seem 'appropriate' for some village economies:

- Perfect information;
- Difficulty to convey information outside the village;
- Opportunity for risk sharing;
- Repeated interactions.
- These models can give rise to equilibria that capture some important aspects of risk sharing behaviour:
 - Existing contracts have features of both insurance and debt;

イロト イ団ト イヨト イヨト

IFS/UCL

Evidence: Townsend 94, Udry 94, Platteau 97.

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
0 00000000	0000000 000000000 0000		00 0000000 0000	0000 0000000	

Introduction

Why is this framework interesting/useful?

< 🗗 ▶

→

Orazio P. Attanasio Risk Sharing & Enforceability

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
0 00000000	0000000 000000000 0000		00 0000000 0000	0000 0000000	
Introduction					

This paper's aims:

- Propose a new test of the empirical relevance of models with imperfect enforceability:
 - Focus on properties of observed intertemporal allocations (as in Townsend 94);

(日) (同) (三) (三)

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
0 00000000	0000000 000000000 0000		00 0000000 0000	0000 0000000	
Introduction					

This paper's aims:

- Propose a new test of the empirical relevance of models with imperfect enforceability:
 - Focus on properties of observed intertemporal allocations (as in Townsend 94);
 - Characterize the relationship between the properties of income processes and the amount of risk-sharing across different economies.

イロト イヨト イヨト イヨト

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
0 00000000	0000000 000000000 0000		00 0000000 0000	0000 0000000	
Introduction					

This paper's aims:

- Propose a new test of the empirical relevance of models with imperfect enforceability:
 - Focus on properties of observed intertemporal allocations (as in Townsend 94);
 - Characterize the relationship between the properties of income processes and the amount of risk-sharing across different economies.
- Implement the test with a unique data set which includes questions on subjective income expectations:
 - Income processes parameters are estimated using subjective expectations data.

・ロト ・聞ト ・ヨト ・ヨト

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
00000 0 00	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
Introduction					

(日) (同) (三) (三)

IFS/UCL

Existing literature: Theory

- Thomas and Worrall (1988),
- Kocherlakota (1996),
- Ligon, Thomas and Worrall (1998, 2002),
- Alvarez and Jerman (2000),
- Attanasio and Rios-Rull (2000, 2004),
- Kehoe and Levine (2001),
- Krueger and Perri (2006,2010),
- Mazzocco (2007),
- Dubois, Jullien and Magnac (2008)

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
0 000000●0	0000000 000000000 0000		00 0000000 0000	0000 0000000	
In the description					

(日) (同) (三) (三)

IFS/UCL

Literature: Empirical evidence

- Rosenzweig and Foster (2001)
- Ligon, Thomas and Worrall (2002)
- Albarran and Attanasio (2002)
- Dubois, Jullien and Magnac (2008)
- Krueger and Perri (2006,2010)
- Laczo (2009)
- Kinnan (2010)

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
0 0000000	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
Introduction					

Outline

- A theoretical framework:
 - A very simple model with imperfect enforceability:
 - Characterization of some properties of the equilibrium.
 - A more general model.
 - Defining the 'distance' of (observed) equilibrium allocations from full risk sharing.

(日) (同) (三) (三)

IFS/UCL

- The model's empirical implications.
- Empirical strategy.
- The data:
 - Mexican PROGRESA data;
 - Validating expectations questions.
- Empirical Specifications and Results.
- Conclusions.

Orazio P. Attanasio

Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	

 We will be considering models where contracts cannot be enforced perfectly.

<ロ> (日) (日) (日) (日) (日)

Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	

- We will be considering models where contracts cannot be enforced perfectly.
- Individuals will only enter contracts that are self-enforceable.

(日) (同) (三) (三)

Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	

- We will be considering models where contracts cannot be enforced perfectly.
- Individuals will only enter contracts that are self-enforceable.
- The equilibrium concept used is the one proposed by Abreu Pearce and Stacchetti (Ecta, 1990):
 - Contracts enforced by the threat to revert to Autarky, which is the worst subgame perfect equilibrium.

< ロト < 同ト < ヨト < ヨト

Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	

- We will be considering models where contracts cannot be enforced perfectly.
- Individuals will only enter contracts that are self-enforceable.
- The equilibrium concept used is the one proposed by Abreu Pearce and Stacchetti (Ecta, 1990):
 - Contracts enforced by the threat to revert to Autarky, which is the worst subgame perfect equilibrium.
- If you deviate, you are excluded from future risk sharing and confined to Autarky.

< ロト < 同ト < ヨト < ヨト

Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	

- We will be considering models where contracts cannot be enforced perfectly.
- Individuals will only enter contracts that are self-enforceable.
- The equilibrium concept used is the one proposed by Abreu Pearce and Stacchetti (Ecta, 1990):
 - Contracts enforced by the threat to revert to Autarky, which is the worst subgame perfect equilibrium.
- If you deviate, you are excluded from future risk sharing and confined to Autarky.
- The value of Autarky is crucial to determine how much risk sharing happens in equilibrium.

(日) (同) (三) (三)

Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
000000		00	0000	
0000		0000		

A simple model

An extension of Kehoe and Levine (2001).

- Two infinitely lived agents, A and B.
- Endowments, e_t^A and e_t^B : one consumer receives $1 + \xi_t$, while the other receives $1 \xi_t$.

<ロ> (日) (日) (日) (日) (日)

IFS/UCL

Random variable ξ_t can take two values:

$$\xi_t = \begin{cases} 0 & \text{with prob } 1 - p_1, \\ y > 0 & \text{with prob} & p_1. \end{cases}$$

Orazio P. Attanasio

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	00000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
A simple model					

• The variability of the random variable ξ_t depends on y and on p_1 .

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	00000000 000000000 0000		00 0000000 0000	0000 0000000	
A simple model					

- The variability of the random variable ξ_t depends on y and on p_1 .
- A second random variable ζ_t determines who receives the positive and negative shock.
- The 'lucky' consumer's identity will change with probability $1 p_2$.

イロト イヨト イヨト イヨト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	00000000 000000000 0000		00 0000000 0000	0000 0000000	
A simple model					

- The variability of the random variable ξ_t depends on y and on p_1 .
- A second random variable ζ_t determines who receives the positive and negative shock.
- The 'lucky' consumer's identity will change with probability $1 p_2$.
- The parameter p₂ determines the persistence of the income process.

イロト イヨト イヨト イヨト

Introduction	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
A simple model					

In addition to the endowment, there is 1 unit of capital that generates returns 2r in each period.

<ロ> (日) (日) (日) (日) (日)

- The capital is owned in shares θ_t^A and θ_t^B : $\theta_t^A + \theta_t^B = 1$.
- Total resources therefore will be constant and equal to $\omega = 2(1 + r)$.

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
A simple model					

State $s_t = \{\xi_t, \zeta_t\};$

History $s^t = \{s_0, s_1, s_2, ..., s_t\}$, with probability $\pi(s^t)$;

Denote the consumption of agent j at time t as c_t^j , j = A, B.

 $m(s^t)$ is the Arrow-Debreu price of one unit of consumption at time t given history s^t .

・ロト ・聞ト ・ヨト ・ヨト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
A simple model					

State $s_t = \{\xi_t, \zeta_t\};$

History $s^t = \{s_0, s_1, s_2, ..., s_t\}$, with probability $\pi(s^t)$;

Denote the consumption of agent j at time t as c_t^j , j = A, B.

 $m(s^t)$ is the Arrow-Debreu price of one unit of consumption at time t given history s^t .

ヘロト 人間 とくほ とくほ とう

$$\max(1-\beta)\sum_{t=1}^{\infty}\sum_{s^t\in S^t}\beta^t\pi(s^t)u(c^i(s^t)),$$

subject to....

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	00000000 0000000000 0000		00 0000000 0000	0000 0000000	
A simple model					

a resource constraint:

$$\sum_{t=1}^{\infty}\sum_{s^t\in S^t}m(s^t)c^j(s^t)\leq \sum_{t=1}^{\infty}\sum_{s^t\in S^t}m(s^t)(e^j(s_t)+\theta_0^jr), \quad j=A,B.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	00000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
A simple model					

a resource constraint:

$$\sum_{t=1}^{\infty}\sum_{s^t\in S^t}m(s^t)c^j(s^t)\leq \sum_{t=1}^{\infty}\sum_{s^t\in S^t}m(s^t)(e^j(s_t)+\theta_0^jr), \quad j=A,B.$$

and a participation constraint:

$$egin{aligned} &(1-eta)\sum\limits_{ au>t}^{\infty}\sum\limits_{m{s}^ au\inm{S}^ au}eta^{ au-t}\pi(m{s}^ au)/\pi(m{s}^t)u(m{c}^j(m{s}^ au))\geq \ &(1-eta)\sum\limits_{ au>t}^{\infty}\sum\limits_{m{s}^ au\inm{S}^ au}eta^{ au-t}\pi(m{s}^ au)/\pi(m{s}^t)u(m{e}^j(m{s}_t)),. \end{aligned}$$

▲日▼▲□▼▲□▼▲□▼ 回▼ ろん⊙

IFS/UCL

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000000000000000000000000		00 0000000 0000	0000 0000000	
A simple model					

Results

Proposition 1

A symmetric Steady State Equilibrium exists and is unique.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
A simple model					

Results

Proposition 1

A symmetric Steady State Equilibrium exists and is unique.

Proposition 2

 Risk sharing decreases with persistence p₂ (the probability that the identity of the 'lucky' consumer does not change).

イロト イポト イヨト イヨト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
A simple model					

Results

Proposition 1

A symmetric Steady State Equilibrium exists and is unique.

Proposition 2

 Risk sharing decreases with persistence p₂ (the probability that the identity of the 'lucky' consumer does not change).

Proposition 3

Risk sharing increases with the variance of the endowment process as measured by p₁.

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
A simple model					

Observations

 Propositions 1 and 2 are straightforward extensions of Kehoe and Levine (2002) and Krueger and Perri (2006, 2010).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
A simple model					

Observations

- Propositions 1 and 2 are straightforward extensions of Kehoe and Levine (2002) and Krueger and Perri (2006, 2010).
- Proposition 3 is derived under the assumption that the variance is increased by shifting probability mass, but keeping the support constant.

(日) (同) (三) (三)

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
A simple model					

Observations

- Propositions 1 and 2 are straightforward extensions of Kehoe and Levine (2002) and Krueger and Perri (2006, 2010).
- Proposition 3 is derived under the assumption that the variance is increased by shifting probability mass, but keeping the support constant.
- When one increases the variance by shifting the support (say, increasing y), risk sharing does not necessarily increase. (see Krueger and Perri (2010)).

(日) (同) (日) (日)

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
A more general	framework : LTV	v			

A more general framework

• We want to extend this simple model in various dimensions:

<ロ> (日) (日) (日) (日) (日)

IFS/UCL

- Richer income structures;
- Many agents.

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000	000	00 0000000 0000	0000 0000000	
A more general	framework : LTV	V			

A more general framework

• We want to extend this simple model in various dimensions:

(日) (同) (三) (三)

- Richer income structures;
- Many agents.
- A different set of results are useful to characterize the equilibrium's properties :
 - Ligon, Thomas and Worrall (2002) (LTW).

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	00000000 000000000 0000		00 0000000 0000	0000 0000000	
A more general	framework : LTV				

A more general framework

- We want to extend this simple model in various dimensions:
 - Richer income structures;
 - Many agents.
- A different set of results are useful to characterize the equilibrium's properties :

Ligon, Thomas and Worrall (2002) (LTW).

Within this more general framework, we want to construct a measure of the level of risk sharing.

(日) (同) (三) (三)

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000	000	00 0000000 0000	0000 0000000	
A more general fra	mework : LTW	1			

LTW: The basic setup

- Two (to be extended to many) infinitely lived agents.
- Endowments function of aggregate and idiosyncratic shocks: $e_t^j = e^j(\nu_t^j, z_t).$

イロト イポト イヨト イヨト

- Shocks have discrete support.
- The vector $s_t = \{z_t, \nu_t^A, \nu_t^B\}$ is Markov.
- History to time t: $s^t = \{s_0, s_1, s_2, ..., s_t\}$.

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000	000	00 0000000 0000	0000 0000000	
A more general fra	mework : LTW	1			

LTW: The basic setup

- Two (to be extended to many) infinitely lived agents.
- Endowments function of aggregate and idiosyncratic shocks: $e_t^j = e^j(\nu_t^j, z_t).$

イロト イポト イヨト イヨト

IES/UCL

- Shocks have discrete support.
- The vector $s_t = \{z_t, \nu_t^A, \nu_t^B\}$ is Markov.
- History to time t: $s^t = \{s_0, s_1, s_2, ..., s_t\}$.
- No storage (to start with) and complete information.

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000	000 0	00 0000000 0000	0000 0000000	
A more gener	al framework : LTW	I			

• As the two idiosyncratic shocks are uncorrelated there is scope for risk-sharing.

(日) (同) (三) (三)

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 00000000 0000	000	00 0000000 0000	0000 0000000	
A more general f	ramework : LTV	v			

 As the two idiosyncratic shocks are uncorrelated there is scope for risk-sharing.

(日) (同) (三) (三)

IFS/UCL

 A contract between the two individuals specifies the net transfer from individual A to individual B as a function of current history:

$$c^{A}_{t+k}(s^{t+k}) = e^{A}(s_{t+k}) - \kappa(s^{t+k}), \quad k = 0, 1, 2, ...$$

 $c^{B}_{t+k}(s^{t+k}) = e^{B}(s_{t+k}) + \kappa(s^{t+k}), \quad k = 0, 1, 2, ...$

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 00000000 0000		00 0000000 0000	0000 0000000	
A more general	framework : LTV	V			

The value of Autarky is: $\underline{U}^{j}(s^{t}) = u(e^{j}(s_{t})) + E\left[\sum_{k=1}^{\infty} \beta^{k} u(e^{j}(s^{t+k})) | e^{j}(s^{t})\right] - P(s^{t}),$ $j = A, B \quad ; P(s^{t}) \text{ is a penalty imposed upon default from an insurance contract.}$

イロト イヨト イヨト イヨト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000	000	00 0000000 0000	0000 0000000	
A more general	framework : LTV	N			

The value of Autarky is: $\underline{U}^{j}(s^{t}) = u(e^{j}(s_{t})) + E\left[\sum_{k=1}^{\infty} \beta^{k} u(e^{j}(s^{t+k})) | e^{j}(s^{t})\right] - P(s^{t}),$ $j = A, B \quad ; P(s^{t}) \text{ is a penalty imposed upon default from an insurance contract.}$

イロト イヨト イヨト イヨト

IFS/UCL

Utility associated with an insurance contract is:

$$U^{j}(s^{t}) = u(c^{j}(s^{t})) + E\left[\sum_{k=1}^{\infty} \beta^{k} u(c^{j}(s^{t+j})) | s^{t}
ight].$$

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 00000000 0000	000	00 0000000 0000	0000 0000000	
A more general	framework : LTV	N			

- The value of Autarky is: $\underline{U}^{j}(s^{t}) = u(e^{j}(s_{t})) + E\left[\sum_{k=1}^{\infty} \beta^{k} u(e^{j}(s^{t+k})) | e^{j}(s^{t})\right] - P(s^{t}),$ $j = A, B \quad ; P(s^{t}) \text{ is a penalty imposed upon default from an insurance contract.}$
- Utility associated with an insurance contract is:

$$U^{j}(s^{t}) = u(c^{j}(s^{t})) + E\left[\sum_{k=1}^{\infty} \beta^{k} u(c^{j}(s^{t+j})) | s^{t}
ight].$$

In the absence of enforceability problems, a first best allocation of resources can be achieved and the two individuals share idiosyncratic risk fully.

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 0000000000 0000	000 0	00 0000000 0000	0000 0000000	
A more general	framework : LTV	/			

The Pareto frontier is defined by the following problem:

$$U_{s}^{B}(U_{s}^{A}) = Max_{\kappa_{s}, \{U_{r}^{A}\}_{r=1}^{S}} \left\{ u^{B}(e^{B}(s_{t}) + \kappa_{s}) + \beta \left[\sum_{r}^{\infty} \pi_{sr} U^{B}(U^{A}(r)) \right] \right\}$$

subject to

the subscript r indexes future states of the world, while s indexes current states of the world.

・ロト ・聞ト ・ヨト ・ヨト

IFS/UCL

Orazio P. Attanasio Risk Sharing & Enforceability

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000	000	00 0000000 0000	0000 0000000	
A more general	framework : LTV	V			

Constraints

$$\begin{split} \lambda : & u^{A}(e^{A}(s_{t}) - \kappa_{s}) - u(e^{A}(s_{t})) + \beta \left[\sum_{r}^{\infty} \pi_{sr} U^{A}(r)\right] \geq U_{s}^{A} \quad \forall r; \\ \beta \pi_{sr} \phi_{r} : & U_{r}^{A} \geq \underline{U}^{A}, \qquad \forall r; \\ \beta \pi_{sr} \mu_{r} : & U_{r}^{B}(U_{r}^{A}) \geq \underline{U}^{B}, \qquad \forall r; \\ \psi_{1} : & e^{A}(s) - \kappa \geq 0 \end{split}$$

-

$$\psi_2$$
 : $e^B(s) + \kappa \ge 0$

-

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 0000000000 0000	000 0	00 0000000 0000	0000 0000000	
A more general	framowork · ITM	1			

First order conditions.

$$\lambda = \frac{u^{B'}(e^B(s_t) + \kappa_s)}{u^{A'}(e^A(s_t) - \kappa_s)};$$

$$-U_s^{2\prime}(U_s^1)=\lambda;$$

$$U_r^{2\prime}(U_r^1) = \frac{\lambda + \phi_r}{1 + \mu_r}.$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	00000000 00000000000000000000000000000		00 0000000 0000	0000 0000000	
A more general	framework : LTV	V			

The solution is characterized, for each state of the world r, by an interval [λ_r, λ̄_r] and the following rule:

$$\lambda(s^{t}, r) = \begin{cases} \overline{\lambda}_{r} & \text{if} \quad \lambda(s^{t}) > \overline{\lambda}_{r} \\ \lambda(s^{t}) & \text{if} \quad \underline{\lambda}_{r} < \lambda(s^{t}) < \overline{\lambda}_{r} \\ \underline{\lambda}_{r} & \text{if} \quad \lambda(s^{t}) < \underline{\lambda}_{r} \end{cases}$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

IFS/UCL

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 00000000 0000		00 0000000 0000	0000 0000000	
A more general f	ramework : LTV	V			

・ロト ・聞 ト ・ ヨト ・ ヨト

IFS/UCL

Extensions: Storage

The value of autarky will be affected by storage.

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 00000000 0000	000 0	00 0000000 0000	0000 0000000	
A more general fr	ramework : LTW	I			

(日) (同) (日) (日)

IFS/UCL

Extensions: Storage

- The value of autarky will be affected by storage.
- The resource constraint will also change.

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 00000000 0000		00 0000000 0000	0000 0000000	
A more general fr	ramework : LTV	l I			

< □ > < 同 > < 回 > < Ξ > < Ξ

IFS/UCL

Extensions: Storage

- The value of autarky will be affected by storage.
- The resource constraint will also change.
- However, the main ideas go through.

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000	000	00 0000000 0000	0000 0000000	
A more general	framework : LTW				

Extensions: Many consumers

- A similar approach can be used with many consumers:
 - Characterize the Pareto efficient frontier;
 - Derive conditions for relative marginal utilities.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000	000	00 0000000 0000	0000 0000000	
A more general	framework : LTW	1			

Extensions: Many consumers

- A similar approach can be used with many consumers:
 - Characterize the Pareto efficient frontier;
 - Derive conditions for relative marginal utilities.
- Two groups of consumers:
 - Consumers for whom the participation constraint is not binding;
 - The m.u. of consumption grows at the same rate;

イロト イポト イヨト イヨト

- Consumers for whom the P.C. is binding;
 - The m.u. of consumption grows more slowly.

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
Empirical implic	ations				

Armed with this framework, we can now construct a measure of risk sharing (relative to first best).

イロト イヨト イヨト イヨト

IFS/UCL

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
Empirical implica	ations				

Armed with this framework, we can now construct a measure of risk sharing (relative to first best).

The amount of risk sharing is determined by the size of the intervals [λ_r, λ̄_r] that govern the dynamics of the ratio of marginal utilities λ.

• More risk sharing is equivalent to wider intervals.

< ロ > < 同 > < 回 > < 回 > < 回

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
Empirical implica	ations				

Armed with this framework, we can now construct a measure of risk sharing (relative to first best).

- The amount of risk sharing is determined by the size of the intervals [λ_r, λ̄_r] that govern the dynamics of the ratio of marginal utilities λ.
 - More risk sharing is equivalent to wider intervals.
- When the intervals are large enough so that their intersection is non-empty, first best is achieved.

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
Empirical implica	ations				

Armed with this framework, we can now construct a measure of risk sharing (relative to first best).

- The amount of risk sharing is determined by the size of the intervals [λ_r, λ̄_r] that govern the dynamics of the ratio of marginal utilities λ.
 - More risk sharing is equivalent to wider intervals.
- When the intervals are large enough so that their intersection is non-empty, first best is achieved.
- Under first best, the cross sectional distribution of marginal utilities is constant.

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
Empirical implication	ations				

Armed with this framework, we can now construct a measure of risk sharing (relative to first best).

(日) (同) (日) (日)

IFS/UCL

When the participation constraints are binding, the cross-sectional distribution changes.

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
Empirical implication	ations				

Armed with this framework, we can now construct a measure of risk sharing (relative to first best).

- When the participation constraints are binding, the cross-sectional distribution changes.
- The smaller the intervals, the larger the changes in the cross sectional distribution of marginal utilities.

< ロ > < 同 > < 回 > < 回 > < 回

IES/UCL

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
Empirical implication	ations				

Armed with this framework, we can now construct a measure of risk sharing (relative to first best).

- When the participation constraints are binding, the cross-sectional distribution changes.
- The smaller the intervals, the larger the changes in the cross sectional distribution of marginal utilities.
- Our measure of risk sharing is constructed by considering changes in the cross sectional distribution of log-marginal utilities.

イロト イポト イヨト イヨト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
Empirical implic	ations				

Deviations from first best.

- With power utility, we can approximate log marginal utility with log consumption.
- We consider changes in the cross-sectional variance of log consumption.

イロト イ団ト イヨト イヨト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 00000		00 0000000 0000	0000 0000000	
Empirical implic	ations				

Deviations from first best.

- With power utility, we can approximate log marginal utility with log consumption.
- We consider changes in the cross-sectional variance of log consumption.
- However we want to normalize it by the variance of income:

(日) (同) (三) (三)

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 00000		00 0000000 0000	0000 0000000	
Empirical implic	ations				

Deviations from first best.

- With power utility, we can approximate log marginal utility with log consumption.
- We consider changes in the cross-sectional variance of log consumption.
- However we want to normalize it by the variance of income:

 $\frac{\left|\Delta Var_v(\log(c_t^i))\right|}{Var_v(\log(y_t^i))}.$

・ロト ・聞ト ・ヨト ・ヨト

IFS/UCL

the subscript v indexes 'villages'.

• Note: under first best this quantity is zero.

Orazio P. Attanasio Risk Sharing & Enforceability

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
Empirical implica	ations				

Properties of our measure of risk sharing.

Recalling the propositions we derived for the simple model we can now state:

<ロ> (日) (日) (日) (日) (日)

IFS/UCL

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
Empirical implic	ations				

Properties of our measure of risk sharing.

Recalling the propositions we derived for the simple model we can now state:

 An increase in the (time series) variance of income increases risk sharing (under certain conditions);

(日) (同) (三) (三)

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
Empirical implica	ations				

Properties of our measure of risk sharing.

Recalling the propositions we derived for the simple model we can now state:

 An increase in the (time series) variance of income increases risk sharing (under certain conditions);

(日) (同) (日) (日)

IFS/UCL

An increase in the persistence of idiosyncratic income decreases risk sharing;

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000	• 0 0	00 0000000 0000	0000 0000000	
Empirical strator	YM				

Changes in the cross sectional variance of consumption.

The main idea of the test is to relate the amount of risk sharing, as measured by:

 $\frac{\left|\Delta Var_v(\log(c_t^i))\right|}{Var_v(\log(y_t^i))},$

<ロ> (日) (日) (日) (日) (日)

IFS/UCL

to the properties of the stochastic process that generates income.

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000	000	00 0000000 0000	0000 0000000	
Empirical strates	TV .				

The main idea of the test is to relate the amount of risk sharing, as measured by:

 $\frac{\left|\Delta Var_v(\log(c_t^i))\right|}{Var_v(\log(y_t^i))},$

to the properties of the stochastic process that generates income.

• We consider many villages and in each of them we measure risk sharing and the income properties.

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000	000	00 0000000 0000	0000 0000000	
Empirical strates	ζγ				

• The test can be framed as a test of perfect insurance.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

IFS/UCL

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000	0 0 0	00 0000000 0000	0000 0000000	
Empirical strates	v				

- The test can be framed as a test of perfect insurance.
- Under first best:

$$U_c(c_t^{i,v}(s^{t_v}), z_t^{i,v}(s^{t_v}))\lambda^{i,v}\beta^i = \mu(s^{t_v})$$

メロト メポト メヨト メヨト

IFS/UCL

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 00000000 0000	000	00 0000000 0000	0000 0000000	
Empirical strator	***				

- The test can be framed as a test of perfect insurance.
- Under first best:

$$U_c(c_t^{i,v}(s^{t_v}), z_t^{i,v}(s^{t_v}))\lambda^{i,v}\beta^i = \mu(s^{t_v})$$

Taking logs:

 $\log(U_{c}(c_{t}^{i,v}(s^{t_{v}}), z_{t}^{i,v}(s^{t_{v}}))) = \log(\mu(s^{t_{v}})) - \log(\lambda^{i,v}\beta^{i,v})$

・ロト ・聞ト ・ヨト ・ヨト

IFS/UCL

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000	000	00 0000000 0000	0000 0000000	
Empirical strates	v				

$$\log(U_{c}(c_{t}^{i,v}(s^{t_{v}}), z_{t}^{i,v}(s^{t_{v}}))) = \log(\mu(s^{t_{v}})) - \log(\lambda^{i,v}\beta^{i,v})$$

• Computing the cross sectional variance of both sides:

$$Var_{v}[\log(U_{c}(c_{t}^{i,v}(s^{t_{v}}), z_{t}^{i,v}(s^{t_{v}})))] = Var_{v}[\log(\lambda^{i,v}\beta^{i,v}] \equiv d_{v}$$

<ロ> (日) (日) (日) (日) (日)

IFS/UCL

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000	00	00 0000000 0000	0000 0000000	
Empirical strates	-				

$$\log(\mathit{U_c}(c_t^{i,v}(s^{t_v}), z_t^{i,v}(s^{t_v}))) = \log(\mu(s^{t_v})) - \log(\lambda^{i,v}\beta^{i,v})$$

Computing the cross sectional variance of both sides:

 $Var_{v}[\log(U_{c}(c_{t}^{i,v}(s^{t_{v}}), z_{t}^{i,v}(s^{t_{v}})))] = Var_{v}[\log(\lambda^{i,v}\beta^{i,v}] \equiv d_{v}$

Taking first differences:

$$\Delta Var_{v}[\log(U_{c}(c_{t}^{i,v}(s^{t_{v}}), z_{t}^{i,v}(s^{t_{v}})))] = 0$$

ヘロト 人間 とくほ とくほ とう

IFS/UCL

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000	000	00 0000000 0000	0000 0000000	
Empirical strates					

$$\log(U_c(c_t^{i,v}(s^{t_v}),z_t^{i,v}(s^{t_v}))) = \log(\mu(s^{t_v})) - \log(\lambda^{i,v}\beta^{i,v})$$

• Computing the cross sectional variance of both sides:

 $Var_{v}[\log(U_{c}(c_{t}^{i,v}(s^{t_{v}}), z_{t}^{i,v}(s^{t_{v}})))] = Var_{v}[\log(\lambda^{i,v}\beta^{i,v}] \equiv d_{v}$

Taking first differences:

$$\Delta Var_{v}[\log(U_{c}(c_{t}^{i,v}(s^{t_{v}}), z_{t}^{i,v}(s^{t_{v}})))] = 0$$

Normalizing by the income variance and expressing it as a function of moments of the income process:

$$\frac{\left|\Delta Var_v(\log(c_t^{i,v}))\right|}{Var_v(\log(y_t^{i,v}))} = f(var(\log(y_t^{i,v})), \rho^{y^{i,v}})$$

IFS/UCI

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
The PROGRES	A evaluation data	set			

Data come from 506 villages in rural Mexico

Collected to evaluate the PROGRESA program;

・ロト ・聞ト ・ヨト ・ヨト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
The PROGRES	A evaluation data	set			

- Data come from 506 villages in rural Mexico
 - Collected to evaluate the PROGRESA program;

(日) (同) (三) (三)

- We use 7 waves of a panel:
 - 1998 march, october;
 - 1999 march, november;
 - 2000 april, november;
 - 2003 october.

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
The PROGRES	A evaluation data	set			

- Data come from 506 villages in rural Mexico
 - Collected to evaluate the PROGRESA program;
- We use 7 waves of a panel:
 - 1998 march, october;
 - 1999 march, november;
 - 2000 april, november;
 - 2003 october.
- Census in each village.
- Start with about 25,000 households.
- Complete information on consumption, income etc.

< ロ > < 同 > < 回 > < 回 > < 回

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
The PROGRESA	evaluation data	set			

• Consumption includes in-kind consumption.

Detailed information on many items, especially food.

< ロト < 同ト < ヨト < ヨト

IFS/UCL

• Food accounts for about 70% of budget.

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
The PROGRES/	A evaluation data	sot			

Consumption includes in-kind consumption.

- Detailed information on many items, especially food.
- Food accounts for about 70% of budget.
- Different items recalled over different horizon.
- Information on household income derived from labour supply and transfer information.

< ロト < 同ト < ヨト < ヨト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
The PROGRES/	A evaluation data	sot			

• Consumption includes in-kind consumption.

- Detailed information on many items, especially food.
- Food accounts for about 70% of budget.
- Different items recalled over different horizon.
- Information on household income derived from labour supply and transfer information.
- The data contain questions on income expectations and uncertainty.

(日) (同) (三) (三)

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 •000000 0000	0000 0000000	
The expectation	s questions.				

The Income Expectations questions

 Respondents are asked questions about their perceptions of the distribution of future income.

イロト イ団ト イヨト イヨト

IFS/UCL

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 •000000 0000	0000 0000000	
The expectation	e questions				

The Income Expectations questions

- Respondents are asked questions about their perceptions of the distribution of future income.
- These questions should, in theory, allow us to derive three points of the cdf and, with some assumptions, all moments of the distribution.

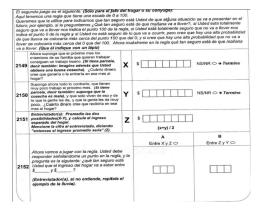
< ロ > < 同 > < 回 > < 回 > < 回

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 •000000 0000	0000 0000000	
The expectation	c questions				

The Income Expectations questions

- Respondents are asked questions about their perceptions of the distribution of future income.
- These questions should, in theory, allow us to derive three points of the cdf and, with some assumptions, all moments of the distribution.

イロト イポト イヨト イヨ

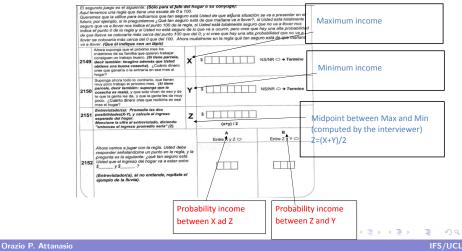

IFS/UCL

- This type of approach has been promoted by Manski.
- We have used similar questions in a variety of contexts.

Orazio P. Attanasio

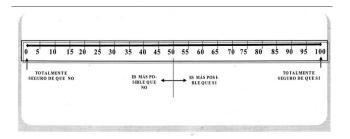
	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
The expectation	s questions.				

Income expectations questions


▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへで

IFS/UCL

Orazio P. Attanasio


	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
The expectation	s questions.				

Income expectations questions

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
The expectation	s questions.				

The Ruler

イロト イヨト イヨト イヨト

æ

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
The expectation	e questions				

Using the expectations questions

• Given the min and max expected income and the probability questions we make a functional form assumption:

<ロト < 囲 > < 国 > < 国 > < 国 >

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
The expectation	auostions.				

Using the expectations questions

- Given the min and max expected income and the probability questions we make a functional form assumption:
 - We assume a triangular distribution (approximation to a Beta).

< ロ > < 同 > < 回 > < 回 > < 回

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 00000000 0000	0000 0000000	
The expectation	c questions				

Using the expectations questions

- Given the min and max expected income and the probability questions we make a functional form assumption:
 - We assume a triangular distribution (approximation to a Beta).
- We can then estimate all moments of the distribution.

< □ > < 同 > < 回 > < Ξ > < Ξ

Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
000000000		0000000		

<ロ> (日) (日) (日) (日) (日)

IFS/UCL

The expectations questions.

The expectations data in the Mexican survey.

The max and min expected income were asked of all households in the 2003 survey.

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
The expectation	s questions.				

- The max and min expected income were asked of all households in the 2003 survey.
- Piloting of the probability questions showed some problems with the administration of these questions.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

- The probability questions were only asked for a few households for villages:
 - The households interviewed by the supervisor.

	Theory Empirio	cal strategy Data	Empirical Specifications & Results	Conclusions
	000000000	0000000		
-				

The expectations questions.

The expectations data in the Mexican survey.

- The max and min expected income were asked of all households in the 2003 survey.
- Piloting of the probability questions showed some problems with the administration of these questions.
- The probability questions were only asked for a few households for villages:
 - The households interviewed by the supervisor.
- As probabilities are not observed for all households, we use village level probabilities for the missing ones.
 - We also experimented with alternative imputation schemes.

(日) (同) (三) (三)

Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
0000000 000000000 0000		00 0000000 0000	0000 0000000	

The expectations questions.

Descriptive statistics on subjective income expectations

Pct	E[y]	Median[y]	St.dev[y]	Coef.of Var.[y]
1	96	99	5.1	0.018
5	188	188	24.8	0.059
10	283	285	37.4	0.082
25	597	595	78.8	0.121
Median	1139	1142	167.8	0.162
75	2111	2119	357.1	0.224
90	3511	3497	669.7	0.278
95	4583	4576	964.7	0.312
99	6944	6863	1599.7	0.378
Mean	1592	1588	283.1	0.172
IQ diff.	1514	1524	278.3	0.103
SD	1452	1444	331.0	0.078
Triangular distributi	ion			

Descriptive statistics of the moments of the individual distributions

nangulai uisulbuu

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

IFS/UCL

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
Validating the e	xpectations ques	tions			

Validating the expectations questions

- The questions on expectations are relatively new and novel in a development context.
- Substantial piloting of the questions was necessary to arrive at a formulation respondents were comfortable with.
- We have tried these questions in several different contexts:
 - Urban Colombia (see Attanasio, Meghir and Vera , 2005),
 - Rural Colombia (Attanasio and DiMaro, 2006),
 - Rural Mexico (the data being used here),
 - Urban Mexico (high school students assessing the return to education),
 - Rural India (income expectations and returns to investment).

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		0000000		
Validating the e	expectations quest	tions			

- The questions are validated in Attanasio and di Maro (2006).
- Some of the results from that paper:
 - The Min and Max covary in a sensible way with observables (education, ethniticity);

(日) (同) (三) (三)

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
Validating the e	vnectations ques	tions			

- The questions are validated in Attanasio and di Maro (2006).
- Some of the results from that paper:
 - The Min and Max covary in a sensible way with observables (education, ethniticity);
 - The range covaries significantly (and with the correct sign) with the standard deviation of past income;

< ロト < 同ト < ヨト < ヨト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
Validating the e	vnectations ques	tions			

- The questions are validated in Attanasio and di Maro (2006).
- Some of the results from that paper:
 - The Min and Max covary in a sensible way with observables (education, ethniticity);
 - The range covaries significantly (and with the correct sign) with the standard deviation of past income;
 - There is not a large amount of bunching in the probabilities;

< ロト < 同ト < ヨト < ヨト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
Validating the e	vnectations ques	tions			

- The questions are validated in Attanasio and di Maro (2006).
- Some of the results from that paper:
 - The Min and Max covary in a sensible way with observables (education, ethniticity);
 - The range covaries significantly (and with the correct sign) with the standard deviation of past income;
 - There is not a large amount of bunching in the probabilities;
 - The sum of probabilities averages to 0.9782 and is not significantly different from 1.

< ロト < 同ト < ヨト < ヨト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0 00	0000 0000000	
Validating the e	vnectations quest	tions			

- The questions are validated in Attanasio and di Maro (2006).
- Some of the results from that paper:
 - The Min and Max covary in a sensible way with observables (education, ethniticity);
 - The range covaries significantly (and with the correct sign) with the standard deviation of past income;
 - There is not a large amount of bunching in the probabilities;

< ロト < 同ト < ヨト < ヨト

- The sum of probabilities averages to 0.9782 and is not significantly different from 1.
- We normalize probabilities so that they sum up to 100.

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
Validating the e	xpectations ques	tions			

'External' validation: Variance

- We can relate measures of variability obtained from the subjective expectations (coeff. of variation, st.dev. of logs, etc.) to analogous measures computed on actual data:
 - Retrospective questions on income in 2003;
 - Actual variation over the period 1998-2003.
- There is a significant and positive association between these measures.

< ロト < 同ト < ヨト < ヨト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
Validating the e	xpectations ques	tions			

'External' validation: Persistence

 We can also use the expectations questions to estimate income persistence (in each village).

イロト イ団ト イヨト イヨト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
Validating the e	xpectations ques	tions			

'External' validation: Persistence

- We can also use the expectations questions to estimate income persistence (in each village).
- Expected future income can be regressed on current income:

$$E[log(y_{t+1}^{i,v})] = \alpha + \rho^{v} log(y_t^{i,v}) + u_{t+1}^{i,v}.$$

(日) (同) (三) (三)

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
Validating the expectations questions					

'External' validation: Persistence

- We can also use the expectations questions to estimate income persistence (in each village).
- Expected future income can be regressed on current income:

$$\mathsf{E}[\log(y_{t+1}^{i,v})] = \alpha + \rho^{v}\log(y_{t}^{i,v}) + u_{t+1}^{i,v}.$$

- An alternative measure can be obtained estimating village by village a VAR model for income.
 - The relationship between the two measures is positive and mildly significant.

・ロト ・聞ト ・ヨト ・ヨト

IFS/UCL

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
Specifications					

Village level variability and persistence

We need estimates of the variability and persistence of individual income at the village level.

イロト イヨト イヨト イヨト

Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
			000	
000000000000000000000000000000000000000		0000000		

Specifications

Village level variability and persistence

- We need estimates of the variability and persistence of individual income at the village level.
- For variability, we compute the average of individual variances in each village.

(日) (同) (三) (三)

Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
			000	
000000000000000000000000000000000000000		0000000		

Village level variability and persistence

- We need estimates of the variability and persistence of individual income at the village level.
- For variability, we compute the average of individual variances in each village.
- For persistence, we use the ρ^{v} 's estimated from village level regressions of future expected income on current income.

< ロト < 同ト < ヨト < ヨト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000000	
Specifications					

What is a village?

• We would like 'villages' to be isolated from each other.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000000	
Specifications					

What is a village?

- We would like 'villages' to be isolated from each other.
- We consider two levels of aggregation:
 - Locality (average 500 households), small and isolated.
 - Municipality: larger entities (like counties).
 - (Not all localities in a municipality are included.)

イロト イ団ト イヨト イヨト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000000	
Specifications					

What is a village?

- We would like 'villages' to be isolated from each other.
- We consider two levels of aggregation:
 - Locality (average 500 households), small and isolated.
 - Municipality: larger entities (like counties).
 - (Not all localities in a municipality are included.)
- Locality might be better in terms of information flows and homogeneity.
- Municipality allow us more precision in the estimation of village level variables.

・ロト ・聞ト ・ヨト ・ヨト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000		00 0000000	0000 0000000	
	0000		0000		
Cassifiestions					

<ロ> (日) (日) (日) (日) (日)

IFS/UCL

Approximation to marginal utility

 The theory is informative about the cross sectional distribution of (log) marginal utilities.

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000	0000 0000000	
C	0000		0000		

Approximation to marginal utility

- The theory is informative about the cross sectional distribution of (log) marginal utilities.
- We approximate it by the log of consumption per adult equivalent.

イロト イヨト イヨト イヨト

Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
			0000	
000000000000000000000000000000000000000		0000000		

Approximation to marginal utility

- The theory is informative about the cross sectional distribution of (log) marginal utilities.
- We approximate it by the log of consumption per adult equivalent.
- We use different ad.eq. schemes
 - Number of people
 - OECD scales
 - Based on caloric needs (Mexican tables)
 - Based on protein needs (Mexican tables)
- For consumption we use both total consumption and food.

< ロト < 同ト < ヨト < ヨト

IFS/UCL

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000	
Specifications					

Functional forms

The theory is nearly silent about the specific functional form one should use.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000	
Specifications					

Functional forms

- The theory is nearly silent about the specific functional form one should use.
- Except that for some variables, we know that the relationship is not linear:
 - If the variance is small enough autarky is the only equilibrium, and if it is big enough first best is sustainable.
 - If income is persistent enough, autarky is the only equilibrium.

< ロト < 同ト < ヨト < ヨト

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000	
Specifications					

Functional forms

- The theory is nearly silent about the specific functional form one should use.
- Except that for some variables, we know that the relationship is not linear:
 - If the variance is small enough autarky is the only equilibrium, and if it is big enough first best is sustainable.
 - If income is persistent enough, autarky is the only equilibrium.

イロト イポト イヨト イヨト

IFS/UCL

• We therefore explore several functional forms and allow the relationship to be non-linear.

Orazio P. Attanasio

Introduction 0 00000000
 Theory
 Empirical st

 0000000
 000

 000000000
 000

 000000000
 000

ta Empirical Spec

Empirical Specifications & Results

・ロト ・聞ト ・ヨト ・ヨト

Conclusions

Results

Regression Results: $\frac{|\Delta Var_v(\log(c_t^i))|}{Var_v(\log(v_t^i))} = f(st.dev.((y_t^i)), \rho^y)$

Locality level regression				
	Food	Total Consumption		
Income Standard	-0.9320	-0.9720		
Deviation	(0.2490)	(0.2879)		
Income Persistence	0.0053	0.0033		
	(0.0018)	(0.0016)		
Dummy Persistence<0	0.0156	0.0068		
	(0.0115)	(0.0145)		
N. obs	1259	1259		
Adult equivalence scheme ba	sed on caloric needs	s.		
Standard errors clustered at t	he village level in pa	rentheses. 506 clusters. Year		
dummies included but not rep	ported			

- An increase in the (time series) variance of income increases risk sharing.
- An increase in the (time series) persistence of income decreases risk sharing.

Introduction 0 00000000
 Theory
 Empirical str

 0000000
 000

 000000000
 000

Data Empi 00 0000 0000000 0000

Empirical Specifications & Results

・ロト ・聞ト ・ヨト ・ヨト

Conclusions

Results

Regression Results:

$\frac{\left|\Delta Var_{v}(\log(c_{t}^{i}))\right|}{Var_{v}(\log(y_{t}^{i}))} = f(\textit{coeff.var}.((y_{t}^{i})), \rho^{y})$

Locality level regression					
	Food	Total Consumption			
Income coefficient of	-0.2163	-0.3081			
variation	(0.1623)	(0.1632)			
Income Persistence	0.0026	0.0046			
	(0.0012)	(0.0010)			
Dummy Persistence<0	0.0124	0.0160			
	(0.0112)	(0.0098)			
N.obs	1241	1248			
Adult equivalence scheme ba	sed on caloric needs	5.			
Standard errors clustered at t	he village level in pa	arentheses. 506 clusters.			
1% trimming. Year dummies i	ncluded but not rep	orted			

- · An increase in the (time series) variance of income increases risk sharing
- · An increase in the (time series) persistence of income decreases risk sharing

Introduction 0 00000000
 Theory
 Empirical str

 0000000
 000

 000000000
 000

ta Empirical Speci

Empirical Specifications & Results

Conclusions

Results

Regression Results: $\frac{|\Delta Var_v(\log(c_t^i))|}{Var_v(\log(v_t^i))} = f(st.dev.(y_t^i), \rho^y)$

Municipality level regression					
	Food	Total Consumption			
Income Standard	-0.8180	-0.8100			
Deviation	(0.3246)	(0.2862)			
Income Persistence	-0.0352	-0.0019			
	(0.0782)	(0.0493)			
Dummy Persistence<0	0.0423	0.0474			
	(0.0445)	(0.0145)			
N.obs	460	460			
Adult equivalence scheme bas	sed on caloric needs				
Standard errors clustered at t	he village level in pa	rentheses. 191 clusters. Year			
dummies included but not rep	oorted				

• An increase in the (time series) variance of income increases risk sharing.

IFS/UCL

Orazio P. Attanasio

Theory

Empirical Specifications & Results 0000000

Results

Regression Results: $\frac{|\Delta Var_v(\log(c_t^i))|}{Var_v(\log(v_t^i))} = f(coeff.var.(y_t^i), \rho^y)$

Municipality level regression					
	Food	Total Consumption			
Income coefficient of	-0.0748	-0.0322			
variation	(0.2525)	(0.2702)			
Income Persistence	-0.0434	-0.0021			
	(0.0792)	(0.0437)			
Dummy Persistence<0	0.0195	0.0262			
	(0.0270)	(0.0272)			
N.obs	452	452			
Adult equivalence scheme ba	sed on caloric needs	i.			
Standard errors clustered at t					
1% trimming. Year dummies i	ncluded but not rep	orted			

Orazio P. Attanasio

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
Results					

An Alternative Method

 As an alternative to using the subjective expectations data one can use time series variation to estimate the stochastic properties of income

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	0000000 000000000 0000		00 0000000 0000	0000 0000000	
Results					

An Alternative Method

- As an alternative to using the subjective expectations data one can use time series variation to estimate the stochastic properties of income
- Estimate time series model in each village using 6 waves panel

(日) (同) (三) (三)

	Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
	000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	
Results					

An Alternative Method

- As an alternative to using the subjective expectations data one can use time series variation to estimate the stochastic properties of income
- Estimate time series model in each village using 6 waves panel
- We use an Arellano-Bond GMM estimator to estimate an autoregressive model of income in each village.
- We obtain estimates of persistence and variability of income for each village that we use in the exercise instead of the measures derived from subjective expectations.

イロト イポト イヨト イヨト

Theory

0000000

Empirical Specifications & Results

Results

Regression Results:

 $\frac{\left|\Delta Var_{v}(\log(c_{t}^{i}))\right|}{Var_{v}(\log(y_{t}^{i}))} = f(var(\log(y_{t}^{i})), \rho^{y})$

	Food	Total Consumption
ncome Standard	-0.0957	-0.0945
Deviation	(0.0413)	(0.0350)
ncome Persistence	0.0571	0.0525
	(0.0333)	(0.0264)
Dummy Persistence<0	-0.0029	-0.0053
	(0.0119)	(0.0101)
N.obs	1258	1258

- An increase in the (time series) variance of income increases risk sharing.
- An increase in the (time series) persistence of income decreases risk sharing. (三)

Orazio P. Attanasio

n Theory Empirical

ta Empirical Specifications & Results

Conclusions

Results

Regression Results:

 $\frac{\left|\Delta \textit{Var}_{\textit{v}}(\log(c_t^i))\right|}{\textit{Var}_{\textit{v}}(\log(y_t^i))} = f(\textit{var}(\log(y_t^i)), \rho^{\textit{y}})$

Municipality level regression					
(Arellano Bond estimates of persistence and variability from actual historical data)					
	Food	Total Consumption			
Income Standard	-0.0193	-0.0329			
Deviation	(0.0421)	(0.0330)			
Income Persistence	-0.1138	-0.0989			
	(0.0334)	(0.0400)			
Dummy Persistence<0	-0.0294	-0.0412			
	(0.0156)	(0.0157)			
N.obs	460	460			
Adult equivalence scheme base	ed on caloric needs .				
Standard errors clustered at the	e village level in parentl	heses. 191 clusters. Year dummies			
included but not reported.					

Orazio P. Attanasio

<ロ> (日) (日) (日) (日) (日)

Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	

• A test of the empirical implications of models with imperfect enforceability

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
0000000 0000000000 0000		00 0000000 0000	0000 0000000	

• A test of the empirical implications of models with imperfect enforceability

イロト イヨト イヨト イヨト

IFS/UCL

• We relate the amount of risk sharing to properties of the income distribution.

Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	

- A test of the empirical implications of models with imperfect enforceability
- We relate the amount of risk sharing to properties of the income distribution.
- These are estimated using questions on subjective income expectations.

イロト イ団ト イヨト イヨト

IFS/UCL

Orazio P. Attanasio

Theory	Empirical strategy	Data	Empirical Specifications & Results	Conclusions
000000000000000000000000000000000000000		00 0000000 0000	0000 0000000	

- A test of the empirical implications of models with imperfect enforceability
- We relate the amount of risk sharing to properties of the income distribution.
- These are estimated using questions on subjective income expectations.
- The implications of the model seem to be consistent with the data:
 - High persistence implies less risk sharing;
 - High variability implies more risk sharing.

Orazio P. Attanasio

< ロト < 同ト < ヨト < ヨト