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Abstract

The evaluation of welfare programs and more generally government or
international organisms interventions is often posed as a one off question,
in that evaluators ask whether a specific intervention achieves a specific
objective in a specific situation. However, recently, the more general ques-
tion of whether results from a given studies can be used to predict the
effect of different interventions in, possibly, different contexts has received
a considerable amount of attention. The usefulness of such an exercise, if
successful, is obvious. The ability to extrapolate success stories and avoid
failures in different situations would obviously be highly desirable. Un-
fortunately, a rigorous and successful extrapolation is extremely difficult.
In this paper we discuss the issues involved with the evaluation of social
interventions and with the attempts at ‘scaling them up’. In particular,
we discuss the relative merits of non-parametric evaluation strategies that
rely on (possibly experimental) exogenous variation to estimate the im-
pact effects and of more structural approaches. The difference between
the two approaches is particularly relevant when one comes to the issue of
‘extrapolation’ and ’scaling up’. One could consider two types of extrap-
olation: (i) Predict the effects of a program that is different from the one
that was evaluated; (ii) predict the effect of exporting an existing program
from a context where it was evaluated to a different one. In this paper we
focus on the latter problem. After discussing the conceptual and technical
issues, we apply the ideas we discuss to the results from the evaluation
of PROGRESA, a large welfare program in Mexico, for which a random-
ized evaluation sample is available and has been extensively studied. In
particular, we divide the seven Mexican states in which the evaluation
was carried out in two groups and check to what extent the results in one
group can be extrapolated to the other.
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1 Introduction

When resources are scarce, the most valuable information for a policy maker
is to know the marginal effect of allocating a unit of the budget to a specific
program or activity. Unfortunately, this kind of information is rarely available,
especially in the case of social policy interventions. Therefore, resources for
welfare programs are not usually allocated based on evidence on their impact,
or on comparisons with other possible interventions.

In recent years, the evaluation of social programs has received considerable
attention. Some programs around the world have started to generate informa-
tion that can be used to assess their impact, and this is certainly a necessary
ingredient to improve policy making (see Morley and Coady, 2003). However,
the evaluation of welfare programs and more generally interventions by govern-
ment or international organisations is often posed as a one off question, in that
evaluators ask whether a specific intervention achieves a specific objective in a
specific situation. Many evaluations are silent about what the effects of a (even
slightly) different program would be or what the effect of the same program
applied to a different context would be.

Recently, the more general question of whether results from given studies
can be used to predict the effect of different interventions in, possibly, differ-
ent contexts has received a considerable amount of attention. The usefulness
of such an exercise, if successful, is obvious. The ability to extrapolate suc-
cess stories and avoid failures in different situations would obviously be highly
desirable. Unfortunately, a rigorous and successful extrapolation is extremely
difficult. Perhaps such difficulties should not be unexpected, given the problems

that often one encounters in establishing the effects of social programs in non



experimental settings.

In this paper we discuss the issues involved with the evaluation of social
interventions and with the attempts at ‘scaling them up’. In particular, we
discuss the relative merits of non-parametric evaluation strategies that rely on
(possibly experimental) exogenous variation to estimate the impact effects and
of more structural approaches. The difference between the two approaches is
particularly relevant when one comes to the issue of ‘extrapolation’ and ’scaling
up’. In principle one could consider two types of extrapolation and scaling
up. First, one might want to predict the effects of a program that is different
from the one that was evaluated or the effect of changing some aspects of the
program evaluated. Second, one might want to predict the effect of exporting an
existing program from a population where its effects were evaluated (evaluation
population) to a different population (implementation population). In what
follow we focus on the latter problem and discuss the former only marginally.

After considering extensively the conceptual and technical issues involved
with this type of exercises, we apply the ideas we discuss to the results from the
evaluation of PROGRESA-Oportunidades', a large welfare program in Mexico,
for which a randomized evaluation sample is available and has been extensively
studied. In particular, we divide the seven Mexican states in which the evalua-
tion was carried out in two groups and check to what extent the results in one
group can be extrapolated to the other. The advantage of such a strategy is that
one can compare the extrapolation results (based on a structural model) with the

actual ‘ex-post’ evaluation that can be carried out either by simple comparison

IThe program was originally called PROGRESA, from the Spanish acronym for Program
on Health, Education and Nutrition. As it was expanded after 2001, the program was re-
labelled Oportunidades.



of means or by structural methods. The extrapolation is based on a structural
model. Rather than building a new model, we use the one recently used by At-
tanasio, Meghir and Santiago (2001) to evaluate PROGRESA-Oportunidades.

The case of PROGRESA-Oportunidades in Mexico is especially relevant for
our analysis. The program started in 1997 in rural areas and was expanded
into urban areas during 2001 and 2002 under the same scheme (with the same
benefit structure and levels), even though the characteristics of the urban poor
and of the urban environment are very different. Unfortunately, no evidence on
the potential impact on the new areas was available to take a more informed
decision on whether the program had to be modified in some way, or whether
complementary interventions were required. An impact evaluation of the urban
component of Oportunidades is currently under way, and the results will be
available about two years after the expansion was implemented.

The rest of the paper is organized as follows. In Section 2, we discuss the
conceptual and technical issues related to the ‘scaling up’ of evaluations. In
Section 3, we describe the structural model we propose to use and the essence
of the exercise we perform on the Mexican data. In section 4, we describe some
details of the program and of the evaluation sample. In section 5 we report
the results of our estimation and of our main simulation exercise. Section 6

concludes the paper.
2 Issues in Scaling up

The basic discussion that follows considers a context where the impact of a
policy varies by observable and possibly by unobservable characteristics. If the

impact is constant many of the issues we discuss here become much simpler.



When considering the possibility of applying the findings from one evaluation
to a different area, we need to consider a number of factors. These factors
have to do with the way that the areas differ as well as with the way that the
evaluation took place originally, i.e. the way it was designed and the extent to
which it has features that make it generalizable.

In terms of the differences across areas we need to consider the following
factors: First, the distribution of observable characteristics may be different. It
may for example be the case that the area where the program was evaluated is
wealthier, or contains more educated individuals than the area in which we wish
to implement the policy. Second preferences and unobserved characteristics may
differ. Third, the institutions may be different in the two areas. For example
there may be different laws governing child labour, or the existing laws may be
implemented with greater vigour in one area vis a vis the other.

The design of the original evaluation will define in many ways what can be
learned about other setups. Randomized experiments, natural experiments and
matching based evaluations may all identify different parameters that are more
or less relevant for other contexts. In what follows we discuss each of these
issues. We argue that the best chance in practice of a reliable scaling up can be
obtained if a reliable and well identified structural model is available. It is very
hard to transfer results from one setting to another without reference to any
theoretical context. Having said that, however, we will also argue that, at least
conceptually and with enough data, one could obtain many of the evaluation
results obtained from a structural model, using a non-parametric approach and
many randomized experiments. The main problem with this strategy is the fact

that such a wealth of data is typically impossible to obtain.



To inform the discussion and establish notation, consider the following simple
problem: Suppose we are considering the impact of a given policy on an outcome
variable Y. Such a policy could be a conditional cash transfer, such as the
ones distributed by PROGRESA-Oportunidades and the outcome variable the
probability that a child enrols in school. Suppose that an individual i has
outcomes Y;! under the policy and the same individual has outcome Y? if she
is not exposed to the effects of the policy. An evaluation will at best estimate
some aspects of the distribution of the gains ¥;! — Y;".What precise aspects of
this distribution will be identified will depend very much on the structure of the
evaluation. We also introduce the characteristics X; and an assignment rule for
the policy D; = 1 or D; = 0.Given these, examples of parameters that are the
objects of evaluation are the average treatment effect (ATE) E(Y;! — Y.?), the

impact of treatment on the treated E(Y;! — Y,?|D; = 1) and versions of these

conditional on characteristics X. (see Heckman, Lalonde and Smith,1999 )

Differences in the Distribution of observable characteristics. Sup-
pose that a program has been evaluated in a particular area or country, for
example by a randomized experiment, and AT E has been estimated. Random-
ization of program assignment, of course, gives the possibility of estimating the
counterfactual conditional and unconditional distributions of the outcome vari-
able Y. We can therefore directly compute E(Y;! —Y}) or E(Y;! — Y| X;). Now
suppose that we can characterize individuals be a vector of (outcome relevant)
characteristics X; whether observable or unobservable. In this case ATE can
be written as

ATE = / B} — YP|X/]dF (X))



where the expectation is taken over some random noise which is assumed identi-
cal across all areas. Central to the argument is the distribution of characteristics
in the evaluation area, F(X;). If F(X;) differs from the distribution of char-
acteristics in the area where we now want to implement the policy, and if the
impacts vary with X; then the ATE parameter we have estimated from the
evaluation has little to say about the impact of the program in the new area.
There are two main issues relating to this: First the question is whether the
distribution of characteristics in the evaluation area and the new area have the
same support, i.e. whether all types of people characterised by X that can be
found in the evaluation area can also be found in the implementation area. If
the implementation area includes individuals who do not exist in the evalua-
tion area, the evaluation cannot say much about the impact of the policy on
these people, except through some form of extrapolation, based on parametric
assumptions. In other words we can only hope to predict the impact if we have
some form of credible model capable of extrapolating in different circumstances.
In any case such results will nearly always be steeped in controversy.

A second less serious problem is one that arises when the distribution of
characteristics is different over the common support. In this case knowledge
of the ATE in the evaluation area is insufficient to estimate the impact in the
implementation area.. Here we need to know E[Y;! — Y;?|X;].An implementa-
tion area ATE can then be estimated by averaging using the distribution of
characteristics in the implementation area (over the common support). While
this is easy to say, it is often the case that these conditional AT Es are not
well estimated if anything because X can be multidimensional and because the

evaluation sample sizes may not be large enough. Again here some form of



parametric assumptions may prove to be very useful.

The distribution of unobserved characteristics may differ. As dis-
cussed above, if the distribution of characteristics is different and if this is rele-
vant for the impact, the outcomes must be reweighed to match the distribution
in the implementation area. However, this is not directly possible when some of
the characteristics are unobservable. In this case knowledge of E[Y! — Y| X}]
(call it ATE(X;)) for observable X; in the evaluation areas is not sufficient for

knowledge of ATE(X;) in the implementation area because
ATE(X;) = /E[Yil — Y2 X;, w)dF (u;]| X;)

and hence the result depends on the distribution of F'(u;|X) which could be
area specific. Overcoming this problem is of course very difficult. A parametric
structural approach may allow us to identify F(u;|X;) and E[Y}! — Y| X, u;]
separately in the evaluation area. However, we may still have no way of identi-

fying the distribution of unobservables in the implementation area.

Institutions and aggregate conditions may differ. Technically this
problem is similar to the one where the distribution of unobservables are the
same. From a practical point of view it may be possible to identify what we
believe are key institutional differences and inform policy on the basis of judge-
ment. However, this is a key problem for scaling up, when the evaluation and
the implementation areas are quite different. No obvious formal solution can be
found, unless, we can characterize the institutional differences with a small set
of observable aggregate variables and we then have at hand evaluations over a

large set of areas with sufficient variability in these characteristics to be able to



identify similar environments to the one we now wish to implement the policy.
This is of course a similar problem to the support problem mentioned earlier.
In addition to institutional differences, we need to consider differences in
aggregate macroeconomic conditions. Wages and generally labour market op-
portunities may affect the outcomes of a policy. Moreover, there might be
differences in infrastructure, services availability, and geography (which may
complicate logistics in the delivery of services). Consequently implementation
in a context with different macroeconomic and environmental conditions may
give rise to different impacts. This of course concerns both the transfer of the

policy from one area to another as well as from one time period to another.

The precise nature and intensity of the policy may differ. Given
obvious environmental differences, it should not be advisable that an identical
policy will be implemented in a new area. And yet, the absence of instruments
to extrapolate the results of a given evaluation might make the replication of
a given success program the tempting and cheap option. The extrapolation of
PROGRESA-Oportunidades to urban areas in Mexico that we mentioned above
(and to many different countries around the world. Such a practice however,
neglects some important and almost obvious considerations. If the policy un-
der consideration, for example, concerns a school subsidy, different levels of the
subsidy may be envisaged as well as different ways of means testing. Or one
might want to combine a certain intervention with interventions that strenghten
the school infrastructure in situations in which this is particularly weak. In fact
the evaluation itself may give certain hints towards improving the design to in-

crease the impacts or to reduce costs. However the evaluation itself will usually



yield only a very specific result, relating to the particular rules and intensity
envisaged in that case. To go beyond the confines of the particular program
evaluated we need to combine the evaluation data with some structural para-
metric model, that will allow us, subject to assumptions, to glean information
from other sources that may be indirectly informative about the impact of the
policy.

If one does not want to rely on the assumptions necessary to estimate and
implement a structural model, to predict the likely effects of changes in the
program, one needs exogenous variation in all the dimensions of interests. For
instance, in the case of PROGRESA-Oportunidades, beside the evaluation of
the effect of the particular grant on enrollment of children of a certain age, one
might be interested in evaluating the effect of changing the level of the grant for
different groups of children. If the localities in the PROGRESA-Oportunidades
sample had been randomly assigned to different versions of the program, one
could have evaluated in a fully non parametric way the effect of changes in
the program. Similarly, one could think of estimating the effects of different
changes in the program by the appropriate randomization scheme. Of course,
the difficulty is that it is unlikely to have data that would allow the evaluation
of any aspect of interest. The use of a (carefully constructed) structural model
is one way of making a parsimonious use of any exogenous variation available in
data to extrapolate in different dimensions. We come back to this issue below.
At this point, however, it is worth stressing that at least conceptually one could
use appropriately constructed experimental data to estimate any elasticity that
one would infer from a structural model. The limitation of this strategy, however

lies in the availability of data.
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The nature of the evaluation. The precise nature of the original evalu-
ation and which parameter has been identified is a central issue in all this. Quit
frequently evaluations are designed to estimate the parameter, treatment on the
treated, i.e. E(Y;! —Y?|D; = 1) or the local average treatment effect (LATE),
rather than the average treatment effect that we have been supposing up to
now. The former depends on the precise assignment rule to the policy, while
the latter depends on both the assignment rule and which precise policy is being
considered. Attempting to learn about implementation in the new environment
from such parameters can be very hard indeed because we would have to model
the way in which the assignment rules differ. Thus scaling up is more likely to
be successful with an evaluation design that allows the estimation of average

treatment effects, subject of course to the provisos mentioned above.

The ethics and political economy of evaluations. As we mentioned
above, a big obstacle to the exclusive use of non-parametric methods in the eval-
uation of policy intervention is the availability of experimental data in which the
assignment of individuals (or localities) to programs (and possibly to different
kinds of programs) is random. Randomized data sets collected explicitly for
evaluation purposes are few and far between and the proposal of their construc-
tion is typically met with strong resistance from politicians and administrators.
The reasons for this reluctance are many. Obviously there are some important
ethical issues. Excluding individuals from programs that researchers believe to
be effective in some important dimensions is obviously problematic. And these
difficulties are typically amplified in the political process. Additional problems

arise from the short horizon that seems to be relevant for many politicians.
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However, experience has shown that there are some dimensions that can
be used to overcome these resistances. Typically, large programs take time to
have full coverage. The expansion phase can then be used so that, instead of
randomizing in terms of ‘who gets the program and who does not’, one ran-
domizes on the timetable of expansion, so that some individuals or communities
are randomly assigned to the ‘beginning of the line’, while others are places at
the ‘end of the line’. The PROGRESA-Oportunidades evaluation constitutes a
good example of this strategy. The control communities were not excluded from
the program for ever, but they were put among those communities were the pro-
gram, because of budgetary limitations, arrived late in the expansion program,
roughly two years after the program was first implemented in the ‘treatment’
communities included in the evaluation sample.? Of course, this strategy leads
to a different set of problems: if individuals in the ‘control’ sample know that
they are going to get the program and react to this type of information, this
could contaminate the evaluation. This type of anticipation effects among con-
trol individuals or communities constitute another element in favour of the use
of structural models: one can explicitly introduce the information about the
future implementation of a program into the structural model. This is not an
issue in completely static problems.

An alternative strategy is to work on pre-program pilots that could be used
to design the detail of a specific program. This type of studies are particularly

interesting for at least two reasons. First, from a political point of view it might

2 Another distinguishing feature of the PROGRESA evaluation was that the randomization
was done at the locality rather than the individual level. In that particular situation this
procedure was preferable for at least two reasons. First, by randomizing at the community level
one can, in principle, estimate spillover and general equilibrium effects induced by the program.
Second, from a political point of view, the random exclusion of a number of individuals in
small communities where the program was operating, might have been even harder to sustain.
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be easier to introduce exogenous or random variation in the implementation of
the program in a small set of areas or for a small set of individuals than for
the population at large. Second, it might be easier, within a pilot and with the
explicit purpose of fine tuning the details of a specific program, to experiment
with various version of the program itself. The main limitation of these studies,
is likely to be the short horizon over which they need to be performed.

A final interesting situation is the one where there are important budgetary
limitations that prevent the allocation of the program to all applicants. In
this case, the random allocation of the program to individuals may arise as the
fairest and most efficient way of allocating the program. This was the case,
for instance, in a voucher program in Colombia that was recently analyzed by
Angrist et al. (2003).

To make the discussion in this section concrete we now move to the analy-
sis and evaluation of a specific welfare program: PROGRESA-Oportunidades
in Mexico. As we mentioned, PROGRESA-Oportunidades has been the subject
of an extensive evaluation and, given the availability of a large and good qual-
ity data base, has been studied extensively. The aim of the following sections
is not to provide an additional evaluation. This has been done, using a vari-
ety of techniques, in many different papers. Rather, in what follows we take
PROGRESA-Oportunidades as a specific example to illustrate the various is-
sues we discussed and in particular how, under what conditions, and what which
limitations, one can use a structural model to evaluate a welfare program and

to scale up the results obtained to different situations.
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3 A structural model for evaluation and Scaling
up

The setting we consider is one where the program to be evaluated is a school
subsidy program such as PROGRESA-Oportunidades in Mexico. We will take
it that there has been a randomize trial which has split up the relevant pop-
ulation to a treatment group and a control group. As has been the practice,
one treatment with its entire set of rules is compared to no treatment. Thus
the randomized trial can provide the impact of the policy (seen as a whole) on
average and by sub group depending on the age of the child or the school grade
and so on. As such there is little we can learn for other but the most similar
settings, i.e. those that can be considered as (stratified) random samples from
the identical population. To go further we need to use a model based on assump-
tions about behaviour. This will be identified, partly thorough the randomized
experiment and partly through extra assumptions about the validity of certain
cross section assumptions. This model will also indirectly highlight the areas
where extra randomized evaluation could usefully inform policy.

We use a simple dynamic school participation model that was developed in
a recent paper by Attanasio, Meghir and Santiago (2001) (AMS01 from now
on). In this paper we provide only one version of the model without discussing
or justifying extensively the many assumptions made along the way. These
discussions and alternative specifications of the model can be found in AMSO01.

Each child (or his/her parents) decide whether to attend school or to work
taking into account the economic incentives involved with such choices. We
assume that children have the possibility of going to school up to age 17. All

formal schooling end by that time. In the data, almost no individuals above
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age 17 are in school. We assume that children who go to school do not work
and viceversa. We also assume that children necessarily choose one of these two
options. If they decide to work they receive a village/education/age specific
wage. The model we consider is dynamic for two main reasons. First, the fact
that one cannot attend regular school past age 17 means that going to school
now provides the option of completing some grades in the future: that is a six
year old child who wants to complete secondary education has to go to school
(and pass the grade) every single year, starting from the current. This source of
dynamics becomes particularly important when we consider the impact of the
PROGRESA-Oportunidades grants. Second, we allow for state dependence:
The number of years of schooling affects the utility of attending in this period.

We discuss this issue at length below.

3.1 The basic framework

The structure of the model is as follows. In each period, going to school involves
pecuniary and non-pecuniary costs, in addition to losing the opportunity of
working for a wage. The current benefits come from the utility of attending
school and possibly, as far as the parents are concerned, by the child-care services
that the school provides during the working day. As mentioned above, the
benefits are also assumed to be a function of past attendance. The costs of
attending school are the costs of buying books etc. as well as clothing items
such as shoes. There are also transport costs to the extent that the village does
not have a secondary school. For households who are entitled to PROGRESA-
Oportunidades and live in a treatment village, going to school involves receiving

the grade and gender specific grant.
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As we are currently using a single cross section, we use the notation ¢ to
signify the age of the child in the year of the survey. Variables with a subscript
t may be varying with age. Denote the utility of attending school for individual

¢ in period ¢t who has already attended ed;; years as
uly = p; + 'z +bediy + Lpy = 1)8P28, + 1(syp = 1) 325, + e

where z;; relates to a number of taste shifter variables, including parental back-
ground and age The variable 1(p; = 1) denotes attendance in primary school,
while the variable 1(s;; = 1) denotes attendance in secondary school. 2%, and x5,
represent factors affecting the costs of attending primary school and secondary
school respectively. These factors may interact with other characteristics, such
as age or parental education; The term e;; represents a logistic error term which
is assumed independently and identically distributed over time and individuals
Notice that the presence of ed;; introduces an important element of dynamics
that we discuss below. Finally, the term p, represents unobservables which we
assume have a constant impact over time. As we discuss below, we will be
assuming that u,; is a discrete random variable whose points of support and
probability distribution we estimate.

The utility of not attending school is denoted by
ujy = Vwy

where w;; are (potential) earnings when out of school. The wage is a function
(estimated from data) of age and educational attainment as well as village of
residence. ¥; is a random variable, representing heterogeneity in the sensitivity
of child i’s decision to the wage. When we consider this additional form of

heterogeneity, we assume that ¥; is a discrete random variable whose point of
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support and probability distribution we estimate along with those of ;. These
are the unobserved characteristics which, as mentioned earlier, may or may not
have the same distribution in the new implementation area.

The PROGRESA-Oportunidades grant can be easily added to this frame-
work. Let’s g(ed;, zf ,8) denote the grant a child in grade ed;; receives if he is
a beneficiary (2! = 1) and goes to school (s = 1). Then the utility of going to

school will be:

ufy = p; +a'zig +bedig + 1(pi = 1) BP2h, + 1(sie = 1)8°25, 4+ 0 gledir, 22, s) +ein

where the parameter 6 reflects the effect that the grant has on the relative
choice between school and work. The relative size of this parameter and the one
on the wage is of some interest. A model with completely selfish parents would
predict a coefficient on the grant of the same size as the one on the wage. Notice
that in the absence of the exogenous variation in the availability of the grant
induced by the randomization, one would be forced to estimate the effect of the
program through the coefficient on the wage. This is, for istance, the strategy
followed by Todd and Wolpin (2003) and would be the only possible alternative
if one wanted to estimate the effect of the program before its implementation.
The availability of the randomization allows us to estimate a richer structural
model in that it allows for differences between the effect of the grant and that
of the wage.

After age 17, we assume individuals work and earn wages depending on
their level of education. However, the number of choices open to the individual

after school include working in the village, migrating to the closest town or
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even migrating to another state. Since we do not have data that would allow
us to model these choices (and schooling as a function of these) we model the
terminal value function simply as a quadratic function of years of schooling, with
the parameters to be estimated alongside the other parameters of the model.?

Since the problem is not separable over time, schooling choice involves com-
paring the costs of schooling now to its future and current benefits. The latter
are intangible preferences for attending school including the potential child-care
benefits that parents may enjoy.

There are two sources of uncertainty in our model. The first is an iid shock to
schooling costs, modelled by the (logistic) random term e;;. Given the structure
of the model, having a logistic error in the cost of going to school is equivalent to
having two extreme value errors, one in the cost of going to school and one in the
utility of work. Although the individual knows &;; in the current period, she does
not know its value in the future. Since future costs will affect future schooling
choices, indirectly they affect current choices. Notice that the term p,, while
known (and constant) for the individual, is unobserved by the econometrician.

The second source of uncertainty originates from the fact that the pupil may
not be successful in completing the grade. If a grade is not completed success-
fully, we assume that the level of education does not increase. We assume that
the probability of failing to complete a grade is exogenous and does not depend
on effort or on the willingness to continue schooling. We allow however this

probability to vary with the grade in question and with the age of the individ-

3We have used some information on urban and rural returns to education at the state level
along with some information on migration in each state to try to model such a relationship.
Unfortunately, we have no information on migration patterns and the data on the returns to
education are very noisy. This situation has motivated our choice of estimating the returns
to education that best fit our education choices.
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ual and we assume it known to the individual.? We estimate the probability of
failure for each grade as the ratio of individuals who are in the same grade as
the year before at a particular age. Since we know the completed grade for those
not attending school we include these in the calculation - this may be important
since failure may discourage school attendance. We denote by I € {0,1} the
random increment to the grade which results from attending school at present.
If successful, then I = 1, otherwise I = 0. We denote the probability of success
at age t for grade ed as pf(ed;;).
Thus the value of attending school for someone who has completed successful
ed; years in school and is of age t already and has characteristics z;; is
VE(ed;, tlzie) = U+
B{ps(ed; + 1) Emax [V# (ed; + 1,t + 1), V¥ (ed; + 1,t + 1)]
+(1 —pi(ed; + 1)) Emax [V® (ed;, t + 1), V;* (ed;, t + 1) }
where the expectation is taken over the possible outcomes of the random shock

gi¢t- The value of working is similarly written as

V¥ (ed;, tzir) = ufy + BEmax {V? (ed;, t + 1), V" (ed;, t + 1)}

The difference between the first terms of the two equations reflects the current
costs of attending, while the difference between the second two terms reflects
the future benefits and costs of schooling. Finally the parameter 3 represents
the discount factor. In practice, since we do not model savings and borrowing
explicitly this will reflect liquidity constraints or other factors that lead the

households to disregard more or less the future.

4Since we estimate this probability from the data we could also allow for dependence on
other characteristics.
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3.2 Estimation

In terms of estimation, the problem in the absence of unobserved heterogeneity
(; = w, V i) other than through the iid shock e, is relatively simple. The
likelihood function is based on the probability of attending school that takes

the form:

P(Attend;y = 1|z, 2%, 25, edir, wage) = F{u, — u¥
BlEmax{Vy (ed; + I,t+1),V¥ (ed; +1,t + 1)}

—Emax{V# (ed;, t +1),V* (ed;, t + 1)}]}

where the expectation is taken over both € and I where relevant.

The difference between the (current) values of going to school and working
will reflect both the pecuniary trade-offs (the effect of the wage and the cost of
going to school) and other relevant factors, such as the dis-utility of work and
(possibly) the utility of going to school. Notice that the most general version of
our model allows these effects to be heterogeneous across individuals through
the terms p; and ;. The difference in square brackets reflects the difference
between the future value function implied by the current choice.

Assuming the unobserved preference shock ¢;; is logistic, when the discount
factor (0) is zero our model collapses to simple logit model. With a positive
discount factor, instead, the model needs to be solved at each iteration to com-
pute the future value functions V;3,; and V¥, ;. In our case these computations
are relatively simple since the expected value of the value functions can be com-
puted analytically, because of the distributional assumption we make. Given
assumptions on the terminal value function for each final grade, the expressions

in equation (1) can be computed by backward recursion..
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As mentioned above, in the presence of unobserved heterogeneity, we assume
that the constant u,; (and possibly ;) is a discrete random variable, distributed
independently of all characteristics z;, 2%, 25, and the wage;;.” However, given
the structure of our model and the fact that we use a single cross section, we have
an important initial conditions problem because we do not observe the entire
history of schooling for the children in the sample. That is, we cannot assume
that the random variable u; (and ¥J;) is independent of past school decisions. as
reflected in the current level of schooling ed;;.

To solve this problem we specify a reduced form for educational attainment
up to the current date. We assume that conditional on unobserved heterogeneity
k; the level of schooling achieved up to now follows a Poisson distribution with
mean exp(hi¢ + ;) where h; includes variables reflecting past schooling costs
such as the availability of secondary schools in pre-experimental years. The
probability of the stock of schooling and of attending school in this period are
conditionally independent (given z;,xh,, x5, hi, wage;, and the unobservables
;s i, ;). Hence we can write the probability of ed;; = e and of child ¢ attending
school as

P(edy = e, Attend;y = 1|z, at,, x5, hi, wage, p;, 94, ki) =
P(Attend;y = 1|z, 2%, x5, wages, edis, V5, 1)
P(edy = e|zit, xb,, x5, hi, wage, K;)

The endogeneity of the stock of schooling is captured by the potential depen-
dence of ¥;, t; and k;. Thus we assume that we can model this joint distribution
as

F(:ui:m,ﬁi = S, R4 :k) = Pmsk

5In practice dependence with the wage rate can be allowed for. However, the wage data is
not rich enough to estimate a joint model of school participation and wages.
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for m € M,s € S, and k € K where M,S and K are the set of points of
support for u,9 and k. Hence for an individual with observable characteristics
Zit, Ty, x5, by, wage the observed probability of attending and having reached a
level of schooling e is
P(ed; = e, Attend; = 1|z, at,, x5, hy, wage;;)
Y omeM 2oses 2okek PmskiP(Attend;; = 1|z, zb, x5, wageit, edig, Vi = s, jp1; =m)
P(edyy = e|z, by, x5, hi,wage, k; = k)}

The number of points of support as well as the values that m, s and k can take
and the probabilities at these points can be estimated as suggested in Heckman

and Singer (1983).
3.3 Using the model for addressing issues in scaling up

The model we presented above is one of many possibilities. We chose it because
it incorporates some key issues in educational choice, namely the trade-offs
between costs and benefits, that are likely to characterize behaviour in a broad
set of circumstances. It also incorporates the intertemporal trade-offs that are
central to PROGRESA-Oportunidades. The model provides a way of evaluating
the impact of changing the parameters of the program, such as the amount
offered and the way the amounts vary by age. Because of the forward looking
nature of the model it also allows one to distinguish the impact of the program
vis @ vis a no program state as opposed to the randomized experiment which
provides an impact of having the program compared to expecting to receive it
in 18 months time.

However, all these advantages do not come for free. They come because of
a number of assumptions that we have made which allow us to identify a rich

behavioural model, combining the randomized experiment with further cross
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sectional variation. In particular, over and above the exogenous variation that
is induced by the experimental design, we also use the structure of the grant
across different age groups to identify how the impact changes with the amount
of the grant and also how individuals react to the promise of a future payment.
Obviously a richer evaluation framework that would have generated variation in
the amounts and possibly in the age structure would have led to a model that
would be identified using much fewer assumptions.

Given the model, we can immediately deal with the issue of the distribution
of observable characteristics, by applying the model to a random sample drawn
from the implementation area. This will ensure that when we aggregate the
impact we have applied the right weights. This process of course is possible
also without a structural model. In terms of dealing with issues relating to
the support, this is just a matter of comparing the support of the Xs in the
evaluation data to the support in the implementation data. This can be done by
using the device of the propensity score, which here is defined as the probability
of being in the implementation data, given the Xs. If there is lack of common
support, one then has to decide if extrapolation is to be used based on the
parametric model.

The key difficulty though is the treatment of unobserved heterogeneity. We
have shown in the estimation section how one can estimate the distribution of
unobserved heterogeneity in a parametric setting. The distribution of unob-
servables can have a large impact on the impact of the policy. However, we
know nothing of this distribution in the implementation area. In practice the
only choice is to assume that the distribution does not vary across these areas;

this of course is not satisfactory and can be a source of errors in the ex ante
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evaluation.

The model allows the examination of different structures of the program
such as variation in the age rules and in the amounts. It also allows us to
take into account differing aggregate conditions, so long as these vary within
the evaluation areas. This is not the case for PROGRESA-Oportunidades to
any important degree, except perhaps as far as some variation in the wage is
concerned. Finally note that the model can technically predict both the average
treatment effect and the treatment on the treated. Of course it is important to
note that the randomized experiment in the first place has allowed identification
of ATFE without further assumptions that would be required to extract ATE

from treatment on the treated.

4 The PROGRESA-Oportunidades program and
its evaluation sample

In this section, we start by describing the main features of the program PROGRESA-
Oportunidades. We then move on to discuss the evalaution sample and some

of the results have been obtained from its analysis. We then move on to split
the sample into two parts and describe some of the features in each of the two
groups.

4.1 The program

In 1997, the Mexican government started a large program to reduce poverty

in rural Mexico. PROGRESA-Oportunidades, the programme introduced by
the Zedillo administration was innovative in that introduced a number of incen-

tives and conditions with which participant households had to comply to keep

receiving the programme’s benefits.
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PROGRESA-Oportunidades is the spanish acronym for "Health, Nutrition
and Education’, that are the three main areas of the program. The health
component consists of a number of initiatives aimed at improving information
about vaccination, nutrition, contraception and hygiene and of a program of
visits for children and women to health centres. Participation into the health
component is a pre-condition for participating into the nutrition component
that, in addition to a basic monetary subsidy received by all beneficiary house-
holds, gives some in kind transfers to households with very young infants and
pregnant women. The largest component of the program is the education one.
Beneficiary households with school age children receive grants conditional on
school attendance. The size of the grant increases with the grade and, for sec-
ondary education, is slightly higher for girls than for boys. In addition to the
(bi) monthly payments, beneficiaries with children in school age receive a small
annual grant for school supplies. Finally, all the transfers are received by the
mother in the household. Before giving additional details on the education com-
ponent of the program, we discuss how the program targets communities and
households.

The Program first targeted the poorest communities in rural Mexico. Roughly
speaking, the two criteria communities had to satisfy to qualify for the program
were a certain degree of poverty (as measured by what is called an ’index of
marginalization’, basically the first principal component of a certain number
of village level variables routinely collected by the government) and access to
certain basic structures (schools and health centers). The reason for the second
criterion is the conditional nature of the program: without some basic struc-

tures within a certain distance, beneficiary households could not comply with
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the basic conditions for retaining the beneficiary status (participation in vacci-
nation and check-up visits for the health and nutrition components and school
attendance for the education component)

Once a locality qualifies, individual households could qualify or not for the
program, depending on a single indicator, once againg the first principal compo-
nent of a number of variables (such as income, house type, presence of running
water, and so on). Eligibility was determined in two steps. First, a general cen-
sus of the PROGRESA-Oportunidades localities measured the variables needed
to compute the indicator and each household was defined as 'poor’ or 'not-poor’
(where "poor’ is equivalent to eligibility). Subsequently, in March 1998, an ad-
ditional survey was carried out and some households were added to the list of
beneficiaries. This second set of households are called ’densificados’.

For logistic and budgetary reasons, the program was phased in slowly but
is currently very large. In 1998 it was started in less than 10,000 localities.
However, at the end of 1999 it was implemented in more than 50,000 localities,
covering about 2.6 million households, or 40% of all rural families. The pro-
gram has now a budget of about 1 billion US$ and is by far the largest welfare
program in Mexico. It is the first program of its nature to survive a change
of administration. Although its name recently changed to Oportunidades, the
Fox administration decided not only to continue it, but to expand it to poor
urban areas. The program has received a considerable amount of attention and
publicity and similar programs are currently being implemented in Honduras,
Nicaragua, Colombia, Turkey and Argentina. A detailed evaluation of various
aspects of the program is contained in IFPRI (2000).

The program represents a substantial help for the beneficiaries. The nutri-
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tional component was 100 pesos per month (or 10 US dollars) in the second
semester of 1998, which corresponds to 8% of the beneficiaries’ income in the
evaluation sample.

We report the details of the educational grant in Table 1. All the figures
are in current pesos, and can be converted in US dollars at approximately an
exchange rate of 10 pesos per dollar. As mentioned above, the grants are con-
ditional to school enrolment and attendance of children, and can be cumulated
within a household up to a maximum of 625 pesos (or 62.5 dollars) per month
per household or 52% of the average beneficiary’s income. The average grant
per household in the sample we use was 348 pesos per month for households
with children and 250 for all beneficiaries or 21% of the beneficiaries income.
To keep the grant, children have to attend at least 85% of classes. Upon not
passing a grade, a child is still entitled to the grant for the same grade. However,

if the child fails the grade again, it looses eligibility.
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Table 1: PROGRESA-Oportunidades bi-monthly monetary benefits

Type of benefit 1998 1st sem. 1998 2nd sem. 1999 Ist sem. 1999 2nd sem

Nutrition support 190 200 230 250
Primary school
3 130 140 150 160
4 150 160 180 190
5 190 200 230 250
6 260 270 300 330
secondary school
1st year
boys 380 400 440 480
girls 400 410 470 500
2nd year
boys 400 400 470 500
girls 440 470 520 560
3rd year
boys 420 440 490 530
girls 480 510 570 610
maximum support 1,170 1,250 1,390 1,500

4.2 The evaluation sample

Before starting the program, the agency running it decided to start the collection
of a large data set to evaluate its effectiveness. Among the beneficiaries localities,
506 where chosen randomly and included in the evaluation sample. The 1997
survey was suppplemented, in March 1998, by a richer survey in these villages,
located in 7 of the 31 Mexican states. All households in these villages where
interviewed, for a total of roughly 25,000 households. Using the information
of the 1997 survey and that in the March 1998 survey, each household can be
classified as poor or non-poor, that is, each household can be identified as being
entitled or not to the program.

One of the most interesting aspects of the evaluation sample is the fact that
it contains a randomisation component. The agency running PROGRESA-
Oportunidades used the fact that, for logistic reasons, the program could not

be started everywhere simultaneously, to allocate randomly the villages in the
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evaluation sample to 'treatment’ and ’control’ groups. In particular, in 320
randomly chosen villages of the evaluation sample were assigned to the commu-
nities where the program started early, that is in May 1998. The remaining 186
villages were assigned to the communities where the program started almost
two years later (December 1999 rather than May 1998).

An extensive survey was carried out in the evaluation sample: after the initial
data collection between the end of 1997 and the beginning of 1998, an additional
4 instruments were collected in November 1998, March 1999, November 1999
and April 2000. Within each village in the evaluation sample, the survey covers
all the households and collects extensive information on consumption, income,
transfers and a variety of other issues. For each household member, including
each child, there is information about age, gender, education, current labour
supply, earnings, school enrolment, and health status. The household survey is
supplemented by a locality questionnaire that provides information on prices of
various commodities, average agricultural wages (both for males and females)
as well as institutions present in the village and distance of the village from the
closest primary and secondary school (in kilometers and minutes).

The evaluation sample has been extensively studied. In addition to several
reports produced by IFPRI, efficiently summarized by Skoufias (2001), several
papers have looked at various outcomes, including Behrman and Todd (1999),
Schulz (2000), Gertler (2000), Santiago (2001), to mention a few. The Behrman
and Todd (1999) paper is particularly important because it looks at differences
between treatment and control localities in pre-program variables. By and large,

the randomization was successful in that, with a few exceptions, there are no
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apparent differences between treatment and control villages.5

Some of the most important results from the evaluation are the following.
The nutritional component of the program has increased height and weight by
16% for children 12-36 months of age. The health services plus the nutritional
benefits have resulted in a decline in 12% in diseases among children, and a
reduction of 19% in the number of days that adults are not able to attend work
because of health reasons. The schooling incentives have generated a raise in
primary school completion from 65 to 74%, a reduction of 24% in secondary
school desertion, and an estimated raise of 38% for enrolment into the high

school, among other effects.
4.3 Two groups of states and their features

As we mentioned above, to illustrate the issues involved with scaling up, we di-
vide the PROGRESA-Oportunidades evaluation sample in two parts, conduct
the ’evaluation’ in one and use the other part of the sample to perform an ’ex-
ante’ evaluation of the program. Of course we can then compare the results
of these evaluation with the results obtained in the ’ex-post’ evaluation. The
seven states included in the evaluation sample were divided into two groups. The
first group of states, are the poorest four: Guerrero, Puebla, Veracruz and Hi-
dalgo. The second group is formed by slightly more dynamic states: Michoacan,
Queretaro, San Luis Potosi. In Table 2, we report sample means and standard
deviations for a number of variables that are likely determinants of the outcome

of interest, as well as pre-program outcomes. Among the first group of variables

6Of course, one would expect 5% of rejections at the 5% level. Unfortunately, one of the
few pre-program variables that turned out to be statistically different between treatment and
control villages is school enrollment! This difference, whose origin is not clear, has motivated
the use of diff-in-diff estimators. In the structural model we proxy for it with a 'treatment’
dummy.
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we include child level variables (completed years of schooling) household level
variables (income, mother education, ethniticity), and community level variables
(agricultural wage, presence of secondary school and distance from the closest
secondary school). All these variables, which are likely to affect the effectiveness
of the program, were included among the determinants of schooling choices in
the theoretical model.

The differences between the sample localities in the two groups of states
are remarkable. As expected the localities in the first group are considerably
poorer than those in the second group. Every single indicator, from household
income to agricultural wage, to the percentage of children belonging to benefi-
ciary families points in that direction. Particularly remarkable is the percentage
of children belonging to indigenous families, which is 35% in the first group and
less than 4% in the second group. Pre-program enrollment is also quite differ-
ent: in Group 1 75% of the boys aged 6 to 18 are in school, while in group 2
this percentage is 86%.

Of course, with so many dimensions, it is difficult to summarize the differ-
ences between the two groups of states in terms of these conditioning variables.
For such a purpose, we estimate a simple probit model where the probability of
a child being in the first or second groups is estimated as a function of the condi-
tioning variables included in Table 2 (obviously excluding the outcome variables,
such as pre-program schooling). Most of the variables inserted in the regression
turned out to be statistically significant, indicating systematic differences in the
distribution of these variables in the two groups of states.

For all observations in our sample we can then compute the propensity score

(for belonging to the first group) which we use as a summary statistic for the
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difference in the distribution of the dependent variables between the two groups.
In Figure 1, we plot the distribution of propensity scores in the two groups of
states. Not only is the distribution quite different (as could be inferred from
the fact that most variables were significant in the Probit regression), but we
also see that for a sizeable proportion of observations, the support of propensity
scores in the two samples does not overlap. 6% of the observations in group 1
have a value of the propensity score higher than the highest value in group 2
and 5% of the observations in group 2 have a propensity score lower than the
lowest level observed in group 1.

For scaling up, this result implies that, even if unobserved heterogeneity does
not constitute a problem, we can use the results of the evaluation in group 1
for an ’ex-ante’ evaluation of the program in group 2 states only for 95% of the
observations. Moreover, 28% of the observation in Group 1 have a propensity
score between -2 and -3, while only 0.3% of the observations in Group 2 have a
propensity score less than -2. These issues will impose important limits to the
scaling up exercise, unless, of course, the independent variables we have been

analyzing here turned out to be irrelevant for the effectiveness of the program.

32



flag==0 flag==1

Figure 1: Propensity scores distribution in the two groups

Table 2: Differences between two groups of states
Group 1 Group 2
Mean St.dev. Mean St. dev.
pre-program enrollment 0.748 0.419  0.856 0.370
completed years of educ. 5.03 2.74 5.05 2.58
Mother education
less than compl. primary  0.377  0.485  0.295 0.456

less than compl. sec. 0.345 0475  0.403 0.491
secondary or more 0.278  0.448  0.302 0.459
Household income 637 948 814 1056

Agricultural male wage 25.5 6.6 37.5 11.6
Distance from sec. (mins) 79.12  99.7 55.7 61.8
% of indigenous 0.349  0.477  0.038 0.192
% of program beneficiaries 0.859  0.348  0.801 0.348
Boys older than 5 and younger than 18.
Group 1: Puebla, Guerrero, Veracruz, Hidalgo; N.obs: 16905
Group 2: Queretaro, Michoacan, San Luis Potosi; N.obs: 3655

4.4 The effect of PROGRESA-Oportunidades in the two
groups of states estimated by diff in diff.

Before presenting the results of the estimation of the structural model discussed

above, we briefly discuss the effects of the program as estimated applying a diff
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in diff estimator in the two groups of states. It is now well documented that
most of the effect of PROGRESA-Oportunidades was on slightly older children
(see Schulz, 2000). For that reason, here, and in what follows, we focus on boys
ages 10 to 18. We use a diff. in diff. estimator that controls, however, for a few
determinants of school choice, in order to improve efficiency.” In particular, we
control for the boy’s age, mother education, distance of secondary schools and
town average cost of secondary schools.

The results indicate a remarkable difference in the estimated effect of the
program in the two groups of states. In Group 1, the effect is estimated at
around 2.3% (with a standard error, which takes into account cluster effects at
the municipality level, of 0.012). In Group 2, the effect is estimated at 7.4%,
(with a standard error of 0.017). The differences between the two effects is
statistically significant (p-value 1.3%).

Two observations are in order. First, in the presence of anticipation effects
in the control localities, the effect of the program is likely to be underestimated.
This, following the discussion in AMS01, is our maintained assumption. We
report the size of the effect of the program implied by our structural model
and the assumption that the program is expected to be implemented in the
control towns a year after the November 1998 measurement below. Second, to
the best of our knowledge, this dramatic difference in the effect of PROGRESA-
Oportunidades in different states, had not been documented before. While the
study of these differences is not the main goal of this paper, we cannot help

stressing the difference in the effectiveness of the program in raising enrollment

7As the diff. in diff. estimator uses explicitly the randomization of the program between
treatment and control localities, which is by construction uncorrelated with all independent
variables, the only reason to ’control’ for such variables is to improve efficiency.
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rates between the poorest states and the rest.

5 Estimation and simulation of a structural model

In this section, we first estimate the model described above in both groups of
states. This set of results will allow to quantify the differences in the distribution
of unobserved heterogeneity in the two groups of states. Any difference will
prevent a straightforward use of the evaluation in on groups of states ot ’scale
up’ to the other group. In the second part of the section, however, we ignore
these differences, as well as the potential differences in the coeflicients on the
observable variables, and apply the model estimated in the first group of states
to ’scale up’ the program to the second group of states. This ’ex-ante’ evaluation
is then compared to the one that can be obtained from the evaluation sample

itself.
5.1 Estimation results

Table 3 reports the estimation results for the two groups of states. The spec-
ification of the model is identical for the two groups of states. In both cases,
we performed a grid search on the discount factor and concluded that a value
of around 0.9 maximizes the likelihood function. In both cases it was assumed
that the program is perceived to reach the ’control’ communities a year after
the implementation in the treatment comunities. This assumption is discussed
in AMS01. Among the three scenarios tried in estimation (the program is never
implemented in the control municipalities, the program is implemented after two
years and after one year), is the one that yields the largest likelihood function.

The first two rows of the table report the estimated points of support for the

discrete random variable p, : the intercepts of the value of going to school. All
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the coefficients are expressed as costs of going to school, so that the probability
of going to school decreases with the size of this coefficients. In both sets of
states we can identify two groups of children, the first of which is much more
likely to go to school. However, in Group 2 both points of support are much
lower, reflecting the overall larger enrollment of these children. At the bottom of
the table we report the estimated distribution of the unobserved heterogeneity.
Considering the marginal probabilities for the intercepts (reported in the third
column), we see that in both groups of states, the group of children more likely to
go to school accounts for over 80% of the sample. The differences in the level of
these coefficients obviously constitute important problems for scaling up. Below
we check how important these problems are in this particular example.

In rows three and four, we report the estimated coefficients on the wage. Here
the differences between the two states are also quite evident. Children in Group
2 seem to be much more sensitive to wages: both coefficients are positive and
significant for group 2 (indicating that an increase in children wages decreases
the probability of attending school), while for group 1, one of the two coefficients
is not significantly different from zero. The marginal distribution is also different
between the two groups. In Group 1, the two points account for 76 and 23%
of the sample (notice that 76% are therefore insensitive to the wage), while in
Group 2, the split is 46/54.

Going down the rows, we notice that all coefficients have the expected sign
and that there are, once again, marked differences between the two groups.
These differences constitute another potential problem for extrapolation and
scaling up. Not only is the distribution of background variables different among

the groups of states, as documented in the previous section, but the effect of
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these variables on the outcome of interest seems to be different. It is therefore
difficult to use the results of one evaluation to extrapolate to a different sample.

Finally, notice the different (this time not too large), in the estimated coef-
ficient of the grant. It should be noticed, however, that given the differences in
all other coefficients, and the non linearity of the model, it is difficult to relate
the size of this particular coefficient to marginal effect. It is to evaluate this

type of effects that we now turn to simulations of the model.

Table 3: Estimates of structural model

Group 1 Group 2
Parameter est. St.err. Parameter est. St. err.
intercept pl -26.12824 2.85159 -36.05473 3.90073
intercept p2 -19.27025 2.31334 -24.36846 2.7138
wage pl -0.08644 0.06442 0.17190 0.08117
wage p2 0.64341 0.12377 0.87642 0.13170
grant 0.67240 0.11736 0.77147 0.20139
distance from sec. school 0.09381 0.01325 0.19183 0.02608
cost of sec. school 0.00793 0.00164 0.00463 0.00176
age 3.24929 0.34110 3.91940 0.46625
years of education -2.55861 0.28772 -2.74321 0.42009
father: primary -0.19454 0.14100 -0.45956 0.22372
father: incompl. sec -0.42453 0.16610 -0.77902 0.27938
father: secundary or more -0.99106 0.37631 -1.39751 0.65107
mother: primary -0.15970 0.14841 -0.42837 0.22448
mother: incompl. sec -0.38623 0.17568 -0.70545 0.26758
mother: secundary or more -2.08134 0.53666 -1.08697 0.72461
non-indigenous -0.55368 0.14295 -0.95029 0.38256
distr. of unobs. het. 0.6396 0.1855 0.8251 0.3463 0.5238 0.8701
(intercepts:rows 0.1276  0.0473 0.1749 0.1173 0.0126  0.1299
slopes: columns) 0.7672  0.2328 1.0000 0.4637 0.5363 1.0000

Boys older than 9 and younger than 18. The specification also includes state dummies,
and dummies for 'beneficiaries’ and for 'treatment localiries’. The discount factor is 0.9.
Group 1: Puebla, Guerrero, Veracruz, Hidalgo; N.obs: 16905

Group 2: Queretaro, Michoacan, San Luis Potosi; N.obs: 3655
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5.2 Simulation results

We now proceed to use the structural model to see how it performs in estimat-
ing the potential effect of the policy. The counterfactual simulations use the
data from our chosen “implementation area” (Group 1) with a number of differ-
ent combinations of parameters. For all counterfactual simulations we use the
distribution of unobserved heterogeneity as estimated in the “evaluation area”
(Group 2).

Before presenting the counterfactual simulations, however, we report the ef-
fect of the program as estimated by the model estimated in the “implementation
area”. This is the kind of exercise that would not be possible to do ‘ex-ante’
and that should be replaced by ‘scaling up’.

The effect we report in the first column of Table 4 is the one predicted by the
model as compared to the case where no policy is expected to be in operation.
As mentioned above, the effect, estimated at 0.08, is larger than the one prediced
by the randomised experiment, since the anticipation effect we estimate for the
control group is netted out.

In the next column, we carry out another simulation experiment which in
practice is not feasible. We use the estimated parameters from the evaluation
area but use the state dummies estimated in the implementation areas - the
latter would not normally be known in a genuine ‘scaling up’ exercise. This
shows how close one can get, just by using the observable characteristics, if
one knew the contribution of the unobserved area effects. The impact we get
is about a quarter less then the baseline one. The difference is attributable to
unobserved area effects.

In the third, fourth and fifth columns we present feasible predictions based
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Table 4: Effect in Group 1 states.

Effect Effect w. Effect w. Effect w.
Predicted Model
with own State Queretaro SanLuisPotosi Michoacan
Effect
dummies dummy dummy dummy
0.080 0.061 0.039 0.058 0.110

on the coefficients from the evaluation area, the data from the implementation
area and using in turn the state dummy from each of the three states in the
evaluation areas. This should also be accompanied (not done yet) by an analysis
that would show which state is likely to be most similar to the implementation
area. From the results we see that none of the effects are particularly close to
the one estimated using implementation area data. In one case the effect is less
than half. (standard errors to follow)

Where does this leave us? At the moment we are still in the awkward
position of having to accept that we are not well enough equiped for a scaling
up exercise that is reliable. We know that there is a very strong tradeoff here
between the scope of the original evlauation and the modelling assumptions one
is prepared to make. Clearly our model may be far from perfect. It makes strong
behavioural assumptions. Moreover, one can argue that it does not perhaps have
a rich enough specification. However, it does seem to fit reasonably well the
data. What we do show in this paper is that knowledge of observed individual
characteristics are unlikely to be sufficient in practice to extrapolate the effects

of a policy.
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6 Conclusions

In this paper we discuss issues to do with scaling up, i.e. using knowledge ob-
tained from the evaluation of a policy in one area, for predicting the effectiveness
of this policy in another. We start from the premise, which is empirically sup-
ported, that effects we are interested in vary substantially both in the observed
characteristics and the unobserved chaacteristics dimension. Although one can
achieve something close to ideal with an elaborate experimental design, it is un-
likely that in the near future we will have the resouces or even the will to carry
out such complicated experimentation in all the required directions. We can go
some of the way if we have very large samples in the kind of experiments avail-
able now. This would at least allow us to correct carefully for the differences in
the distribution of unonbserved characteristics. But even there we are some way
off having enough to produce reliable predictions, suitably reweighted. Thus the
next best thing is to combine a structural model with the data we have. This
allows us to fill in the gaps in a theoretically coherent way and offers a frame-
work for rediesigning policies. Inevitably this requires assumptions, but at least
they are made in a coherent and transparent way. However, even there, in our
first attempt, we show that our ability to predict the actual effects is limited,
particularly by the lack on knowledge, of aggregate area effects. This points
to the need to collect data at the area level and perhaps to design evaluatins
in such a way that more variation is indiced at that level and not only at the
individual level data.

Subject to the caveats mentioned above, the results provided in this paper
have policy relevance. For instance, lower impacts in the relatively poorer areas

suggest that in order to get the same effects, additional policy interventions
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might be necessary, or that the benefit structure has to change. For instance, it
might be necessary to improve school quality (i.e. to make it more adequate for
indigenous children), to improve the parent’s education through literacy, or even
to expand the supply of education services so that beneficiaries in poorer areas
have to spend less time getting to school. An important item on the research
agenda should be modeling differences in impact evaluation and link them to

observable variables.
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