
Games and Economic Behavior 68 (2010) 781–788
Contents lists available at ScienceDirect

Games and Economic Behavior

www.elsevier.com/locate/geb

Note

The role of the agent’s outside options in principal–agent relationships ✩

Imran Rasul a,∗, Silvia Sonderegger b

a Department of Economics, University College London, Drayton House, 30 Gordon Street, London WC1E 6BT, United Kingdom
b Department of Economics, University of Bristol, 8 Woodland Road, Bristol BS8 1TN, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 March 2007
Available online 23 October 2009

JEL classification:
D21
L14

Keywords:
Adverse selection
Randomization
Type-dependent outside options

We consider a principal–agent model of adverse selection where, in order to trade with
the principal, the agent must undertake a relationship-specific investment which affects
his outside option to trade, i.e. the payoff that he can obtain by trading with an alternative
principal. This creates a distinction between the agent’s ex ante (before investment) and
ex post (after investment) outside options to trade. We investigate the consequences of
this distinction, and show that whenever an agent’s ex ante and ex post outside options
differ, this may equip the principal with an additional tool for screening among different
agent types, by randomizing over the probability with which trade occurs once the agent
has undertaken the investment. In turn, this may enhance the efficiency of the optimal
second-best contract.
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1. Introduction

In many forms of bilateral exchange, one party has to undertake relationship-specific investments before trade can occur
with their partner. An important consequence of such specific investments is that they typically change the investing party’s
outside option to trade, namely the payoff that he would obtain by trading with an alternative partner. For example, a
firm that tailors its machinery in order to produce a specific widget required by a certain buyer, will change its production
possibilities when trading with alternative buyers whose requirements need not be the same.1

A key distinction therefore exists between the firm’s ex ante outside option, before the relationship-specific investment is
undertaken, and their ex post outside option, after the investment has occurred. This paper investigates the consequences of
this distinction in principal–agent models of adverse selection, where the agent’s type is his private information, and both
parties are risk neutral. We show that whenever an agent’s ex ante and ex post outside options differ, this may equip the
principal with an additional tool for screening among different agent types, by randomizing over the probability with which
trade occurs once the agent has undertaken the specific investment. In turn, this may enhance the efficiency of the optimal
second-best contracts.

✩ We thank the associate editor and two anonymous referees for suggestions that have helped improve the paper. We have also benefited from the
comments of Fabrizio Adriani, Roman Inderst, Ian Jewitt, Bruno Jullien, Thomas Mariotti, In-Uck Park, Francesco Squintani, Max Steuer, Thomas von Ungern-
Sternberg and seminar participants at LSE and the University of Lausanne. All errors are our own.
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1 This phenomenon is not confined to bilateral exchange between firms. Consider a traveler who wants to travel from A to B at 8 pm on a given day. The
traveler can choose whether to travel by train or bus. The specific investment undertaken by the traveler in order to access a certain type of travel takes
the form of him being physically present at a particular location — the bus or train station — at a particular time. While from an ex ante perspective the
traveler’s outside option to catching the 8 pm bus would be to take the 8 pm train, once he has made the specific investment of arriving at the bus station
prior to 8 pm, his ex post outside option to catching the 8 pm bus will be quite different. While he may for example catch the 9 pm train, the 8 pm train
has been ruled infeasible by his earlier specific investment.
0899-8256/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.geb.2009.10.006

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/geb
mailto:i.rasul@ucl.ac.uk
mailto:s.sonderegger@bristol.ac.uk
http://dx.doi.org/10.1016/j.geb.2009.10.006


782 Note / Games and Economic Behavior 68 (2010) 781–788
This paper contributes to the literature on mechanism design when agents have type-dependent outside options (Lewis
and Sappington, 1989; Maggi and Rodriguez-Clare, 1995; Jullien, 2000). The literature on adverse selection identifies several
cases in which the optimal mechanism can involve randomization, such as when agents have different levels of risk aver-
sion (Stiglitz, 1982; Arnott and Stiglitz, 1988; Brito et al., 1995), when the agent’s type-space is multi-dimensional (Baron
and Myerson, 1982; Rochet, 1984 and Thanassoulis, 2004), or when randomization might allow non-monotonic allocation
schedules to become incentive compatible (Strausz, 2006). A further rationale for randomization is presented by Calzolari
and Pavan (2006), who show that, in principal–agent problems with sequential contracting, randomization may be optimal,
since it allows one principal to hide information from another principal. We add to the literature by considering situations
where relationship-specific investments affect the agent’s future prospects, so that his type-dependent ex ante and ex post
outside options differ. This provides a novel rationale of why randomization may be optimal in principal–agent settings.

The remainder of the paper is organized as follows. In Section 2 we develop the principal–agent model. Section 3 solves
for the optimal second best contracts. Section 4 discusses the efficiency consequences of having both types of outside option
and also addresses possible extensions. All proofs and a numerical example are in Appendix A.

2. Model

2.1. Preliminaries

We consider a principal–agent model with a principal P and an agent A, who contract over the production of output, q.
Production is assumed to be observable and verifiable. The agent’s marginal cost of production, θ , which defines his type,
is not observed by the principal, and we assume θ ∈ {θH ,θL}, where θH > θL > 0, and prob(θ = θH ) = λ. In order to trade
with the principal, the agent must undertake a relationship-specific investment, with cost normalized to zero. The agent’s
decision to undertake the investment is observable and verifiable. A contract between the principal and the agent is denoted
{φ,π,q, T }, where φ ∈ {0,1} specifies whether the agent must undertake the investment,2 π ∈ [0,1] denotes the probability
with which trade occurs between the parties, q ∈ [0,q] denotes the output that the agent must produce in case of trade,
and T ∈ R

+ indicates the payment from the principal to the agent (independent of whether trade actually occurs or not).
We assume trade can only occur if the agent has made the relationship-specific investment so that if φ = 0, π = 0.3

The principal’s problem consists of designing the optimal menu of contracts from which the agent makes his preferred
choice. The revelation principle states this search can be confined to the set of direct revelation mechanisms, whereby the
agent is requested to report his type and is offered a contract that is contingent upon this report. The timing of actions is
then as follows:

t === 0 P offers A a menu of contracts M = {MH , ML}, where Mi = {φi,πi,qi, Ti} is the contract offered to the agent when
his reported type is θi , i = H, L.

t === 0.5 If A accepts Mi and Mi specifies φi = 1, A undertakes the relationship-specific investment.
t === 1 Conditional on φi = 1, trade occurs with probability πi , in which case A produces qi . With probability 1 − πi trade

between A and P does not occur. If φi = 0, trade between A and P does not occur with certainty.
t === 1.5 Provided that he has respected the terms of the contract, A receives Ti .

Without loss of generality we restrict attention to contracts that always induce truthtelling and participation by the
agent.

2.2. Agent’s ex ante and ex post outside options

If the agent does not accept the principal’s contract, or if his contract prescribes φi = 0, then the agent does not under-
take any relationship-specific investment, and obtains a payoff Bi � 0 from alternative trade, where i = H, L. This defines
the agent’s ex ante outside option. Importantly, we allow for the possibility that ex ante outside options differ across types,
so that B H �= BL . If the agent undertakes the relationship-specific investment, but trade between the parties does not occur,
then the agent obtains a payoff Ci < Bi from alternative trade. Ci captures the agent’s ex post outside option, namely the
value of his trading prospects with alternative principals, after having undertaken the relationship-specific investment with
the previous principal. Ex post outside options may also be type-dependent, so that C H �= CL . The expression Bi − Ci > 0
reflects the loss in terms of the agent’s alternative trading prospects from undertaking the relationship-specific investment,
which tailors his production to the principal’s needs. We refer to this as the opportunity cost of randomization, since this
cost is only incurred when πi < 1.

2 Allowing the contract to specify φ enables us to restrict attention to contracts that are always accepted by the agent. We thank an anonymous referee
for providing this suggestion.

3 By restricting attention to φ ∈ {0,1} we rule out the possibility of the principal randomizing over φ. This is done to shorten the exposition of our
results. The possibility of randomization over φ is discussed in Section 4.
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2.3. Payoffs

Both parties are assumed to be risk neutral with respect to monetary transfers and production. If a type θi agent accepts
a contract {φi,πi,qi, Ti}, his net expected utility is,

u(θi) = Ti + φi
{−θiπiqi + (1 − πi)Ci − Bi

}
. (1)

The principal’s expected payoff is U P = φiπi vqi − Ti , where v > θH . Let ui denote the utility obtained by a type θi agent
when he truthfully declares his type. From (1), holding constant all other dimensions of the contract offered to type θi , there
is a one-to-one relation between Ti and ui . In what follows we will therefore characterize a contract as Mi = {φi,πi,qi, ui}.
Finally, we denote θH − θL as �θ , C H − CL as �C , B H − BL as �B and uH − uL as �u.

3. Results

The participation constraint for a type θi agent is ui = Ti + φi[−θiπiqi + (1 − πi)Ci − Bi] � 0. The incentive compatibility
constraints which ensure agents find it optimal to declare their true type are,

ICH : uH � uL + φL
[−πLqL�θ + (1 − πL)�C − �B

]
,

ICL : uL � uH + φH
[
πH qH�θ − (1 − πH )�C + �B

]
.

Suppose full information contracts are offered so that φi = πi = 1, qi = q, and ui = 0 for i = H, L. Constraint ICH becomes,
0 � −q�θ − �B , and ICL becomes, 0 � q�θ + �B . We focus on the more intuitive case in which q�θ + �B > 0 so that θL

types have incentives to overstate their costs and mimic θH types. This is embodied in Assumption A1 below.4 To ensure
that under full information the optimal contract prescribes φi = πi = 1, qi = q for both types, Assumption A2 below is
required.

(A1) q�θ + �B > 0.

(A2) q(v − θi) � Bi , i = H, L.

Our first result provides a partial characterization of type θH ’s optimal contract whenever θH agents are required to
undertake the relationship-specific investment.

Lemma 1. It is never optimal for the principal to offer φH = 1 in conjunction with πH and qH satisfying,

πH qH�θ − (1 − πH )�C + �B < 0. (2)

Under (A1) the full information contracts would violate ICL . By offering type θH agents a contract such that πH qH�θ −
(1 − πH )�C + �B = 0, the principal ensures both that ICL is satisfied and that no rents are offered to θL agents. Offering
θH agents a contract such that (2) holds would only increase the distortions of πH and/or qH from their full information
values (1 and q respectively) without generating any gain for the principal. This is essentially the rationale for Lemma 1.

An implication of Lemma 1 is that the participation constraint of type θL will not bind at the optimum. This is because,
given type θH ’s participation, ICL implies uL � uH � 0. In what follows, we therefore allow ICL to hold with equality, let
uH = 0, and ignore constraint ICH . We then later verify that the solution of the relaxed problem indeed satisfies ICH . The
principal’s problem then is,

max
qi∈[0,q], πi∈[0,1],
φi∈{0,1}, i=H,L

U P = λφH
[
πH qH (v − θH ) + (1 − πH )C H − B H

] + (1 − λ)φL
[
πLqL(v − θL) + (1 − πL)CL − BL

]

− (1 − λ)φH
[
πH qH�θ − (1 − πH )�C + �B

]
(P)

subject to φH
[
πH qH�θ − (1 − πH )�C + �B

]
� 0, (C1)

where (C1) derives from Lemma 1. We first solve (P) ignoring (C1). If the solution satisfies (C1) with strict inequality, it is
the solution to the overall problem. Otherwise (C1) binds.

The principal faces a standard trade-off between efficiency and informational rents. If she offers θH types the efficient
(full-information) contract where φH = πH = 1, qH = q, then she must also offer positive rents to θL types to prevent

4 For completeness, in Appendix A, we state the main results for the case in which the parameter values are such that high types have incentives to
understate their type and mimic low cost types. These two cases arise because of the existence of the type-dependent ex ante outside options, Bi , as
has been analyzed in detail by Maggi and Rodriguez-Clare (1995). Note that in the knife-edge case where q�θ + �B = 0 the principal can offer the full
information contract to both types without inducing either to mimic the other, so this is clearly her favored course of action.
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mimicking. In this case (C1) is slack. If the principal wishes to eliminate θL ’s rents, then she must distort type θH ’s contract
away from the efficient contract.5 In this case (C1) binds so, conditional on φH = 1, we have,

qH = (1 − πH )�C − �B

πH�θ
. (3)

When �C − �B > 0 — i.e., the opportunity cost of randomization is higher for θL than for θH — then (3) implies that
∂qH/∂πH < 0. By lowering πH the principal can increase qH whilst keeping θL ’s rents at zero. A trade-off then emerges.
A lower πH decreases the probability of trade, but it also increases qH , and hence the value of trade. When the latter
effect is stronger than the former, the optimal contract (conditional on (C1) binding) prescribes qH = q and πH = (�C −
�B)/(q�θ + �C) ∈ (0,1), i.e. it prescribes randomization.6 Proposition 1 fully describes the optimal second best contracts.7

Proposition 1. For type θL , the optimal contract always prescribes φL = πL = 1, qL = q. If

λ > max

{
�C + q�θ

q(v − θL) − CL
,

�θ

v − θL
,

�B + q�θ

q(v − θL) − BL

}
, (4)

then (C1) is slack, and the optimal contract for type θH has φH = πH = 1, qH = q. If (4) does not hold, then (C1) binds, and the optimal
contract for type θH is

(i) if C H >
CL (v−θH )

v−θL
and �C − �B >

(B H −C H )(q�θ+�C)
q(v−θH )−C H

> 0: φH = 1, πH = �C−�B
q�θ+�C and qH = q,

(ii) if C H <
CL (v−θH )

v−θL
and �B < − B H �θ

v−θH
< 0: φH = πH = 1 and qH = −�B

�θ
,

(iii) in all the other cases: φH = 0.

If prob(θ = θH ) = λ is sufficiently high, then the principal finds it optimal to offer θH types the efficient contract, so as
to maximize her profit when trading with θH types, even if this implies that positive rents are relinquished to agents of
type θL . Conversely, if λ is sufficiently low, then the principal prefers to allow (C1) to bind and so eliminate any rents to θL

types.
Proposition 1 shows that in order for the optimal contract for θH to prescribe randomization, �C − �B should be

positive, and sufficiently large. Intuitively, �C − �B > 0 implies that the opportunity cost of randomization is higher for θL

types than for θH . Hence, by offering θH types a contract involving randomization, the principal can lower the incentives of
θL types to overstate their costs and mimic θH types. By contrast, if �C − �B < 0, then θH types stand to lose more from
randomization than θL types, and so randomization would not help deter θL from mimicking θH . Similarly, if �C = �B = 0 –
as is the case if both ex ante and ex post outside options are type-invariant so B H = BL and C H = CL – then the opportunity
cost of randomization is the same for both types, and again randomization is not an effective screening tool. This clarifies
why type-dependent outside options are essential for randomization to be optimal.

Note that, in order for randomization to be optimal, �C − �B should not only be positive, but also sufficiently large.
This ensures that a small amount of randomization in the contract offered to θH is sufficient to deter θL from mimicking,
and guarantees that the principal can obtain a positive expected profit when trading with type θH .

What are the implications of �C −�B > 0? From (3), we know that when (C1) binds and �C −�B > 0 then a trade-off
emerges between πH and qH . A lower πH decreases the probability of trade, but it also increases qH , and hence the value
of trade. For randomization to be optimal, the principal must then be willing to lower the probability of trade with θH in
order to raise qH at the margin. Whether this occurs or not, depends on the precise comparison between the costs (i.e.,
trade with θH occurs less often) and the benefits (i.e., qH is higher) of randomization.

To see how the former may outweigh the latter, consider the simple case where CL < C H < 0, B H = BL = 0. Since ex ante
outside options are independent of type, if πH = 1, this case corresponds to the canonical model. As can be seen from (C1),
leaving no rents to type θL then requires qH = 0. The principal’s payoff when dealing with type θH is then equal to zero. By
contrast, setting πH < 1 allows the principal to set qH = (1 − πH )�C/πH�θ > 0. Here, the cost of imposing randomization
is null, since when πH = 1 trading with type θH generates no profits (this follows from qH = 0). By contrast, if C H is not
too negative, i.e. C H > CL(v − θH )/(v − θL), then the benefit of randomization is strictly positive, since it allows the principal
to obtain a strictly positive expected payoff when dealing with θH .8 Conditional on the principal wishing to leave no rents
to type θL (which, as highlighted by Proposition 1, happens whenever λ is sufficiently low), randomization is then clearly

5 Given the linearity of her payoff, the principal would never select contracts between these extremes.
6 That (�C − �B)/(q�θ + �C) ∈ (0,1) follows from �C − �B > 0 and Assumption A1.
7 We adopt the convention that if P is indifferent between setting φi = 1 or φi = 0 for i = H, L, then she selects φi = 0. Similarly, if she is indifferent

between all πi ∈ [0,1] (resp., all qi ∈ [0,q]) then P selects πi = 0 (resp., qi = 0).
8 The principal’s expected payoff from dealing with θH when qH = (1 − πH )�C/πH �θ is equal to (1 − πH )[C H (v − θL) − CL(v − θH )]/�θ − B H . In

this simple example, B H = 0. The condition C H > CL(v − θH )/(v − θL) is therefore both necessary and sufficient to ensure that randomization is optimal
whenever (C1) binds. More generally, this requirement is only necessary (as highlighted in part (i) of Proposition 1, another condition is also required).
Intuitively, if C H is very low, then the transfer necessary to induce type θH to accept a contract involving randomization would be large, and randomization
would therefore not be optimal.
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optimal. Given the linearity of her payoff, if the principal finds it optimal to sacrifice πH in order to raise qH at the margin,
then she goes all the way, and sets qH as high as possible in the optimal contract, i.e. qH = q. From (3), πH is then equal to
(�C − �B)/(q�θ + �C).

3.1. A numerical example

In Appendix A, we discuss a numerical example where θH = 0.75, θL = 0.25, q = v = 2, and the agent’s ex ante and ex
post outside options are B H = 1.85, BL = 2.35, C H = 1.75, and CL = 1.95. In that case, it is straightforward to show that, for
λ < 0.52, the optimal contract offered to type θH prescribes φH = 1, πH = 0.375 and qH = q = 2.

4. Discussion

4.1. Efficiency

Proposition 1 highlights the impact of having two (i.e., ex ante and ex post) type-dependent outside options on the optimal
second best contracts. Suppose that, on the contrary, Ci = Bi for both i = H, L, so �C = �B . From (3), the only way for (C1)
to then bind is to set qH = −�B/�θ . If (4) does not hold and �B � −B H�θ/(v − θH ), then the optimal contract prescribes
φH = 0, i.e. no trade between the principal and agents of type θH , since with qH = −�B/�θ the principal would never
obtain a non-negative profit when dealing with type θH . In contrast when Bi �= Ci , trade between the principal and agents
of type θH may occur with positive probability even if �B � −B H�θ/(v − θH ).9

Hence, in a complete contracting environment, the need for agents to undertake relationship-specific investments ex
ante that decrease the agent’s outside option, can result in greater ex post efficiency, that is, at the production stage. This
is because such investments enable the principal to utilize randomization as a tool to screen between agent types. To our
knowledge, the earlier literature has not noted this potentially useful role for ex ante relationship-specific investments to
improve on ex post efficiency. The literature has emphasized rather, that in the presence of contractual incompleteness,
investment specificity results in ex ante inefficiencies, i.e. inefficiencies at the investment stage (Grout, 1984; Grossman and
Hart, 1986; Hart and Moore, 1990).

4.2. Relaxing the linearity assumption

The restriction to linear payoff functions allows us to abstract from risk-aversion considerations, and to differentiate
our results from the existing literature on randomization in mechanism design (Stiglitz, 1982; Arnott and Stiglitz, 1988;
Brito et al., 1995). However, our results extend also to non-linear settings. To see this, suppose agents face convex production
costs, so the net utility of an type θi agent when accepting a contract {φ,π,q, T } is,

T + φ
[−πθi g(q) + (1 − π)Ci − Bi

]
, (5)

where g′(q) > 0 and g′′(q) > 0 for all q > 0. Suppose that, if offered the full-information contract, a type θL agent would
overstate his cost and mimic type θH , as was the case throughout Section 3. Condition (C1) then is,

φH
[
πH g(qH )�θ − (1 − πH )�C + �B

]
� 0. (C1′)

Following the same argument as in Proposition 1, for λ sufficiently low, the optimal contract for type θH agents is such that
(C1′) binds. Then, conditional on φH = 1, we have,

qH = g−1
(

(1 − πH )�C − �B

πH�θ

)
. (6)

As in the linear case, when �C − �B > 0, (4) implies that ∂qH/∂πH < 0, so that, by lowering πH , the principal can
increase qH . Clearly, this is a necessary requirement for randomization to be offered, or else the principal would always
optimally select πH = 1. Note that, in contrast with the linear case above, in this non-linear case the trade-off between
πH and qH may actually make U P concave in πH – thus warranting randomization even in the absence of restrictions on
feasible output quantities. To see this, let g(q) = 0.5q2, and suppose that parameter values continue to follow the numerical
example given above, but the restriction that q may not exceed q is relaxed.

Expression (4) then becomes qH =
√

0.8 + 1.2
πH

. Conditional on φH = 1, the principal’s expected payoff when dealing with

a type θH agent is U P = πH [2
√

0.8 + 1.2
πH

− 0.75(0.4 + 0.6
πH

) − 1.75] − 0.1, which is concave in πH . The optimal contract for

θH is φH = 1, πH = 0.78, and qH = 1.53, and when dealing with type θH , the principal’s expected profit is 0.23. Hence in
this numerical example, for λ sufficiently low the optimal contract for θH may again prescribe randomization, although in
contrast with the linear case, the optimal qH is below its first-best value.

9 This is the case for instance in the numerical example introduced above, where �B = −0.5 > −B H �θ/(v − θH ) = −0.74.
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4.3. Allowing for randomization over φ

What would happen if instead of assuming φ ∈ {0,1}, φ were allowed to take any value in [0,1]? In that case, ran-
domization over φH would be possible. However, we argue that it would not be optimal.10 To see why, note that, similar
to what happens for randomization over πH , randomization over φH may only be optimal when (C1) binds – φH en-
ters the principal’s payoff linearly, so if (C1) is slack then φH optimally takes a corner value. Consider now a contract
MH = {φH ,πH ,qH , uH }, where φH ∈ (0,1) and uH = 0 (as discussed above, this latter condition is always satisfied at
an optimum). Under this contract, the opportunity cost of randomization over φH for an agent of type θi is equal to
−θiπH qH + (1 − πH )Ci − Bi , namely the expected net payoff that the agent obtains when he undertakes the relationship-
specific investment.11 Following the same logic as in the case of randomization over πH , if this opportunity cost differs
between types, then this may provide a possible rationale for randomization over φH to be optimal. However, if (C1) binds,
then the net payoff that the agent obtains when he undertakes the relationship-specific investment under contract MH
is zero for both θL and θH .12 Hence, the opportunity cost of randomization over φH is equal (and null) for both types.
Randomization over φH is therefore ineffective for screening between types.

Appendix A

A.1. Proofs

Proof of Lemma 1. We show that any menu of contracts in which φH = 1 and (2) holds is necessarily dominated, as P could
offer a menu that, whilst violating (2), satisfies both ICH and ICL and yields him a strictly higher expected payoff. Consider
a menu M = {MH , ML} = {(φH ,πH ,qH , uH ), (φL,πL,qL, uL)} such that φH = 1 and (2) holds. P ’s expected payoff from M is,

λ
{
πH

[
qH (v − θH ) − C H

] + C H − B H − uH
} + (1 − λ)φL

{
πL

[
qL(v − θL) − CL

] + CL − BL − uL
}
. (7)

Now consider an alternative menu M̂ = {M̂H , M̂L}, where M̂H = (1, π̂H , q̂H ,0) and M̂L = (1,1,q,0). Under (A1), M̂ satisfies
ICH . It also satisfies ICL provided,

π̂H q̂H�θ − (1 − π̂H )�C + �B � 0. (8)

We now show that there exist values of π̂H and q̂H which satisfy (8) with equality (i.e., violate (2)) and which are such that
M̂ yields P a greater expected payoff than M . P ’s expected payoff from M̂ is,

λ
{
π̂H

[̂
qH (v − θH ) − C H

] + C H − B H
} + (1 − λ)

[
q(v − θL) − BL

]
. (9)

A sufficient condition for (9) to exceed (7) is,

π̂H
[̂
qH (v − θH ) − C H

] − πH
[
qH (v − θH ) − C H

]
> 0. (10)

Condition (10) ensures that P prefers M̂ to M . We distinguish between two cases. First, suppose that (1−πH )�C−�B
πH �θ

� q.

Hence setting π̂H = πH and q̂H = (1−πH )�C−�B
πH �θ

ensures (8) holds with equality. Contract M̂H = (1,πH ,
(1−πH )�C−�B

πH �θ
,0) is

feasible because, if (2) holds, then qH <
(1−πH )�C−�B

πH �θ
which implies (1 − πH )�C − �B > 0. With π̂H = πH the LHS of (10)

is πH (̂qH − qH )(v − θH ), which is strictly positive. Hence, M̂H dominates MH and so M̂ dominates M .
Second, suppose (1−πH )�C−�B

πH �θ
> q. Note that since q�θ +�B > 0 under (A1), −�B

�θ
< q <

(1−πH )�C−�B
πH �θ

, so �C −�B > 0.
There are then two possibilities to consider.

In the first case, qH�θ + �C > 0. Inequality (2) can be rewritten as πH < �C−�B
qH �θ+�C . By setting π̂H = �C−�B

qH �θ+�C , q̂H = qH

we ensure (8) holds with equality. The LHS of (10) becomes (π̂H − πH )[qH (v − θH ) − C H ], which is strictly positive. Hence,
M̂H = (1, �C−�B

qH �θ+�C ,qH ,0) dominates MH and so M̂ dominates M .
In the second case, qH�θ +�C � 0. For this to hold, we require �C < 0. As �C −�B > 0, this implies �B < 0. By setting

π̂H = 1, q̂H = −�B
�θ

we ensure (8) holds with equality. The LHS of (10) becomes [−�B
�θ

(v −θH )− C H ]−πH [qH (v −θH )− C H ].
Under (2), a sufficient condition for this to be positive is that,

C H (v − θL) − CL(v − θH ) < 0. (11)

Note however that as qH�θ +�C � 0 in this second case, if (11) does not hold then contract MH is dominated by a contract
that sets φH = 0. To see this, note that, by setting φH = 1, the extra profit obtained by the principal is non-negative only if
qH � uH +B H −C H (1−πH )

(v−θH )πH
. For this to be consistent with qH�θ +�C � 0 it is necessarily required that B H −C H (1−πH )

(v−θH )πH
� −�C

�θ
. In

turn, this requires C H (v − θL) − CL(v − θH ) < 0. We therefore conclude that contract M is surely dominated. �
10 It is straightforward to see that in our framework randomization over φL is also never optimal.
11 Recall that in our framework the relationship-specific investment is necessary for trade between the principal and the agent to occur. Given a contract
{φ,π,q, T } if the agent undertakes the relationship-specific investment, his expected utility is T − θiπq + (1 − π)Ci , while if the agent does not undertake
the relationship-specific investment, his utility is T + Bi .
12 This follows since, when (C1) binds, then −πH qH θL + (1 − πH )CL − B L = −πH qH θH + (1 − πH )C H − B H = 0.



Note / Games and Economic Behavior 68 (2010) 781–788 787
Proof of Proposition 1. We divide the proof in two parts. We first consider the case where (C1) is slack in the optimal
contract. We then consider the case where (C1) binds in the optimal contract. First consider the solution of (P) ignoring
(C1). It is straightforward to see the optimal ML prescribes φL = πL = 1, qL = q. Consider now the optimal MH .

Lemma 2. If condition (C1) is slack in the optimal contract, then the optimal MH prescribes πH = φH = 1, qH = q.

Proof. Ignoring (C1), the FOCs for MH are,

∂U P

∂πH
= φH qH

[
λ(v − θH ) − (1 − λ)�θ

] − φH
[
λC H + (1 − λ)�C

]
, (12)

∂U P

∂qH
= φHπH

[
λ(v − θH ) − (1 − λ)�θ

]
, (13)

∂U P

∂φH
= λ

[
πH qH (v − θH ) + (1 − πH )C H − B H

] − (1 − λ)
[
πH qH�θ − (1 − πH )�C + �B

]
. (14)

For condition (C1) to be slack, it is necessary that φH = 1. Hence, the LHS of (14) must be positive.13 This has implications
for the optimal values of πH and qH . If the optimal πH in the unconstrained problem is zero, to then have φH = 1 requires
λ(C H − B H ) − (1 − λ)(�B − �C) > 0. Since C H − B H < 0, a necessary condition for this is �B − �C < 0. However, when
φH = 1 and πH = 0, this requirement would contradict (C1). Similarly, if the optimal qH in the unconstrained problem is
zero, to then have φH = 1 requires λ[(1 −πH )C H − B H ]− (1 −λ)[�B − (1 −πH )�C] > 0. For this to hold it is necessary that
�B − (1 − πH )�C < 0. However, when φH = 1 and qH = 0, this requirement would again contradict (C1). Hence, if (C1) is
slack in the optimal contract, then the optimal πH and the optimal qH must both be strictly positive. As mentioned earlier,
we adopt the convention that, if indifferent between all possible values of qH ∈ [0,q], the principal will select qH = 0, and,
similarly, if indifferent between all possible values of πH ∈ [0,1], the principal will select πH = 0. Since, as proved above,
qH = 0 and/or πH = 0 are not consistent with φH = 1, we conclude that if (C1) is slack in the optimal contract, then the
optimal qH must be = q, and the optimal πH must be = 1. �

When πH = φH = 1, qH = q, (C1) becomes q�θ + �B � 0, which is satisfied with strict inequality by (A1). It remains
to verify consistency; given πH = φH = 1, qH = q, the LHS of (12), (13) and (14) must be strictly positive, to ensure that
πH = φH = 1, qH = q is indeed optimal. It is straightforward to show that this happens whenever,

λ > max

{
�C + q�θ

q(v − θL) − CL
,

�θ

v − θL
,

�B + q�θ

q(v − θL) − BL

}
. (4)

Hence, when (4) holds, the optimal contracts prescribe πi = φi = 1, qi = q for both i = L, H . Moreover, uH = 0, while
uL = q�θ + �B (it is straightforward to check that this satisfies ICH ). Condition (C1) is slack. This establishes the first part
of the proof of Proposition 1.

Second part: When (C1) binds, qH = (1−πH )�C−�B
πH �θ

, and P ’s expected payoff is,14

U P = λφH

[
πH

(
(1 − πH )�C − �B

πH�θ
(v − θH ) − C H

)
+ C H − B H

]
+ (1 − λ)φL

[
πLqL(v − θL) + (1 − πL)CL − BL

]
. (15)

It is straightforward to see the optimal ML in this case also prescribes φL = πL = 1, qL = q. The optimal MH maximizes (15)
subject to qH ∈ [0,q]. The FOCs are,

∂U P

∂πH
= λφH

(−�C(v − θH )

�θ
− C H

)
= λφH

[
CL(v − θH ) − C H (v − θL)

]
, (16)

∂U P

∂φH
= λ

[
πH

(
(1 − πH )�C − �B

πH�θ
(v − θH ) − C H

)
+ C H − B H

]
. (17)

Two cases can arise.15 In the first CL(v − θH ) − C H (v − θL) < 0, so conditional on φH = 1, ∂U P
∂πH

< 0 and P sets πH as low

as possible. If �C > �B then ∂qH
∂πH

< 0 and the lowest feasible πH solves q = (1−πH )�C−�B
πH �θ

, so πH = �C−�B
q�θ+�C . Provided

�C−�B
q�θ+�C (q(v − θH ) − C H ) + C H − B H > 0, the optimal φH is 1. If �C < �B then ∂qH

∂πH
> 0 and the lowest feasible πH solves

qH = 0. Similarly, if �C = �B then when φH = 1 (C1) may only bind if qH = 0. However, φH = 0 is preferred by P in

13 Recall that, as mentioned in footnote 7, if indifferent between φH = 1 and φH = 0, P will select φH = 0.
14 More precisely, qH = (1−πH )�C−�B

πH �θ
must necessarily hold if φH = 1 and (C1) binds. If φH = 0, then clearly the value of qH is irrelevant. The expres-

sion (15) captures P ′s expected payoff in both cases.
15 The knife-edge case where CL(v − θH ) − C H (v − θL) = 0 is ignored for brevity.
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this case, since it allows P to avoid having to pay a positive transfer (namely, B H − (1 − πH )C H ) to type θH to induce his
participation.

In the second case, CL(v − θH ) − C H (v − θL) > 0, so conditional on φH = 1, ∂U P
∂πH

> 0 and P sets πH as high as possible.

If �B < 0, then πH = 1 and qH = −�B
�θ

. Provided −�B
�θ

(v − θH ) − B H > 0, it is then optimal to set φH = 1. If �B > 0, it is
then optimal to set φH = 0 as this is the only way to ensure (C1) binds. To see this, note that we can only be in the case
CL(v − θH ) − C H (v − θL) > 0 if �C < 0 so that, if �B > 0, then �C < �B . This implies (1−πH )�C−�B

πH �θ
< 0 for all πH , and

therefore (C1) never binds unless φH = 0. Similarly, if �B = 0, then when φH = 1 (C1) may only bind if qH = 0. However,
as argued above, φH = 0 is then preferred by P . To complete the description of the optimal contracts, note that when (C1)
binds the optimal contracts prescribe uH = uL = 0. It is straightforward to check ICH is satisfied in all the cases we have
identified. �
A.2. Assumption A1 does not hold

For completeness, we consider the case in which 0 � q�θ + �B and so θH types have incentives to understate their
costs and mimic θL types. The remaining Assumption A2 is assumed to still hold. The counterparts for the main results are
as follows,

Lemma 1B. It is never optimal for the principal to offer φL = 1 in conjunction with πL and qL satisfying,

−πLqL�θ + (1 − πL)�C − �B < 0. (18)

An implication is that the participation constraint of type θH will not bind at the optimum. The optimal contracts are now found by
letting ICH hold with equality, setting uL = 0, and ignoring ICL . The counterpart to (C1) is,

φL
[−πLqL�θ + (1 − πL)�C − �B

]
� 0. (C1B)

Proposition 2B. For type θH , the optimal contract always prescribes φH = πH = 1, qH = q. If

λ < min

{
q(v − θL) − CL

q(v − θH ) − C H
,

v − θL

v − θH
,

q(v − θL) − BL

q(v − θH ) − B H

}
(19)

then (C1B) is slack, and the optimal contract for type θL has φL = πL = 1, qL = q. If (19) doesn’t hold, then (C1B) binds, and the
optimal contract for type θL is,

(i) if C H <
CL (v−θH )

v−θL
and �C − �B <

(BL−CL )(q�θ+�C)
q(v−θL )−CL

< 0: φL = 1, πL = �C−�B
q�θ+�C and qL = q,

(ii) if C H >
CL (v−θH )

v−θL
and �B < − B H �θ

v−θL
< 0: φL = πL = 1 and qL = −�B

�θ
,

(iii) in all the other cases: φL = 0.

A.3. A numerical example

Suppose θH = 0.75, θL = 0.25, q = v = 2, and agent’s ex ante and ex post outside options are B H = 1.85, BL = 2.35,
C H = 1.75, and CL = 1.95. For (4) to hold we require λ � 0.52. If λ < 0.52, then (C1) must bind in the optimal contract.
From (3), if φH = 1 this implies qH = 2

5 + 3
5πH

, and to ensure qH � q = 2, we require πH � 0.375. Conditional on φH = 1,
the principal then selects πH ∈ [0.375,1] to maximize her expected payoff when dealing with a type θH agent, U P =
πH [(2/5+ 3

5πH
)1.25−1.75]−0.1. Since U P is decreasing in πH , so the principal selects the lowest πH compatible with (C1).

The optimal contract for θH then is, φH = 1, πH = 0.375, qH = q = 2, and when dealing with type θH agents, the principal’s
expected payoff is 0.18.
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