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Lemma 2

A ) de Paula et al. [2025] use the the following paths for ρ and β (Online Appendix, p.7):

ρ(t) = tρ∗ + (1− t)ρ

β(t) = (tρ∗β∗ + (1− t)ρβ)/(tρ∗ + (1− t)ρ)

This construction leaves β(t) unde�ned if ρ(t) = 0 for some t. That is the case when ρ ≥ 0 and ρ∗ ≤ 0, or �

conversely � when ρ ≤ 0 and ρ∗ ≥ 0. Any path between ρ and ρ∗ then goes through zero at some t̄ ∈ (0, 1).

B ) de Paula et al. [2025] invoke
∑N

j=1 |Wij(t)| ≤ t
∑N

j=1 |(W∗)ij | + (1 − t)
∑N

j=1 |Wij | ≤ 1 , where W∗ is an

intermediate matrix used to construct a path W (t) connecting W and W ∗ (Online Appendix, p.6), and

|ρ(t)| < 1 (Online Appendix, p.7) to verify assumption (A2). (This was a legacy from previous unpublished

versions of the article that used a di�erent assumption (A2).) Assumption (A2) must nonetheless be veri�ed

directly on ρ(t) and the path W (t) connecting W and W ∗.

C ) When
(
W ∗2)

11
̸=

(
W ∗2)

22
, de Paula et al. [2025] propose constructing a path between W and W ∗ via W∗,

corresponding to the network of directed connections {(1, 2), (2, 1)} and {(3, 4), (4, 5), . . . , (N − 1, N), (N, 3)}.
If instead

(
W ∗2)

11
=

(
W ∗2)

22
propose a path between W and W ∗ via W∗∗, where W∗∗ represents the network

of directed connections {(1, 3), (3, 1)} and {(2, 4), (4, 5), . . . , (N − 1, N), (N, 2)}. Whereas the construction

works when N > 4, it fails if N = 3 as W∗ violates assumption (A1) and W∗∗ violates assumption (A4').

To address these issues, we present a di�erent proof for Lemma 2, which replaces the proof available in the original

Online Appendix. Here we connect any two parameter vectors θ and θ∗ ∈ Θ+ via an intermediate parameter vector

θ∗ with ρ∗ = β∗ = 0, γ∗ > 0 and W∗ as previously de�ned for N ≥ 4 and a modi�ed W∗ for N = 3. It thus uses

di�erent paths for ρ, β and γ than those presented in the original proof to address point A. The new path for ρ and

the path W (through the intermediate parameters ρ∗ and W∗) can be seen to address point B. To address point C,

we o�er a di�erent intermediate matrix W∗ as indicated above and apply row and column permutations to W for

N = 3. The proof for Lemma 2 then becomes the following.

*School of Business and Economics, Vrije Universiteit Amsterdam
�University College London, CeMMAP, IFS and CEPR.
�University College London.
�Queeen Mary University of London.

1



Proof. As Π(·) is a continuous map, it su�ces to prove path-connectedness of Θ+. To do so, take the parameter

vector θ∗ = ((W∗)12, ..., (W∗)N,N−1, γ∗, ρ∗, β∗)
′ with ρ∗ = β∗ = 0, γ∗ > 0. If N ≥ 4, de�ne W∗ such that

(W∗)ij = 1 for all (i, j) ∈ {(1, 2), (2, 1), (N, 3)} ∪ {(3, 4), (4, 5), ..., (N − 1, N)} and (W∗)ij = 0 for all other

(i, j). When N = 3, let instead (W∗)ij = 1 for all (i, j) ∈ {(1, 2), (2, 1), (3, 2)} and (W∗)ij = 0 for all other

(i, j). It can be shown that θ∗ ∈ Θ+. We can then obtain path-connectedness of Θ+ by proving that every

θ = ((W )12, ..., (W )N,N−1, γ, ρ, β)
′ ∈ Θ+ is path-connected to θ∗, which in turn makes any two θ, θ∗ ∈ Θ+ path-

connected via θ∗.

Take θ ∈ Θ+ and de�ne the paths from θ to θ∗ for ρ, β and γ as follows:

ρ(t) = tρ∗ + (1− t)ρ = (1− t)ρ,

β(t) = tβ∗ + (1− t)β = (1− t)β,

γ(t) = tγ∗ + (1− t)2γ,

with t ∈ [0, 1]. As θ ∈ Θ+, we have ρβ + γ > 0. Since γ∗ > 0, this gives us:

ρ(t)β(t) + γ(t) = (1− t)2(ρβ + γ) + tγ∗ > 0,

for all t ∈ [0, 1]. As |ρ| < 1 and ρ∗ = 0, we have |ρ(t)| < 1 for all t ∈ [0, 1].

Now, consider the subvector ((W∗)12, ..., (W∗)N,N−1) of θ∗ and the subvector ((W )12, ..., (W )N,N−1) of θ. De�ne

the path

W (t) = tW∗ + (1− t)W, t ∈ [0, 1]

between W and W∗. As (W )ii = 0 and (W∗)ii = 0 for all k ∈ {1, ..., N}, we get (W (t))ii = 0 for all t ∈ [0, 1] and

i ∈ {1, ..., N}. Assumption (A4) implies
∑N

j=1(W )ij = 1 for some row i. As we also have
∑N

j=1(W∗)ij = 1, we get

that for all t ∈ [0, 1]:

N∑
j=1

(W (t))ij = t

N∑
j=1

(W∗)ij + (1− t)

N∑
j=1

(W )ij = 1.

Next, we prove that
∑N

j=1 |ρ(t)(W (t))ij | < 1. As
∑N

j=1 |(W∗)ij | = 1 for all i ∈ {1, ..., N}, we get

N∑
j=1

|ρ(t)(W (t))ij | ≤ (1− t)t|ρ| ·
N∑
j=1

|(W∗)ij |+ (1− t)2
N∑
j=1

|ρ(W )ij |

= (1− t)t |ρ|︸︷︷︸
<1

+(1− t)2
N∑
j=1

|ρ(W )ij |︸ ︷︷ ︸
<1

< (1− t)t+ (1− t)2 ≤ 1.

for all t ∈ [0, 1). For t = 1, we have
∑N

j=1 |ρ(t)(W (t))ij | = 0 < 1. Taken together, the foregoing proves assumptions

(A1)-(A4) for the proposed path and that ρ(t)β(t) + γ(t) > 0.

The last assumption to prove is (A5). As θ ∈ Θ+, we have (W 2)11 ̸= (W 2)hh for some h ∈ {2, ..., N}. Consider
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N ≥ 4. Here, we have two cases. First, (W 2)11 ̸= (W 2)22. Then, we have

(W (t)2)11 = t2 + (1− t)tW12 + (1− t)tW21 + (1− t)2(W 2)11,

(W (t)2)22 = t2 + (1− t)tW21 + (1− t)tW12 + (1− t)2(W 2)22.

That gives us

(W (t)2)11 − (W (t)2)22 = (1− t)2
(
(W 2)11 − (W 2)22

)
̸= 0,

for all t ∈ [0, 1], so it satis�es (A5). The second case is (W 2)11 = (W 2)22. We can assume without loss of

generality that (W 2)11 ̸= (W 2)33. De�ne θ∗∗ as follows: ρ∗∗ = β∗∗ = 0, γ∗∗ = γ∗ > 0, (W∗∗)ij = 1 for

(i, j) ∈ {(1, 3), (3, 1), (2, 4)} ∪ {(4, 5), (5, 6), . . . , (N − 1, N), (N, 2)} and (W∗∗)ij = 0, otherwise. Note that θ∗∗ ∈ Θ.

Now, we can show that there is a path from θ to θ∗ via θ∗∗. As (ρ∗∗, β∗∗, γ∗∗) = (0, 0, γ∗) = (ρ∗, β∗, γ∗), we can

use the paths for ρ, β, γ de�ned earlier between θ and θ∗∗. By using similar logic as above, it can be proven that

assumption (A5) holds on the path W̃ (t) = tW + (1− t)W∗ from θ to θ∗∗ and the path Ŵ (t) = tW∗∗ + (1− t)W∗

from θ∗ to θ∗∗.

Now consider N = 3. Take two vectors θ, θ∗ ∈ Θ+. Path-connectedness for W and W ∗ is proven component

by component. So, we can permute rows without loss of generality, as long as we apply the same permutation to

W and W ∗. By symmetry, all possible cases reduce to three:

� (W 2)11 ̸= (W 2)22 and (W ∗2)11 ̸= (W ∗2)22. This is the base case.

� (W 2)11 ̸= (W 2)22 and (W ∗2)11 = (W ∗2)22. As θ2 ∈ Θ+, this implies (W ∗2)11 ̸= (W ∗2)33. We have two

subcases. First, (W 2)22 = (W 2)33. Now, swap row 2 and 3 and then swap column 2 and 3 of W and W ∗.

Second, (W 2)22 ̸= (W 2)33. Here, swap row 1 and 3 and column 1 and 3 in W and W ∗.

� (W 2)11 = (W 2)22 and (W ∗2)11 = (W ∗2)22. Swap row 2 and 3 and column 2 and 3 in W and W ∗.

The resulting matrices W and W ∗ all satisfy (W 2)11 ̸= (W 2)22 and (W ∗2)11 ̸= (W ∗2)22. We can again path-connect

them via the parameter vector θ∗, but now with a slightly di�erent W∗ as de�ned above for N = 3. Take the paths

W̃ (t) = tW∗ + (1− t)W and Ŵ (t) = tW∗ + (1− t)W ∗

between θ and θ∗ and between θ∗ and θ∗. For these paths, we have

(W̃ (t)2)11 − (W̃ (t)2)22 = (1− t)2((W 2)11 − (W 2)22) ̸= 0

and

(Ŵ (t)2)11 − (Ŵ (t)2)22 = (1− t)2((W ∗2)11 − (W ∗2)22) ̸= 0

for all t ∈ [0, 1]. Thus, there is a path in Θ+ between all pairs θ1, θ2 ∈ Θ+ via θ∗.

Theorem 2

The proof for Theorem 2 declares that: �The mapping Π(θ) is continuous and proper (by Corollary 1), with a

connected image (Lemma 2), and non-singular Jacobian at any point (as per the proof for Theorem 1), which

guarantees local invertibility� (Online Appendix, p.7). Theorem 1 does not guarantee that the Jacobian of the

unrestricted mapping Π(θ) has full rank. One needs to account for the restriction in assumption (A4) to ensure a
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full-rank Jacobian. The precise statement should read instead: �The mapping Π(θ) is continuous and proper (by

Corollary 1), with a connected image (Lemma 2), and it is locally invertible at any point of the domain constrained

by assumption (A4) (as per the proof for Theorem 1).�
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