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Lemma 2
A ') |de Paula et al. [2025] use the the following paths for p and 8 (Online Appendix, p.7):

p(t) =tp" + (1 —1t)p
B(t) = (tp™B* + (1 = 1)pB)/(tp* + (1 = 1)p)

This construction leaves 3(¢) undefined if p(¢) = 0 for some ¢. That is the case when p > 0 and p* < 0, or —
conversely — when p < 0 and p* > 0. Any path between p and p* then goes through zero at some ¢ € (0,1).

B ) de Paula et al| [2025] invoke Y7, Wi ()| < ¢ 30 [(Wa)i| + (1 — ¢) S22, [Wi;| < 1, where W, is an
intermediate matrix used to construct a path W(t¢) connecting W and W* (Online Appendix, p.6), and
|p(t)] < 1 (Online Appendix, p.7) to verify assumption (A2). (This was a legacy from previous unpublished
versions of the article that used a different assumption (A2).) Assumption (A2) must nonetheless be verified
directly on p(t) and the path W (¢) connecting W and W*.

C) When (W*2) | # (W*?),,,|de Paula et al. [2025] propose constructing a path between W and W* via W.,
corresponding to the network of directed connections {(1,2),(2,1)} and {(3,4), (4,5),...,(N —=1,N), (N, 3)}.
If instead (W*2)11 = (W*2)22 propose a path between W and W* via W,,, where W, represents the network
of directed connections {(1,3),(3,1)} and {(2,4), (4,5),...,(N — 1, N),(N,2)}. Whereas the construction
works when N > 4, it fails if N = 3 as W, violates assumption (A1) and W,, violates assumption (A4’).

To address these issues, we present a different proof for Lemma 2, which replaces the proof available in the original
Online Appendix. Here we connect any two parameter vectors # and §* € O, via an intermediate parameter vector
0, with p, = B« = 0,7, > 0 and W, as previously defined for N > 4 and a modified W, for N = 3. It thus uses
different paths for p, 5 and v than those presented in the original proof to address point A. The new path for p and
the path W (through the intermediate parameters p, and W,) can be seen to address point B. To address point C,
we offer a different intermediate matrix W, as indicated above and apply row and column permutations to W for

N = 3. The proof for Lemma 2 then becomes the following.
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Proof. As II(-) is a continuous map, it suffices to prove path-connectedness of ©.. To do so, take the parameter
vector 0, = (Wi)iz, ... Wi)N,N=1, Vs P, Bx) with p, = B, = 0, 7« > 0. If N > 4, define W, such that
(Wa)i; = 1 for all (4,5) € {(1,2),(2,1),(V,3)} U {(3,4),(4,5),...,(N — 1,N)} and (W,);; = 0 for all other
(t,j). When N = 3, let instead (W,);; = 1 for all (4,7) € {(1,2),(2,1),(3,2)} and (W,);; = 0 for all other
(i,4). It can be shown that 6, € ©,. We can then obtain path-connectedness of ©; by proving that every
0= ((W)z,....(W)n,N=1,7,p, ) € O+ is path-connected to 6., which in turn makes any two 6,0* € O, path-

connected via 6.
Take 6 € O, and define the paths from 6 to 6, for p, 5 and ~ as follows:

p(t) =tps+ (1 —t)p=(1-1)p,
Bt) =th. + (1 —t)B = (1-1t)B,
V() =ty + (1= 1)y,

with ¢ € [0,1]. As 6 € ©,, we have pS + v > 0. Since ~, > 0, this gives us:

p(H)B(H) + (1) = (1= 1)*(pB + ) + 7. > 0,

for all t € [0,1]. As |p| < 1 and p, = 0, we have |p(t)] < 1 for all ¢ € [0, 1].

Now, consider the subvector ((W.)i2, ..., (Wi)n n—1) of 0. and the subvector ((W)ia,...,(W)n n—1) of 6. Define
the path
W) =tW,+ (1 -t)W, te]0,1]

between W and W,. As (W);; = 0 and (W,);; = 0 for all k € {1,..., N}, we get (W(t));; = 0 for all ¢ € [0,1] and
i€{1,...,N}. Assumption (A4) implies Zjvzl(W)w = 1 for some row i. As we also have Zjv:l(W*)” =1, we get
that for all ¢ € [0, 1]:

-

S W(1)ij =t (Wa)ij+ (1 =) (W) =

j=1 j=1 j=1

Next, we prove that Z;\;l lp(£) (W (t))i;] < 1. As Z; LWyl =1for alli € {1,..., N}, we get

N N
Z )izl < (1 =t)t|p| - Z| +)il + (1 —1) Z W)l

N
= (1=t Jol +(1- t)? ; lp(W) 5]
<1 J=

<1

<(1-tt+01-t)*<1.

for all ¢ € [0,1). For t = 1, we have Z;\Izl lo(£)(W(t))i;] = 0 < 1. Taken together, the foregoing proves assumptions
(A1)-(A4) for the proposed path and that p(¢)8(t) + ~(¢) > 0.

The last assumption to prove is (A5). As 0 € ©,, we have (W?)1; # (W?2)y,, for some h € {2,...,N}. Consider



N > 4. Here, we have two cases. First, (W?)1; # (W?)2s. Then, we have

(W) 11 =2+ (1 — t)tWia + (1 — t)tWay + (1 — )2 (W14,
(W(#)?)a2 =% + (1 — t)tWay + (1 — t)tWig + (1 — )2 (W?)aa.

That gives us
(W) = (W (6)*)az = (1= 1)* (W11 — (W?)22) #0,

for all t € [0,1], so it satisfies (A5). The second case is (W?);; = (W?)a. We can assume without loss of
generality that (W?2);; # (W?)33. Define 6., as follows: pux = Bax = 0, Yux = 75 > 0, (Wis)ij = 1 for
(1,7) € {(1,3),(3,1), (2,4} U{(4,5),(5,6),..., (N —1,N),(N,2)} and (W,,);; = 0, otherwise. Note that 6.. € O.
Now, we can show that there is a path from 6 to 6. via ... AS (Pis, Biss Tax) = (0,0,74) = (ps, Bu, 75), We can
use the paths for p, 8, defined earlier between 6 and 6,,. By using similar logic as above, it can be proven that
assumption (A5) holds on the path W (t) = tW + (1 — t)W, from 6 to 6., and the path W(t) =tWe + (1 - )W,

from 6, to O..

Now consider N = 3. Take two vectors 0,0* € ©,. Path-connectedness for W and W* is proven component
by component. So, we can permute rows without loss of generality, as long as we apply the same permutation to

W and W*. By symmetry, all possible cases reduce to three:

o (W2)1; # (W?)a and (W*2)1; # (W*2)s,. This is the base case.

o (W21 # (W?)ge and (W*2);; = (W*%)as. As 6, € O, this implies (W*?)1; # (W*?)33. We have two
subcases. First, (W?)a2 = (W?)33. Now, swap row 2 and 3 and then swap column 2 and 3 of W and W*.
Second, (W?2)a9 # (W?2)33. Here, swap row 1 and 3 and column 1 and 3 in W and W*.

o (W2);1 = (W?)ge and (W*2);; = (W*?)ge. Swap row 2 and 3 and column 2 and 3 in W and W*.

The resulting matrices W and W* all satisfy (W?2)11 # (W?)2e and (W*2)1; # (W*?)22. We can again path-connect
them via the parameter vector ., but now with a slightly different W, as defined above for N = 3. Take the paths

W) =tW, +(1—tW  and  W(t) =tW, + (1 — )W*

between 0 and 0, and between 0* and 6,. For these paths, we have

W ()*) 11 — (W()?)22 = (1 = t)>(W?)11 — (W?)a2) # 0

and

o~

(W()*)11 = (W(1))ez = (1 = )*(W2)11 = (W*)a2) £ 0

for all ¢t € [0,1]. Thus, there is a path in © between all pairs 61,0, € © via 0,. O

Theorem 2

The proof for Theorem 2 declares that: “The mapping I1(0) is continuous and proper (by Corollary 1), with a
connected image (Lemma 2), and non-singular Jacobian at any point (as per the proof for Theorem 1), which
guarantees local invertibility” (Online Appendix, p.7). Theorem 1 does not guarantee that the Jacobian of the

unrestricted mapping II(#) has full rank. One needs to account for the restriction in assumption (A4) to ensure a



full-rank Jacobian. The precise statement should read instead: “The mapping I1(0) is continuous and proper (by
Corollary 1), with a connected image (Lemma 2), and it is locally invertible at any point of the domain constrained

by assumption (A4) (as per the proof for Theorem 1).”

References

Aureo de Paula, Imran Rasul, and Pedro Souza. Identifying network ties from panel data: Theory and an application
to tax competition. Review of Economic Studies, 92(4):2691-2729, July 2025.



