
Chapter 8

Intertemporal valuation

The equilibrium models we have seen so far are static models—they deter-

mine securities prices at a reference time on the basis of expected future

revenues to which they provide a claim. They ignore a key fact: These rev-

enues themselves depend on the securities’ future prices. To account for this

we need to consider an economy in which prices are set on markets that are

open during consecutive periods over an unlimited horizon.

We will begin with the representative agent model, which will serve as

a benchmark. The economy consists of a single agent who consumes the

available resources at each point in time and in every state of nature. It

is easy to define an (implicit) price for every good and all assets as the

quantity of the numeraire the consumer is prepared to surrender at the

margin in exchange for one unit of the good or security under consideration.

This, in particular, will yield the dynamics of the spot curve and link it to

the evolution of resources, as well as allowing us to examine the relationship

between the forward rate curve, say for one year, and the spot curve that

will prevail then.

The representative agent hypothesis is simplistic. Nonetheless, the con-

clusions this model yields apply when consumers are numerous but identical

(in terms of tastes, resources, and expectations). They also partially extend

to an economy with complete markets.

After having presented the model, we will examine the spot curve and
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its evolution along with the valuation of securities with risky returns and a

finite lifespan. Subsequently, we will discuss one of the empirical paradoxes

of the valuation of securities, the equity premium puzzle. We will conclude

with an examination of assets with an infinite lifespan in connection with

the phenomenon of bubbles.

1 The representative agent model

1.1 The economy

Consider an intertemporal economy with an infinite time horizon, in which

time is discrete, t = 0, . . . ,∞. There is a single consumer in this economy,

whose lifespan is also infinite.

From the perspective of time 0, future consumption may be uncertain.

We describe it with a consumption program, c = (c̃t)t=0,...,∞, where c̃t is the

(possibly stochastic) forecasted level of consumption at time t.

The consumer’s preferences are defined over these consumption plans.

We represent them with a von Neumann Morgenstern utility function U,

which is intertemporally additive, U(c) =
∑∞

t=0 δ
tu(ct), where u is an in-

creasing, concave, and continuously differentiable function from IR into IR.

The psychological discount factor, δ, is positive and less than one, capturing

the consumer’s preference for the present. We denote i the psychological

discount rate, which is connected to δ by the relationship:

δ =
1

1 + i
.

The utility level associated with c is given by

E[U(c)] = E0

[

∞
∑

t=0

δtu(ct)

]

,

where the mathematical expectation is conditional on the information avail-

able at time 0. Note that the consumer’s tastes are stable over time: At

time t preferences are represented with the same utility function as that
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given above, the only difference being that the mathematical expectation is

taken conditional on the information available at time t, and not that avail-

able at time 0. This analysis can easily be extended to the case in which

intertemporal utility is the sum of utility levels that may vary between dates,

E0

[
∑∞

t=0 δ
tut(ct)

]

.

The economy’s resources, which our agent receives, are given by ω̃t,

t = 0, . . . They are exogenous and fixed. The good cannot be stored, nor

invested or transferred from one period to the next. Thus, the only resource

allocation that is realizable is c̃t = ω̃t, for all t.

Before proceeding, let us recall several definitions.

1.2 The spot curve: a review

Assume we are at time 0. Recall that the spot curve can easily be obtained

from the prices of zero coupons (see Chapter 1). A zero coupon maturing

at τ provides a claim on the delivery of one unit of the good at time τ,

τ = 1, . . .

The interest rate, r(τ), on a loan taken at time 0 and due at τ, is defined

from the price of the zero coupon, q(τ), maturing at τ, by

1

[1 + r(τ)]τ
= q(τ). (8.1) {taux0}

All rates correspond to loan operations with a duration of a unit of time,

and are all measured in terms of the same unit, regardless of their maturity.

The spot curve at time 0 is the curve τ → r(τ), for τ = 1, . . . , that

compares the yields, per unit of time, of loans with different maturities.

The forward interest rate at t and maturing at τ is defined as

1

[1 + ft(τ)]τ
=
q(τ + t)

q(t)
. (8.2) {terme}

By arbitrage, ft(τ) is the prevailing rate at time 0 for loan operations

contracted at time t with a maturity of τ periods.

The spot curve at t is the curve ft: τ → ft(τ).
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Spot curves and forward rate curves are observable at present. Typically,

the forward rate curve evolves over time. We denote the spot curve that

will materialize at t, rt: τ → rt(τ) (with this notation, we have r = r0 =

f0). Studies of rate dynamics focus specifically on the relationship between

forward rates, ft(τ), that are observable today and future rates rt(τ) that

will be realized at t. In other words, what information about the realization

at time t of spot curve rt(·) can we glean from current observations on the

forward curve, t, ft(·)?
The representative agent model allows this type of question to be ad-

dressed once we have defined expectations on resources and their evolution.

In the next section, resources are sure (though not necessarily constant)

and perfectly anticipated. Subsequently we will abandon that unrealistic

assumption and assume that resources follow a Markovian process. This

analysis will be conducted assuming that expectations are rational : Future

events are drawn from a distribution that is consistent with the agent’s

expectation on the probabilities.

2 Risk-free aggregate resources

2.1 The interest rate curve and its evolution

In the representative agent model, calculating the prices of zero coupons and

the associated rates—in relationship with the fundamental characteristics of

the economy—is simple when resources are sure. Consider a consumer with

preferences E0

[
∑∞

t=0 δ
tu(ct)

]

, who can buy a zero coupon maturing at τ at

a price q(τ). He adjusts his portfolio to satisfy the marginal condition

q(τ)u′(c0) = δtE0[u
′(c̃t)].

In an economy with a single agent, this consumption satisfies

c̃τ = ωτ
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at equilibrium. Thus, we obtain:

q(τ) =
δτu′(ωτ )

u′(ω0)
. (8.3){p0c}

In other words, the price of a unit of the good available at τ in terms of the

good available today is equal to the marginal rate of substitution between

these two periods.

The spot curve is thus entirely determined by the evolution of resources

and preferences:

1 + r(τ)

1 + i
=

[

u′(ω0)

u′(ωτ )

]1/τ

. (8.4) {taux}

It immediately follows that:

When resources are expected to be constant over time the rates are all

equal to the consumer’s psychological discount rate. Rates are constant for

all maturities and we say that the spot curve is flat.

When resources are sure but vary over time, we have

ωτ > ω0 ⇐⇒ r(τ) > i.

This property follows from the consumer’s declining marginal utility. For

him to accept a lower level of consumption at time 0 than at time τ, the

price of the good at time τ must be sufficiently low, implying that the return

is greater than the psychological discount factor.

Let us finally note that an increase in resources does not necessarily

mean that the spot curve is increasing, as the following example illustrates.

Example 1

Assume that the function u is isoelastic:

u(c) =
c1−γ

1 − γ
, γ > 0, γ 6= 1 or u(c) = ln c.
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We obtain

1 + r(τ) = (1 + i)

(

ωτ
ω0

)γ/τ

.

If resources increase at a constant rate g, ωτ = ω0g
τ , then the rate curve

is flat and equal to (1 + i)gγ − 1.

We will now examine the forward rate curve for t and the curve that will

materialize at t. The forward rate at t maturing at τ, defined by (8.2), is

here equal to

[1 + ft(τ)]
τ =

q(t)

q(τ + t)
=
δτu′(ωt)

u′(ωt+τ )
. (8.5)

The rate for maturities at τ that will be realized at t is given by the same

expression as (8.4), but offset by t periods.

1 + rt(τ)

1 + i
=

[

u′(ωt)

u′(ωt+τ )

]1/τ

.

If there is no uncertainty concerning aggregate resources, the forecast of

ωt is independent of the current date and equal to the value observed at t.

Thus, we obtain:

If there is no uncertainty regarding aggregate resources, the forward rate

curve for t: τ → ft(τ) coincides with the spot rate that will materialize at

t.

Recall that, by definition, the identity

1

q(τ)
= [1 + r(τ)]τ =

q(0)

q(1)

τ−1
∏

t=1

q(t)

q(t+ 1)
= [1 + r(1)]

τ−1
∏

t=1

[1 + ft(1)]

obtains. Moreover, since it is the case that in a model without uncertainty

and with perfect foresight, ft(1) = rt(1), the preceding equation can be

written

1

q(τ)
= [1 + r(τ)]τ = [1 + r(1)][1 + r1(1)] · · · [1 + rτ−1(1)].

The rate maturing at τ is the geometric mean of the successive short-
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term rates. Thus, a long-term rate exceeding today’s short-term rate implies

that the latter will rise and, in fact, eventually assume values greater than

that of the current long-term rates.

2.2 The valuation of risky assets

Even if resources are certain, securities may pay stochastic dividends. The

same valuation principle applies. We will model uncertainty using states of

nature. During each period, we will find ourselves in one of a finite number

of states of nature, et in Et, which determine the dividends to be distributed.

We denote the probability, at time 0, that state et will materialize at time

t with π(et). Clearly, the values of risky assets at time 0 depend crucially

on the expected distribution of future states. We continue to assume that

expectations are correct : The agent has perfect knowledge of the distribution

π.

As we saw in Chapter 2, a convenient procedure consists of evaluating

the state prices, since they allow existing assets with a finite lifespan to be

valued by arbitrage.

An Arrow-Debreu, or contingent, asset—defined as a security that pro-

vides a claim to the good at time τ if state eτ materializes—can be associated

with each date τ and each event eτ . Its price, q(eτ ), is determined in a man-

ner analogous to that of zero coupons. Let this security be tradable. The

representative agent’s optimization yields the first-order condition:

q(eτ )u
′(c0) = δτπ(eτ )u

′[c(eτ )].

At equilibrium we must have

c0 = ω0 and c(eτ ) = ωτ .

This directly yields the state prices q(eτ ) in terms of the good available

at time 0:

q(eτ ) =
δτπ(eτ )u

′(ωτ )

u′(ω0)
,
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or, using the price of the zero coupon from (8.3),

q(eτ ) = π(eτ )q(τ).

In other words, the price contingent on a state at time τ equals the price

of the zero coupon maturing at τ multiplied by the probability of that state.

Consequently, the risk-adjusted probability is here identical to the objective

probability. Of course, this is because there is no aggregate risk: The in-

terest rate is determined by the (sure) marginal utilities of resources at the

times in question, and under the von Neumann Morgenstern assumptions

the risk-adjusted probability coincides with the (subjective and objective)

probability of the occurrence of the states. Using the definition of the inter-

est rate, the preceding equality can be written

q(eτ ) =
1

[1 + r(τ)]τ
π(eτ ).

Now consider a security with a finite lifespan and paying stochastic div-

idends: The owner of one unit of this asset receives d(eτ ) at time τ if the

state of nature eτ materializes; dividends are nil beyond some time T (in the

last section this assumption is abandoned). Using the principle of the ab-

sence of arbitrage opportunities, this security’s price, p0, expressed in terms

of the good today, follows from the state prices:1

p0 =
T
∑

t=1

∑

et∈Et

q(et)d(et),

1We can also reason directly. The additional utility that this security contributes at
the margin equals:

T�
t=1

δtu′(ωt)
�

et∈Et

π(et)d(et).

Its price, p0, expressed in today’s good, is thus

p(e0) =
1

u′(ω0)

T�
t=1

δtu′(ωt)
�

et∈Et

π(et)d(et),

yielding the result we seek.
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or

p0 =
T
∑

t=1

1

[1 + r(t)]t

[

∑

et∈Et

π(et)d(et)

]

.

The probability of the occurrence of the states π(et) is conditional on

the information available at present. Analogously, at time τ, the price is a

function of the realized state eτ :

p(eτ ) =
T
∑

t=τ+1

1

[1 + rτ (t)]t−τ

∑

et∈Et

π(et|eτ )d(et). (8.6) {fondamental}

The following proposition captures these results.

Theorem 8.1

Assume that there is no uncertainty regarding the economy’s total re-

sources.

1. The forward rate curve at t: τ → ft(τ) coincides with the spot curve

that will materialize at t.

2. The value of the risky security with a finite lifespan equals the dis-

counted sum, using the term structure of interest rates, of the expected

dividends it will yield conditional on the available information.

3 Risky future resources

Though it serves a pedagogical purpose, the assumption that resources are

risk-free is clearly too restrictive. The previous analysis can easily be ex-

tended to the case in which resources follow a dynamic stochastic process,

provided it is known. We then obtain a stochastic model of the evolution

over time of the interest rate curve.2 From here on, resources ω̃t are random

and measurable with respect to the state et. Also, we can write ω̃t = ω(et).

2We here apply a simplified version of the model proposed by Lucas (1978).
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3.1 The interest rate curve

We can apply a reasoning analogous to the preceding to the evaluation of

zero coupons. At equilibrium, the agent expects to consume 0 at time τ :

c̃τ = ω̃τ .

Asset prices must be such that there is no incentive to deviate from this

consumption. A marginal increase in the unconditional consumption of the

good at time τ, made possible by a zero coupon, increases future utility by

δτE0[u
′(ω̃τ )] while decreasing current utility by q(τ)u′(ω0). Thus:

q(τ) =
δτE0[u

′(ω̃τ )]

u′(ω0)
,

and, for the interest rate, using the psychological discount rate, i, defined

by δ = 1/(1 + i):

1 + r(τ)

1 + i
=

{

u′(ω0)

E0[u′(ω̃τ )]

}1/τ

. (8.7){ta}

In order to examine the impact of uncertainty on the spot curve, let

us refer to a situation with no uncertainty in which the resource at time τ

equals ωτ . Now consider an alternative in which resources are stochastic,

but with the same mathematical expectation as in the reference situation:

E0(ω̃τ ) = ωτ .

According to Equation (8.7), the interest rate with respect to the sure

reference situation3

� increases if marginal utility is concave;

� remains unaltered if utility is quadratic;

� decreases if marginal utility is convex.

3The interest rate in the case of uncertainty is greater than in the case of certainty if
E0[u

′(ω̃τ )] < u′[E0(ω̃τ )], which obtains if u′ is concave.
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The impact of uncertainty on the interest rate curve thus depends on

very specific features of agents’ preferences and is ambiguous even in the

simplistic model of the representative agent. However, the third case is

frequently deemed the most plausible. It captures what is called the pre-

cautionary effect: Faced with a higher future risk, the individual prefers to

increase savings today and transfer wealth to the future. This leads to a

decline in rates in order to equilibrate the market.

We can also look at the links between the forward prices of zero coupons

and their prices in the future. The forward price for t, q(τ + t)/q(t), and

the future price at t, qt(τ), of a zero coupon maturing at τ are respectively

given by:

q(τ + t)

q(t)
= δτ

{

E0[u
′(ω̃τ+t)]

E0[u′(ω̃t)]

}

, and

qt(τ) = δτ
{

Et[u
′(ω̃τ+t)]

u′(ωt)

}

.

Seen from time 0, the future price, qt(τ), is stochastic: It depends partly

on the realization of wealth, ωt, (through the denominator), and partly

on information concerning future wealth that may change the conditional

expectation in the numerator. Unless we assume risk neutrality, there is little

likelihood that the forward price will be an unbiased estimator of the price in

the future. In general, E0[qt(τ)] differs from the forward price q(τ + t)/q(t).

Now assume the simple (and unrealistic) situation in which there is no

information between 0 and τ on the available resources at time τ + t. In this

event Et[u
′(ω̃τ+t)], which is random from the perspective of time 0 a priori,

is constant and equal to its current value E0[u
′(ω̃τ+t)]. Thus:

E0[qt(τ)] = δτE0

{

E0[u
′(ω̃τ+t)]

u′(ωt)

}

= δτE0[u
′(ω̃τ+t)]E0

[

1

u′(ω̃t)

]

.

The inequality4

1

E0[u′(ω̃t)]
≤ E0

[

1

u′(ω̃t)

]

4Since the inverse function is convex, this follows form Jensen’s inequality.
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implies

E0(qt) ≤
q(τ + t)

q(t)
.

Thus, in the absence of an information effect, the future price will, on

average, be below the forward price. This is interpreted as follows. Consider

an investor wishing to take out a loan in t periods maturing at t + τ . The

forward price at t fixes the cost of the loan today and thus allows her to

hedge against variations in this price at time t. If this price is below that

expected to prevail at t, and if waiting will not bring the benefit of further

information, she has every reason to commit to the operation today. This is

not true if waiting an additional period will yield a clearer picture of future

needs.

This type of analysis is often conducted on the spot rate, as in the ex-

ample below. We thus wish to know whether there is a systematic difference

between the forward rate curve and the expectation of curves that will ma-

terialize.

3.2 An example

We revert to the situation in Example 1, where preferences are of the form

1

1 − γ
E

[

∞
∑

t=0

δt(ct)
1−γ

]

,

with γ strictly positive and not equal to one.

We assume that the distribution of resources (i.e. national output) is

lognormal: The joint distribution of the log(ω̃t)t=1,...,T -s is normal for all T .

Taking logs in (8.7), we obtain

log[1 + r(τ)] = log(1 + i) − 1

τ

[

logE0(ω̃
−γ
τ ) − log(ω−γ

0 )
]

Note that the distribution of ω̃−γ
t is lognormal: log ω̃−γ

t is normal with

expectation −γE(logωt) and variance γ2var(log ω̃t). Now, ifX is distributed
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lognormally:

logE(X) = E(logX) +
1

2
var(logX).

From this we can derive the following expression for the future interest

rate at τ :

log[1 + r(τ)] = log(1 + i) +
γ

τ

{

E0 [log(ω̃τ/ω0)] −
γ

2
var0(log ω̃τ )

}

, (8.8) {ltau}

which only depends on the values of E0(log ω̃τ ) and var0(log ω̃τ ).

Owing to its dual role in the representative agent’s preferences, the pa-

rameter γ has two effects on the interest rate curve.

As in the case with certainty, it indicates the degree of intertemporal

substitution the individual will accept. If he expects an increase in wealth,

E0[log(ω̃τ/ω0)] > 0, he will wish to borrow, and all the more so as γ in-

creases, reflecting a higher interest rate. But γ also measures relative risk

aversion at a given point in time—and so the rate depends on the future

variance, var0(log ω̃τ ). Here, rates are decreasing with this variance. This is

the precautionary effect mentioned above, which is stronger as γ rises.

We can study the relationship between the spot curve maturing at 1 and

the curve that will materialize in one period. According to (8.2), we have

[1 + f1(τ)]
τ =

[1 + r(τ + 1)]τ+1

1 + r(1)

which, using (8.8) yields

log[1 + f1(τ)] =

log(1 + i) +
γ

τ

{

E0(log ω̃τ+1 − log ω̃1) −
γ

2
[var0(log ω̃τ+1) − var0(log ω̃1)]

}

.

The spot curve that will materialize at t = 1 is given by:

log[1 + r1(τ)] = log(1 + i) +
γ

τ

{

E1 [log(ω̃τ+1/ω1)] −
γ

2
var1(log ω̃τ+1)

}

.

Seen from time 0, it is random, depending on the information available

at time 1, which clearly includes ω1. To examine the difference between
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forward rate curves and the expectation of curves that will materialize in

the future,5 notice that

log[1 + f1(τ)] − E0{log[1 + r1(τ)]} =

−γ
2

2τ
{[var0(log ω̃τ+1) − var1(log ω̃τ+1)] − var0(log ω̃1)} .

We once again find the two previously mentioned effects: The term between

square brackets captures the impact of new information at time 1 on future

resources, and the second the impact of realized wealth at time 1. There is

no reason why this expression should be equal to zero.

Thus, there is generally a bias, the sign of which depends on the precision

of the information that will be available at maturity. If, for example, this

information is not good quality (the variances of log ω̃τ+1 are nearly equal

at time 0 and time 1), the bias will be positive. On average, the forward

rate will be higher than the future rate.

Let us develop these results for when resources follow a first-order au-

toregressive process:

logωt = g + ρ logωt−1 + εt,

where g is a real number determining the long-term level of resources, ρ falls

in the interval ]−1,+1[, and the εt-s are independent normal variables with

mean zero and variance σ2.

A simple calculation yields

E0(logωt) = g
1 − ρt

1 − ρ
+ ρt log(ω0) and

var0(logωt) = σ2 1 − ρt+2

1 − ρ2
.

5To be rigorous, we will work with log(1 + r), and not r. We obtain analogous results
when we directly study the rates.
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If resources are independent and identically distributed, ρ = 0, and

log[1 + f1(τ)] − E0 {log[1 + r1(τ)]} =
γ2

2τ
σ2.

The forward rate is consistently above the expectation of the rate that

will materialize, and this bias declines with the maturity. For non-nil ρ:

log[1 + f1(τ)] − E0 {log[1 + r1(τ)]} =
γ2

2τ

σ2

1 − ρ2
(1 − ρ3 − ρτ+2 + ρτ+3).

Changes to the shape of the spot curve are not so simple any more. For

the usual, positive, values of ρ, the increase in rates for maturities that are

near is less than for more remote ones. The expected future spot curve has

a steeper slope than the current spot curve.

3.3 The dynamics of securities prices

As previously, it is convenient to begin by computing the prices of Arrow-

Debreu assets:

q(eτ ) =
δτπ(eτ )u

′[ω(eτ )]

u′[ω(e0)]
,

since we can calculate the price of any other security with a finite lifespan

from the state prices:

p0 =

T
∑

t=1

∑

et∈Et

q(et)d(et).

This equality is often written in different ways, using the risk-adjusted

probability or the stochastic discount factor, or by incorporating yields.

Let us begin with the first formulation. By definition, the sum of the

state prices for time τ is equal to the price of a zero coupon for the same

date:
∑

eτ

q(eτ ) = qτ .

Dividing the state prices by the price of the zero coupon, we obtain a prob-
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ability. More precisely, we can write

q(eτ ) =
δτE0[u

′(ω̃τ )]

u′[ω(e0)])

π(eτ )u
′[ω(eτ )]

E0[u′(ω̃τ )]
=

1

[1 + r(τ)]τ
π∗(eτ )

where:

π∗(eτ ) =
π(eτ )u

′[ω(eτ )]

E0[u′(ω̃τ )]
.

By construction, π∗ is, in fact, a measure or probability. It is equal to

the objective probability if expectations on resources are certain or if the

individual is risk neutral. The price of an Arrow-Debreu asset as a function

of interest rates has exactly the same expression as in the previous section

when the objective probability is replaced by the risk-adjusted probability.

It directly follows that:

p0 =
T
∑

t=1

1

[1 + r(t)]t

[

∑

et∈Et

π∗(et)d(et)

]

.

or:

The value of a risky asset is equal to the discounted sum, using the term

structure of interest rates, of the mathematical expectation of the dividends

it will yield, computed with the risk-adjusted probability.

These equations can also be written in terms of yields. Let Rk(et, et+1)

represent the gross yield of asset k at time t in state et. If the state at t+ 1

is et+1, then

Rk(et, et+1) =
pk(et+1) + d(et+1)

p(et)
.

The fundamental price-setting relationship is thus

1 = E

[

δ
u′(ω̃t+1)

u′(ωt)
R̃k

∣

∣

∣

∣

et

]

. (8.9){equity}

Let δ̃t+1 be the stochastic discount factor 6 defined by

6This formulation is often used in econometric tests, where the “true,” historical, prob-
ability is preferred.



237

δ̃t+1 = δ
u′(ω̃t+1)

u′(ωt)
.

According to (8.9), if consumption were risk-free, all securities should

have the same expected yield, equal to 1/E(δ̃), regardless of their variance.

Thus, there should not be a risk premium. However, consumption varies

over time—and these variations cannot be forecast perfectly.

It is within this variation, and in the correlation between movements in

consumption and asset yields, that the risk premium arises. To see this, let

us rewrite (8.9)

1 = Et(δ̃t+1)Et(R̃k) + covt(δ̃t+1, R̃k).

Applying the formula to the risk-free asset (indexed 0) and the stocks

(security 1), and eliminating element by element, we find:

Et(R̃1) −R0 = −covt(δ̃t+1, R̃1)

Et(δ̃t+1)
.

It is the differences between the covariances of the yields and the sto-

chastic discount rate that underlies the expected yields in our model. The

correlation is essential: The expected yield of a security whose yield is un-

correlated with forecasted consumption, sometimes called a zero-β, is always

equal to 1/E(δ̃).

Example 2

Let us illustrate with the isoelastic utility function:

u(c) =
c1−γ

1 − γ
, γ ≥ 0.
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Assume that all variables are lognormal. Taking the log of (8.9), we obtain:7

0 = log δ + E(logRk) − γE

[

log

(

c̃t+1

ct

)]

+
1

2
var

[

log R̃k − γ log

(

c̃t+1

ct

)]

,

We can rewrite this letting σk represent the standard error of the log of

security k’s yield, σc the standard error of the growth rate of consumption,

and σkc, the covariance of the log of k’s yield with the log of the growth rate

of consumption:

0 = log δ +E(logRk)− γE

[

log

(

c̃t+1

ct

)]

+
1

2

(

σ2
k + γ2σ2

c − 2γσkc
)

. (8.10){prime}

Applying the formula to the risk-free asset (indexed 0) and the stock (secu-

rity 1), and eliminating element by element, we find:

E(logR1) − logR0 +
1

2
σ2

1 = γσ1c. (8.11){equity1}

which yields, as the risk premium:

E(R1) −R0 = R0 exp(γσ1c).

4 Empirical Verification

It is reasonable to seek to test the foregoing equations. We know the real

yields of bonds and shares over long periods. For example, the log of the

annual yield of the Standard and Poor’s 500 index from 1889 to 1994 shows

a mean of 6.0 per cent, and a standard error of 16.7 per cent. The same

calculation applied to six-month commercial debt obligations—the best ap-

proximation to the risk-free rate available for long periods—reveals a mean

7We are again using the fact that, if X is lognormal:

logE(X) = E(logX) +
1

2
var(logX).
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of 1.8 per cent. Is the 4.2 per cent average premium on shares justified by the

risks that they impose on stockholders. If we use the representative agent

approach, the risk premium depends on the shape of the utility function and

the consumption process.

4.1 Isoelastic utilities

The first empirical studies were conducted by Mehra and Prescott on U.S.

data. Their results, which were subsequently confirmed, led to what is

known as the equity premium puzzle. They assumed an isoelastic utility

function as in the previous examples, and sought to verify whether (8.10)

and (8.11) are compatible with the orders of magnitude suggested by the

statistics. We have already described the yields of stocks and bonds. It

remains to specify the evolution of consumption. In practice, we consider the

purchases of nondurables and services. 8 For the United States, the mean

of the log of the ratio ct+1/ct over the period 1889–1994 was 1.7 per cent

and the standard error was 3.3 per cent. We can use this historical data,

if we assume that intertemporal variability throughout the past century

equaled the conditional variance during the period (bear in mind that we

are really only looking at orders of magnitude: more precise calculations have

revealed that the phenomenon persists when the evolution of the variance

over time is accounted for). The first element of (8.11), evaluated with the

aforementioned data, yields a little over 6 per cent (the risk-free rate, 1.8

per cent, is barely greater than the mean of the variance of the securities’

yields, (0.167)2/2). Thus, the key term is the covariance between the rate

of growth of consumption and the yield on the stock exchange. A high

correlation (agents consume more when the market is high) indicates that

the stock exchange is poorly suited for providing investors with insurance

to smooth shocks to their consumption profile: Investors demand a risk

premium that increases with the correlation. Indeed, over the period studies,

8Purchases of durables fluctuate considerably with the business cycle, styles, and ex-
pected price rises. In all likelihood, the services which these goods provide to consumers,
which enter into the utility function but are not directly observable by statisticians, evolve
much more smoothly than the purchases.



240 Chapitre 8: price dynamics

the correlation is high (0.49), resulting in a covariance of 0.27 per cent.

Nonetheless, it remains too low: Equation (8.11) assumes a coefficient γ

greater than 20.

This value is highly implausible. Experiments that deal with risky

choices tend to yield values for γ that are below 4 or 5. Given these values,

an agent would purchase high-yield securities and sell sure assets.

There is a further problem related to the risk-free interest rate. Equation

(8.10) applied to the risk-free rate allows estimation of the rate of preference

for the present when γ and the growth rate of consumption are known:

log δ = − logR0 + γE

[

log

(

ct+1

ct

)]

− γ2σ2
c

2
.

Since the mean rate of growth of consumption is approximately equal to

the risk-free rate (1.7 or 1.8 per cent), and the standard error of consumption

is 3.3 per cent (variance 0.001), we see that a reasonable value for γ, between

2 and 10, implies a psychological discount factor greater than 1. This is the

risk-free rate paradox. Given the low interest rate, our theoretical consumers

(with δ < 1) will wish to incur debt and consume more today than tomorrow.

Only if future consumption is very uncertain and/or they are highly risk

averse can the mean growth rate of their consumption be equal to the risk-

free interest rate.

4.2 Beyond the representative agent

The preceding analysis requires many ancillary assumptions: the choice of

the form of the utility function, lognormality of yields and consumption

growth, and a representative agent. It is reasonable to wonder whether

these assumptions may lie at the root of the incompatibility between the

theory and the observations, or whether the whole portfolio choice model

must be scrapped.

We will here draw on the approach in Hansen and Jagannathan. The

central idea is to retain the rationality of agents while assuming as little as

possible regarding the unobservable, in particular the marginal rate of sub-
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stitution and the stochastic discount factor. We begin with observations on

securities yields and seek to derive a range of admissible values for mathe-

matical expectations on the variance (or volatility) of the stochastic discount

factor of an investor operating on the markets for these assets.

Applying the same reasoning as above, a marginal investment in security

k that leaves the investor’s expected utility unchanged yields

u′[ω(et)] = δE
{

u′[ω(et+1)[Rk(et, et+1)|et]
}

.

We point out that this equality, which we found in the context of the rep-

resentative agent economy (where consumption is, in fact, macroeconomic

consumption) also applies to any individual market participant, provided

purchases and sales of k are not constrained (in this case aggregate values

for consumption and utility are replaced with the corresponding amounts

for individual agents).

Let us identify some forms for the stochastic discount factor that are

compatible with the statistical observation on yields. We can write Equation

(8.9) in terms of the expectation and covariance:

1 = E(Rk)E(δ̃) + cov(Rk, δ̃).

Stacking these equalities for all securities yields the following equation,

in matrix notation:

11K = E(δ̃) E(R) + cov(R, δ̃). (8.12) {margin}

From this we can derive a lower bound for var(δ̃) given a value of E(δ̃). If δ̃ is

in the L2-space of measurable random variables defined on the fundamental

space, then δ̃ can always be decomposed into its projection x′R̃ onto the

subspace generated by the securities’ yields and an orthogonal element of

that projection. We have, surely: var(δ̃) ≥ var(x′R̃). If we denote the yields’

variance-covariance matrix Γ, this inequality becomes

var(δ̃) ≥ x′Γx,



242 Chapitre 8: price dynamics

and the first-order condition (8.12) is written

11K = E(δ̃) E(R) + Γx.

Whence, taking x out of the f.o.c. and substituting it into the inequality:

var(δ̃) ≥ x′Γx = [11K − E(δ̃) E(R)]′Γ−1[11K − E(δ̃) E(R)],

or:

var(δ̃) ≥ [E(R′)Γ−1E(R)][E(δ̃)]2 − 2[11′KΓ−1E(R)]E(δ̃) + [11′KΓ−111K ].

Thus, we have identified a lower bound on the volatility of the stochastic

discount factor. When this inequality holds as a strict equality, the set of

all points 1/E(δ̃) as a function of σδ̃/E(δ̃) describes a hyperbola (just as

in the case of the mean-variance efficient portfolios we saw in Chapter 4,

Section 2.2). A stochastic discount factor is admissible if, when the values

of [σδ̃/E(δ̃), 1/E(δ̃)] have been inserted into the efficient portfolios, the rep-

resentative point yields a standard error that is greater than the minimum

and thus located to the right of the hyperbola.

The lower bound improves (i.e. becomes more binding) as the variety of

securities under consideration increases. If a single security were to represent

the entire market (security 1), the hyperbola would collapse into its two

asymptotes and the inequality reduce to

var(δ̃)

[E(δ̃)]2
≥ [E(R1) − 1/E(δ̃)]2

(σ1)2
.

If the expectation of the stochastic discount factor is equal to the recip-

rocal of the expected yield of the asset, then the volatility is unbounded.

Otherwise, there is a strictly positive lower bound to this discount factor’s

volatility or, more precisely, to the ratio of its standard error to its math-

ematical expectation, which increases with the distance between 1/E(R1)

and E(δ̃) and decreases with σ1.

When we introduce a representative set of financial assets we are again
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confronted with the problems from the previous section: With an isoelastic

utility function and data on fluctuations in consumption, Hansen and Ja-

gannathan demonstrate that the stochastic discount factor does not satisfy

the inequality given above.

5 Fundamental value and bubbles

Let us return to the case with certainty in resources. In the framework of the

current model, when expectations are rational, Equation (8.6) is often called

the fundamental value of the security. Its observed value may deviate from

the fundamental value if expectations are incorrect. However, this may also

occur when the asset’s lifespan is not finite, even if expectations are assumed

to be correct. In this case we are observing a bubble.

To illustrate this vocabulary and simultaneously examine the dynamics

of asset prices, we only need to look at the case of resources that are constant

and sure over time. Then the interest rate curve is flat and all rates, at all

times, are equal to the psychological discount rate i (see Section 2). Consider

a dividend-paying asset linked to the evolution of the state of nature et. We

can write:

p(e0) =
∞
∑

t=1

1

(1 + i)t

∑

et∈Et

π(et)d(et),

and similarly for time τ. If the state eτ materializes, the price (after the

dividend has been paid) will be

p(eτ ) =
∞
∑

t=τ+1

1

(1 + i)t−τ

∑

et∈Et

π(et|eτ )d(et).

A fundamental property of this process results from the relationship

between two successive prices, which we can see by using the identity of the

conditional probabilities for τ ≥ 0:

p(eτ ) =
1

1 + i

∑

eτ+1∈Eτ+1

π(eτ+1|eτ )[p(eτ+1) + d(eτ+1)].
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The price of the asset today equals the discounted value of the mathe-

matical expectation of its resale price tomorrow, increased by the dividends.

Indeed, this is the only property that can be directly inferred from the ra-

tionality of the agent’s behavior. This is often assimilated into the notion of

the efficiency of financial markets: Markets completely reflect all available

information. However, in our model they do not capture the fundamental

value of a security having an infinite lifespan. This is easy to see, for exam-

ple if we consider an asset that does not yield any dividends regardless of

the state of nature. This is a property of money. Its fundamental value is

equal to zero. However, the equation

p(eτ ) =
1

(1 + i)
E[p(eτ+1)|eτ ]

is solved by many series of prices. If we limit ourselves to non-stochastic

solutions, they are given by

p(τ) = (1 + i)τp(0),

for any nonnegative p(0). A priori, all these solutions are acceptable. The

null solution is the only one that, like the security and the resources, is

stationary. Non-stationary solutions are called bubbles. The price of the

security today is only justified by the fact that it is expected to increase at

the rate i tomorrow, and so on into the future. This price rises exponentially

until expectations collapse and. . . the bubble bursts!
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Exercises

Exercise 18: Recursive preferences

1. Consider preferences represented by

1

1 − γ

[

c1−γ1 + δE
(

c1−γ2

)]

We assume that there is no randomness and are interested in the choice

of a consumer at two dates given the budget constraint

p1c1 + p2c2 = p1ω1 + p2ω2.
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(we have p2/p1 = 1/(1 + r)). Show that the ratio of consumption at

the two times, c2/c1, only depends on the price ratio p2/p1.

2. We call the relative variation in the consumption ratio caused by a

change in the price ratio the intertemporal elasticity of substitution

e = −∂(c2/c1)

c2/c1

∂(p2/p1)

p2/p1
.

In other words, if the price ratio increases by one per cent, then con-

sumption will fall by e per cent. Compute this elasticity. Compare it

to the risk aversion.

3. Now assume that preferences are given by

1

1 − γ

[

c1−φ1 + δE(c1−γ2 )
1−φ
1−γ

]

Answer the same questions again. Draw conclusions.

Exercise 19: Growth of the spot curve

We seek a very simple model to study the growth of the spot curve. We

are particularly interested in the impact of expected future rates and the

supply of securities.

Consider two securities:

� a zero coupon with a “close” maturity of 1 and costing 1
1+r today, at

t = 0,

� a zero coupon with a “remote” maturity of 2 and costing p0 today. Let

p̃a1 represent the expected value of its price at time 1. This expectation

is assumed identical for all investors.

There are n investors at time t = 0. Investor i, i = 1, . . . n, has wealth

ωi and preferences over wealth at time 1. They are represented by a mean-
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variance function. i seeks to maximize

E(c̃) − ai
2
var(c̃)

subject to the budget constraint.

1. Compute the quantity of zero coupons demanded by investor i.

2. The government supplies these zero coupons: The zero coupon matur-

ing at 2 is fixed at M, while the one maturing at 1 is adjusted to make

the short-term rate equal to r.

a) Derive the equilibrium price p0 as a function of the anticipated

variance of the expectation p̃a1 and the supply of securities M .

b) Comment.

3. a) Express the relationship linking p0 to the “remote” rate R with

maturity 2, and that linking p̃a1 to the “close” rate r̃a1 expected at

time 1. Derive the equilibrium relationship between the rates.

b) Using the fact that the rates are small relative to 1, linearize the

foregoing expression. Under what conditions will the “remote” rate be

greater than the “close” rate? Can the spot curve be increasing?


