
Chapter 2

Arbitrage

Financial futures, and derivatives in general, are built on pre-existing under-

lying securities. By simultaneously conducting operations on several mar-

kets, specialized intermediaries intervene whenever an opportunity for arbi-

trage arises that ensures a profit in all contingencies. With the increasing

sophistication of derivatives, the ancient art of arbitrage can become very

complicated today. These interventions ensure some price consistency across

markets. In particular, they induce relationships between the prices of se-

curities and derivatives that lead to the procedures of valuation by arbitrage

that are systematically used by financial institutions.

The goal of this chapter is to formalize and analyze the notion of ar-

bitrage. The underlying assumptions and the limits of the arbitrage-based

valuation procedures that are used by financial institutions are made ex-

plicit.

Uncertainty is described in terms of states of nature that determine fu-

ture payoffs. An opportunity for arbitrage consists of transactions in which

no money can be lost and some can be earned in certain states of nature.

When there are no frictions, such opportunities should not last, which mo-

tivates the study of markets without arbitrage opportunities. The absence

of arbitrage opportunities dictates some relationships between the prices of

securities and their payoffs that are easily expressed in terms of state prices.

These relationships also allow the valuation of some securities on the basis

31



32 Chapter 2: arbitrage

of the prices of other securities. This procedure however is only valid under

certain conditions. In particular, a natural and key distinction is made be-

tween complete markets, for which the valuation procedure is always valid,

and markets which are incomplete.

The first section studies a static framework. In the second section, the

analysis is extended to the dynamic framework that underlies the most com-

monly used valuation methods, at the cost of strong assumptions on expec-

tations. We emphasize that arbitrage relationships only allow to get the

prices of some derivatives from others, but never determine the prices of the

whole set of securities: such a determination typically requires a complete

economic model, similar to those of Chapters 5 and 6.

1 Static arbitrage

1.1 States of nature

Consider an economy at time 0, with a future that may be uncertain. In this

section, the future is reduced to a single point in time, t = 1. Uncertainty

is modeled by a set of states of nature, which represents all possibilities at

time 1. A state of nature e provides a description of the economic envi-

ronment: It includes all relevant information, such as agents’ tastes, their

resources, firms’ profits, dividends paid by each asset, etc. We assume here

that the number of states is finite, with E denoting the set of states and E

representing the number of states in E .

The appropriate set of states depends on the problem under investiga-

tion and may be more or less complex. The only constraint is that the

characteristics of the economy can be expressed as a deterministic function

of the state. For example, to price a European call option, the state may

be summarized by the price of the underlying security, S, (assumed to take

a finite number of values), because the payoff accruing to the holder of this

option is a function of that price, max(S −K, 0).

The set of states of nature is analogous to the fundamental space of

probability theory. However, notice that throughout this chapter we never
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say that some states are more or less probable than others. No probability

distribution is specified over the state space. Indeed, an opportunity for

arbitrage arises when operations can be conducted that yield profits in some

states of nature without generating losses in any other state. The existence,

or absence, of any such opportunity depends exclusively on the set of possible

states, and not on any probability distribution on these states.

1.2 Securities

Consider a market, opened at time 0, on which are traded k = 1, . . . ,K

securities. A unit of security k is defined by a payoff (coupons, dividends,

resale price at some future date) in dollars, which the owner receives in

the various states of nature: ak(e) represents the payoff contingent on the

occurrence of state e, e in E .

The matrix of the securities payoffs is denoted ã, its elements are ak(e)

and its dimension is (K × E). The price today of security k is designated

pk, and the vector of the prices p is a column vector in IRK .

The set of all states, the contingent payoffs, and the prices of the se-

curities are the data characterizing the markets. They are summarized by

(E , ã, p).

A portfolio specifies the (positive) holdings, or long positions, as well as

the debts (negative), or short positions in the various securities. It is repre-

sented by a column vector, z = (zk)k=1,...,K , the k-th element of which, zk,

indicates the number of units of security k in the portfolio when it is positive.

If it is negative, the portfolio is short on security k which commits its owner

to paying |zk|ak(e) at time t = 1 in the event that state e materializes.

The value of the portfolio is equal to:

K
∑

k=1

pkzk = p′z.
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The portfolio yields in state e the payoff, also called revenue or income:

cz(e) =
K
∑

k=1

ak(e)zk.

The vector of contingent payoffs associated with z, a row vector in IRE , is

simply written

c̃z = z′ã.

We shall use this convention throughout the book: securities prices, port-

folios are represented by column vectors, contingent payoffs by row vectors.

This representation encompasses financial instruments that obligate their

owners to pay out in some states of nature, such as bets on elections. For-

mally, some of the payoffs ak(e) may be negative.

Consider for example a forward market on a commodity, say wheat,

opened at time 0 and maturing at time 1. Recall that at maturity the

payoff of the forward contract is the difference between the price of wheat

on the spot market, and the forward price, f , determined at time 0.

Let w(e) denote the spot price of wheat at time 1 where e is the state

that materializes. If we abstract from guarantee deposits, no payments are

made when the contract is signed. At maturity the buyer of a contract gets

the (positive or negative) payoff w(e) − f, if e materializes. Thus, in terms

of our conventions, a forward contract corresponds to a financial instrument

k, the price of which today is nil, pk = 0, and which yields the contingent

payoff ak(e) = w(e) − f, tomorrow. Typically, there are states in which the

spot price exceeds the futures price, and vice versa.

Example 1

There are two states of nature and two securities. a risk-free security with

rate r, and a stock whose price1 S at t = 0 can move to (1 + h)S in one

1This model will be used and developed to price an option on the stock. Thus we use
the standard notation of option models: S denotes the price of the underlying security.
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state and (1 + b)S in the other. The model is written:

E = {h, b}, p =

[

1

S

]

ã =

[

1 + r 1 + r

(1 + h)S (1 + b)S

]

.

The payoff of portfolio z is:

[z1(1 + r) + z2(1 + h)S, z1(1 + r) + z2(1 + b)S] .

Figure 1 represents the case of a stock that increases by 20% or decreases

by 10%.

100

120

90

t= 0 t= 1

Figure 3: Two-state model

1.3 Absence of arbitrage opportunities and valuation

Pure arbitrage theory is set in a perfectly competitive market for financial

assets. At a given market price p, a stakeholder can buy or sell any quantity

of assets. Moreover, there are no limits on allowable short positions. Thus,
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the theory does not account for possible transaction costs, prohibitions on

short sales, or limitations on buying or selling.2

An opportunity for arbitrage is a possibility to realize non-negative prof-

its in all states of nature, today or in the future, with a strictly positive

profit in at least one state.3 In the absence of constraints on transactions,

this leads to the following definition:

Definition 1 Arbitrage opportunity

An opportunity for arbitrage in markets (E , ã, p) is a portfolio z such that:

K
∑

1

zkak(e) ≥ 0 ∀ e and z′p ≤ 0,

(or, equivalently: z′ã ≥ 0 and z′p ≤ 0)

with at least one strict inequality among these E + 1 inequalities.4

If there are no limits on the quantities exchanged, an opportunity for

arbitrage cannot last, since operators will have an interest in exploiting it

infinitely. This leads us to consider markets in which there are no opportu-

nities for arbitrage.

A direct consequence of the absence of opportunities for arbitrage is that

the value of a portfolio depends only on the payoff it generates. Indeed,

assume that two portfolios, z1 and z2, generate the same payoffs but do not

have the same value. Then, for example, if:

p′z1 < p′z2

portfolio z1 − z2 constitutes an opportunity for arbitrage.

2In practice, purchase and sales prices differ to varying degrees, the difference being a
bid-ask spread. Exercise 4 deals with a simple example of arbitrage relationships in this
circumstance.

3Two slightly different notions of arbitrage opportunity may be considered, depending
on whether the profit is immediate or deferred. The relationships between these notions
are examined in Exercise 6 in Chapter 3.

4We adopt the following conventions for vector notation: z ≥ 0 means that each element
of z is positive or nil, z > 0 is equivalent to z ≥ 0, except that at least one component is
strictly positive. Finally, z >> 0 indicates that all elements are strictly positive.
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Valuation by arbitrage follows from this remark: A security j with rev-

enue ãj is “replicated” by a portfolio z comprising other securities if the

payoff yielded by z is identical to that from j in all states:

aj(e) =
∑

k 6=j

zkak(e) ∀ e.

In this case the security is said to be redundant. The price of security j must

be equal to the value of the portfolio that replicates it, so as to eliminate any

opportunity for arbitrage. We thus obtain a relationship between the price

of the replicated security and those of the other securities in the replicating

portfolio.

Example 2

Price of a call option in a two-state model

Let us return to the first example with two states of nature, one risk-free

investment, one stock and a call option on the stock at time 1 with strike

price K. The option can be replicated with the stock and the risk-free asset.

Consider the more interesting case in which the option is only exercised if

the stock price is high, so that

(1 + h)S > K > (1 + b)S.

The income yielded by the option is then:

{

(1 + h)S −K in state h,

0 in state b.

For a portfolio z consisting of the risk-free asset and the stock to replicate

the option, it must satisfy:

z1(1 + r) + z2(1 + h)S = (1 + h)S −K,

z1(1 + r) + z2(1 + b)S = 0.
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Since this system of equations has the solution:

z1 = −(1 + b)[(1 + h)S −K]

(1 + r)(h− b)
, z2 =

(1 + h)S −K

(h− b)S
,

the price of the option, C, must be equal to z1 + z2S, so that:

C =
r − b

(1 + r)(h− b)
[S(1 + h) −K] . (2.1)

Notice that this reasoning is valid on condition that the underlying security

is available and can be traded without limitation, without transactions nor

storage costs. If we are dealing with options on wheat prices, replication

involves storage costs and is asymmetrical in terms of buying and selling, as

we saw in the previous chapter.

Valuation using state prices

There exists a useful tool for pricing all portfolio payoffs without explic-

itly referring to the composition of the portfolio. These are state prices,

which are frequently used—especially in the context of dynamic valuation.

State prices play a role comparable to the discount factors used in intertem-

poral analysis without uncertainty. Just as discount factors allow compar-

ison of revenues at different times, state prices allow the comparison of

revenues between different states of nature. The state price associated with

a state e has a direct interpretation when a specific security, known as an

Arrow-Debreu security or a contingent security, is traded. An Arrow-Debreu

security associated with a state of nature e yields one dollar if e occurs, and

nothing otherwise. If such a security exists, its price is the state price associ-

ated with e: It is the price today of one dollar tomorrow in state e. Thus, it

is a contingent discount factor. Even if there are no Arrow-Debreu securities,

state prices can be defined whenever there are no arbitrage opportunities.

Theorem 2.1 State Prices

There are no arbitrage opportunities on markets (E , ã, p) if, and only if, there
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exists a vector q = [q(e)]e∈E of strictly positive elements, such that

pk =
∑

e

q(e)ak(e) ∀k. (2.2)

Vector q is called a vector of state prices.

Corollary 1 Discounting with state prices

Let q be a vector of state prices and z a portfolio. Then:

p′z =
∑

e

q(e)cz(e). (2.3)

According to this corollary,

The price today of a portfolio is equal to the sum of the portfolio incomes

discounted by the state prices.

State prices allow the comparison of revenues across various states of

nature. They make it possible to find the value today of any replicable

income. A contingent income vector (c(e)) is said to be5 replicable or spanned

if there is a portfolio z that generates exactly the same payoff in each state

e: c(e) = cz(e). Equivalently the vector is a linear combination of revenues

generated by existing assets. Expression (2.3) can be restated as saying :

The price payable today to obtain a replicable income vector tomorrow is

equal to the sum of these incomes discounted by the state prices.

The qualifier replicable is very important here. The terminology “state

prices” may be confusing, and sometimes leads to a misguided application

of (2.3) for computing the “value” of an income vector (c(e)) that is not

replicable: This point will be clarified when we distinguish between complete

and incomplete markets.

Corollary 2 State prices and Arrow-Debreu prices

5Note the terminology is identical to that used for a redundant asset: the payoff of a
redundant asset is spanned by a portfolio composed of other assets.
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Let q be a vector of state prices. If there exists a portfolio yielding 1

dollar in state e and 0 dollars otherwise, its price is equal to q(e).

Corollary 2 assumes that the Arrow-Debreu security contingent on e can

be replicated by a portfolio. In this case, q(e) is unique, of course, and can

be interpreted as the price to be paid today to obtain 1 dollar in state e.

Otherwise, this interpretation is false and, furthermore q(e) is not uniquely

determined. As an example of such a situation, let there be three states of

nature and two securities, with:

ã =

[

1 1 0

1 1 −1

]

.

The price of the Arrow-Debreu security associated with state 1 cannot be

determined by arbitrage. There are an infinity of state prices, q(1), satisfying

the property in Theorem 1.

Proof of Theorem 1

The demonstration relies on a strong version of the Farkas lemma—see

Gale, (1960, p.49) for example:

Lemma: Let A be a real K × L matrix. Then only one of the

following properties obtains:

1. There exists one solution x >> 0 to the equation Ax = 0.

2. There is one solution, z, in IRK to the inequality z′A > 0.

Let A = (ã,−p) be a K×(E+1) matrix created by horizontally stacking

ã and −p. If (2) from the lemma obtains, there exists a portfolio z, such that

z′ã ≥ 0 and p′z ≤ 0 with some strict inequality. This contradicts the absence

of opportunities for arbitrage. Thus, (1) obtains, and the last element of x

can be set equal to 1 without loss of generality. Denoting by q the vector of

the E first elements, this gives:

ãq − p = 0,

which proves (2.2). The converse is obvious.
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1.4 Complete markets

The notion of complete markets is useful for a thorough understanding of

the fundamental limitations of valuation by arbitrage. Markets are complete

when all revenue configurations are replicable through some portfolio.

Definition 2 Complete markets

Given (E , ã), markets are complete if, for all c̃ = [c(e)]e∈E , there exists a

portfolio z such that c̃ = c̃z i.e.:

c(e) =
K
∑

1

zkãk(e) ∀e.

For markets to be complete, there must be at least as many securities

as there are states of nature. It there is one security contingent on each

state of nature, markets are clearly complete: The income configuration c̃

is obtained by buying c(e) units of each security contingent on state e. The

cost of c̃ is thus simply equal to
∑

e q(e)c(e). Indeed, if markets are com-

plete, everything transpires as if such a full system of contingent securities

existed, since there exists a portfolio yielding 1 dollar in state e and 0 oth-

erwise. If we denote the value of this portfolio by q(e), we are back to the

previous case. Rather than working with the original securities we can, by a

linear transformation, revert to a complete system of contingent securities.

The following property, the demonstration of which is left to the reader,

characterizes complete markets:

Theorem 2.2 Given (E , ã, p):

(1) Markets are complete if and only if the rank of ã is E.

(2) Complete markets without opportunities for arbitrage are associated

with a unique vector of state prices q, and all future income configurations

c̃ have a present value given by the discounting formula:

∑

e

q(e)c(e).
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In practice, eliminating possibly redundant securities, markets are com-

plete if there are exactly as many linearly independent securities as there

are states of nature. In that case, the square matrix ã has an inverse, the

vector of state prices, if any, is given by q = ã−1p. Thus, the condition of

absence of opportunities for arbitrage is simply written:

q = ã−1p >> 0.

All financial instruments whose payoffs can be written as a function defined

on that state space can thus be valued with state prices.

Example 3

Let us return to Example 2, in which there are two states of nature h or b,

that determine the stock price increase (b < h). Markets are complete and

the state prices q(h) and q(b), if any, satisfy:

1 = q(h)(1 + r) + q(b)(1 + r)

S = q(h)S(1 + h) + q(b)S(1 + b),

whence:

q(h) =
r − b

(1 + r)(h− b)
, q(b) =

h− r

(1 + r)(h− b)
.

The condition that state prices be positive is thus b < r < h (which we

could easily have established by reasoning directly).

The price C of a call option of strike price K is simply:

C = q(h) [S(1 + h) −K] =
r − b

(1 + r)(h− b)
[S(1 + h) −K] .

Here, again, we find Equation (2.1), as in Example 2.
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1.5 Risk-adjusted probability

When there exists a risk-free security, the pricing formula in terms of state

prices is interpreted as a mathematical expectation with respect to a prob-

ability measure calculated by normalizing the state prices. Such a distribu-

tion is called risk-adjusted. This formulation is very popular in finance, in

particular in dynamic settings (see the end of this chapter).

By definition, a risk-free security yields the same payoff in all possible

states at time 1: 1 + r dollars for 1 dollar invested at time 0, where r is

the risk-free interest rate. When q is a vector of state prices, Equation (2.2)

applied to the risk-free security yields:

1 =
∑

e

q(e)(1 + r).

Since state prices are non-negative, we can define a probability distribution

π̄ on E by:

π̄(e) = q(e)(1 + r).

Equation 2.2 then becomes:

pk =
1

1 + r

∑

e

π̄(e)ak(e).

Anticipating on further chapters, the revenue per dollar invested on se-

curity k, ãk/pk, is called the (gross) return to security k. Note that the

return to the risk free security is 1 + r. This immediately yields:

Corollary 3 Risk-adjusted probability

If there exists a risk-free security, there are no arbitrage opportunities

if and only if there exists a probability distribution π̄ on E, with positive

probability on each state, such that the price of any security is equal to its

discounted expected payoff:

pk =
1

1 + r

∑

e

π̄(e)ak(e) ∀ k,
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where r is the risk-free rate.

Under this probability, the expected returns to securities are all equal:

∑

e

π̄(e)
ak(e)

pk
= 1 + r ∀ k.

By construction, the risk-adjusted probability is simply a system of nor-

malized prices. The terminology may be confusing. There is no immedi-

ate relationship with the probabilities of occurrence of the various states of

nature—these have not yet been defined!

2 Intertemporal arbitrage

The preceding results extend directly to an intertemporal framework with

several periods. First, we specify the time structure.

2.1 Time structure

There are several periods with a final date T : t = 0, .., T . At time T,

all securities are sold at given exogenous prices. Transactions may occur,

dividends be distributed, and information become available at discrete times

intervening between 0 and T . To formalize this situation, we let there be a

set of states of nature on each date from 1 to T .

As previously, a state of nature at a time t provides a full description of

the economic environment at time t, i.e. all known factors that may impact

on securities prices and their future dividends at time t. Past events are

assumed not to be forgotten. In other words, knowledge of the state at time

t includes knowledge of the states through which the economy passed since

time 0. In practice, et is written as et = (et−1, εt), where εt stands for the

possible shocks occuring at date t. This structure is represented by a tree

(using graph terminology). Figure 4 represents a model, called binomial, in

which a state is followed by two possible states over four periods. We write

et < et+1 if state et precedes et+1, and we say that et+1 is a successor to
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t = 0 t = 1 t = 2

e1 = u

e1 = d

e2 = uu

e2 = ud

e2 = du

e2 = dd

e3 = uuu

e3 = uud
e3 = udu

e3 = udd
e3 = duu

e3 = dud
e3 = ddu

e3 = ddd

t = 3

e0

Figure 4: A binomial tree structure
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state et. A state can only have one predecessor, but typically has several

successors. Seen from date 0, the set of all possible states at time T can

be very large. For example, if each state has two successors, there will be

2T final states—as time elapses information becomes more focused, and the

number of possible future final states is divided by two at each date. More

generally, the set of all paths emanating from a state et until T provides the

full range of possible developments. We denote by Et the set of all possible

states at time t and E = ∪Et the set of all states. This latter set plays an

analogous role to the set of states E (same notation) in the two-period model

from the previous section.

2.2 Instantaneous arbitrage

First, consider only portfolios constituted at time 0 and held until time T

with no modification during the intervening dates.

The payoffs procured from the securities are described by extending the

conventions of the two-period model. At all dates t, before the end of times,

t < T , the income, in terms of the numeraire, paid to the owner of one

unit of security k is dk(et) in state et. For example, for a bond, dk(et) is

equal to the coupon paid in state et, possibly increased by reimbursement

of the capital, if it matures before T . To account for assets representing

claims that extend beyond time T, the income served at the last date is

denoted ak(eT ): it includes the (exogenously given) resale price at the last

date. Thus, in the case of a stock, dk(et) represents the dividend paid out

to stockholders in any state et prior to liquidation at time T , and ak(eT )

is the sum of the dividend and the resale price in any state at time T . We

sometimes designate the payoffs a and d with the generic term ‘dividend’,

even though the terminology is not appropriate for a, and only valid for d

in the case of stocks (for bonds, coupons would be the relevant terminology,

at least before maturity).

By an immediate application of the absence of arbitrage opportunities,

and in particular of (2.2) from Theorem 1, to all possible states at all times
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E , there exist strictly positive state prices, q = [q(et)] , such that

pk(e0) =
∑

et,t=1,...,T−1

q(et)dk(et) +
∑

eT

q(eT )ak(eT ). (2.4)

The intertemporal structure allows futures markets open at time 0 to be

accommodated. For example, consider a futures market for time t for a fixed-

income bond that yields a sure income stream, i.e. that is only a function

of time, denoted d(t). This bond can be bought or sold for delivery at time

t, at a price f agreed upon today and payable at t. Purchase of a bond on

the futures market for t does not cost anything before that date and yields

a revenue of −f , regardless of the states at time t and d(τ) for all states at

the times τ subsequent to t. Thus, we have:

f
∑

et∈Et

q(et) =
∑

τ>t

[

∑

eτ∈Eτ

q(eτ )

]

d(τ).

The absence of opportunities for arbitrage provides a condition for con-

sistency of futures prices with spot prices. Moreover, introducing futures

markets may contribute to making markets complete. However, the poten-

tial is limited since, as in the example above, futures markets are generally

unconditional. Transactions are assumed to occur at time t, whatever state

of nature et prevails at that time. Nonetheless, we have seen in Chapter 1

how, in the case of certainty, futures transactions are replicable by cash-and-

carry type strategies, i.e. by interventions on spot markets carried out today

and at the term. This type of argument can be generalized to the case of

uncertainty: the existence of spot markets in the future, provided that the

prices to be established on them are fully anticipated, allow markets to be

dynamically completed.
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2.3 Dynamic arbitrage

Assume that the only markets in place are spot markets for securities, which

are open at all times.6

Thus, the data are:

– a succession of states of nature described by a tree,

– securities k = 1, . . . ,K,

– the sequence of dividends per unit of security k, dk(et) in state

et, at all intermediate dates, and a final payoff ak(eT ) for the last

date T ,

– the sequence of security k spot prices pk(et). By convention,

pk(et) is the spot price of the security purchased in the state

et after distribution of the dividend dk(et), for all intermediate

dates. By convention, as in the static model, the payoff ak(eT )

at the final date includes the resale price of the security, so that

pk(eT ) can be set to zero.

This information is assumed known by the participants. This means in

particular that the spot prices of the securities, pk(et), are perfectly foreseen,

or, equivalently, that the prices of the securities are part of the definition of

et.

The existence of spot markets for securities that are open in all states of

nature, and the assumption of perfect foresight on prices on these markets

provide the framework for valuation by dynamic arbitrage. It is the most

commonly used, both for discrete time (as here) and for continuous time.

A portfolio constituted today is not necessarily maintained unaltered until

time T . In particular, a stochastic revenue stream may be replicated with

a program of acquisitions and sales during the intervening periods on the

markets that will open, called a dynamic portfolio strategy.

6The introduction of futures markets in parallel to these spot markets would seriously
complicate the notation and, to a lesser extent, the analysis. In the particular case of dy-
namically complete markets, introduced further on, all futures transactions on an existing
underlying security can be replicated by a sequence of cash-and-carry type operations on
the spot market. Futures markets are thus redundant.
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Definition 3 A portfolio strategy z defines the portfolio, z(et) = [zk(et)] ,

held in each state et after the transactions. Everything is liquidated at T,

z(eT ) = 0 for all final states eT .

The value of the strategy z at time 0 is that of the initial portfolio:

p(e0)
′z(e0) =

K
∑

k=1

zk(e0)pk(e0),

and the income generated in a state et at date t, t = 1, . . . , T − 1, is given

by:

cz(et) =

K
∑

k=1

[zk(et−1) − zk(et)] pk(et) +

K
∑

k=1

zk(et−1)dk(et),

and at date T :

cz(eT ) =
K
∑

k=1

[zk(eT−1)] ak(eT )

where et−1 is the unique predecessor of et,

Example 4

Some strategies, called elementary, are very simple. They involve only in-

tervening if a given state et occurs, and liquidating the purchased portfolio

on the following date. If the portfolio consists of one unit of security k, the

strategy viewed from time 0 consists of two opposing operations on the spot

market for security k: At time t, if the state is et, one unit of the security is

bought, and it is then resold on the following date whatever happens.

More generally, an elementary strategy is characterized by a vector θ(et)

in IRK which describes the composition of the portfolio, and is written:

z(et) = θ(et), z(es) = 0 for es 6= et.

The income generated by this strategy is:7

7The formula is valid for t < T − 1. When t = T − 1, the income generated by the
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c(et) = −
K
∑

k=1

pk(et)θk(et), (2.5)

c(et+1) =
K
∑

k=1

[pk(et+1) + dk(et+1)]θk(et) if et+1 > et (2.6)

c(es) = 0 for any other state. (2.7)

An arbitrage opportunity is a strategy with an initial value that is neg-

ative or nil and that generates non-negative revenues at all times and in all

future states, with at least one strict inequality.

Definition 4 An opportunity for arbitrage is a strategy z such that

cz(et) ≥ 0 for all et, all t > 0, and p(e0)
′z(e0) ≤ 0, with at least one strict

inequality.

Intuitively, a short-term arbitrage opportunity in state et, between t

and t+ 1, should translate into an intertemporal opportunity for arbitrage.

In addition, according to the principles of static arbitrage, the absence of

opportunities for arbitrage in the short term implies the existence of state

prices for the direct successors of et, et+1. We shall demonstrate that this is

sufficient for constructing state prices as of time 0. A necessary and sufficient

condition for the absence of opportunities for intertemporal arbitrage is the

absence of short term arbitrage opportunities in all states of nature.

Theorem 2.3

Assume an economy in which the only markets are spot markets and in

which prices are perfectly anticipated conditionally on the states of nature.

1. The three following properties are equivalent:

strategy at date T is

c(eT ) =
KX

k=1

ak(eT )θk(eT−1).
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(a) There are no opportunities for arbitrage.

(b) There exists a vector q = [q(et), et ∈ E ] of strictly positive ele-

ments such that, for any strategy z:

p(e0)
′z(e0) =

∑

et,t=1,...,T

q(et)cz(et). (2.8)

q is called the vector of state prices discounted at time 0.

(c) For any state et, t ≥ 0, there exist a vector [q(et+1|et), et+1 ∈ E ],

of strictly positive prices for all direct successors of et, such that,

for all k:

pk(et) =
∑

et+1|et+1>et

q(et+1|et)[pk(et+1) + dk(et+1)],

t = 0, ..., T − 2

pk(eT−1) =
∑

eT |eT>eT−1

q(eT |eT−1)ak(eT ).

(2.9)

The vector [q(et+1|et)] gives prices for the successor states of et

discounted in et.

2. Given discounted state prices [q(et+1|et)] for all et, the prices defined

by:

q(et+1) = q(e1|e0) . . . q(et+1|et), (2.10)

where (e0, e1, . . . , et+1) is the unique path from e0 to et+1, are state

prices.

Conversely, given state prices [q(et)] , the formula

q(et+1|et) =
q(et+1)

q(et)

defines prices for the successor states of et for all et.

The interpretation of (2.8) is the same as in a two-period model :
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the value of a portfolio strategy in e0 is equal to the discounted value of the

revenues it generates.

Similarly, the discounted state prices at some date knowing the state

et link the price of a security with the income it generates at time t + 1.

According to (2.9),

the price of security k in state et is equal to the discounted value, measured

with the discounted state prices in et, of the income (dividends + resale

price) it generates at time t+ 1.

Proof of Theorem 3

1) (a) ⇒ (c) This results from applying Theorem 1 to the elementary

strategies of state et.

(c) ⇒ (b) Let us define the prices [q(et)] by (2.10). We multiply (2.9) by

q(et)θk(et) and sum over k. This yields:

q(et)
[

p(et)
′θ(et)

]

=
∑

et+1|et+1>et

q(et+1) [p(et+1) + d(et+1)]
′ θ(et),

t = 0, . . . , T − 2

q(eT−1)
[

p(eT−1)
′θ(eT−1)

]

=
∑

eT |eT>eT−1

q(eT )a(eT )′θ(eT−1).

Using (2.5), we see that (2.8) obtains for all elementary strategies. Observe

that any portfolio strategy z is a sum of elementary strategies θ(eτ ), setting

θ(e0) = z(e0) θ(et) = z(et) − z(et−1) for t > 0.

By linear combination, (2.8) is true of all portfolio strategies. This also

demonstrates that q is a system of state prices.

(b) ⇒ (a) directly.

The first part of 2 has already been demonstrated. Conversely, applying

(2.8) to elementary strategies associated with state et, dividing by q(et),

yields (2.9).

Equation (2.8) allows any revenue stream that can be replicated by a

portfolio strategy to be valued. Drawing on the static model, this leads to the

introduction of the notion of dynamically complete markets. In such markets,
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any income stream can be replicated by a portfolio strategy. Consequently,

(2.8) permits a rigorous interpretation of state prices, on one hand, and of

the valuation of any financial instrument, on the other.

Definition 5 Markets are dynamically complete if any income stream

(c(et), t ≥ 1), can be replicated by a portfolio strategy: for any stream c,

there exists z such that:

c(et) = cz(et) ∀ et, t = 1, . . . , T.

Let us interpret state prices in the case of complete markets. According

to (2.8), the cost of a strategy that yields one dollar in state et and nil in

any other state is necessarily equal to q(et). Consequently, q(et) is the price

to be paid at t = 0 to obtain one dollar in state et. It is strictly positive

and uniquely defined. When markets are incomplete, this interpretation is

only valid if such a strategy exists. The most important practical point is

that markets are dynamically complete whenever there are enough securities

in each state to generate any vector of state-contingent revenues for the

immediately succeeding states. Compared with the static perspective at the

initial date, which requires considering all paths that the economy might

follow, the use of dynamic strategies allows a considerable reduction in the

number of securities required for complete markets. When it is a matter of a

derivative written on an underlying security, the relevant states correspond

to the various prices of the security, which are naturally organized into a

tree describing the possible evolution of this price. If markets are complete

in each period—and this condition imposes a strong constraint on the choice

of the tree—it is technically simple to assign a price to each new derivative

for each price stream. We shall illustrate these techniques with the binomial

model of Cox, Ross and Rubinstein (1979).

Valuing an option in the binomial model

We take up Example 2 extended to several periods. In each period, a

risk-free security with a constant return of r between two successive dates
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and the risky stock can be traded. A state et is followed by two successors,

(et, h) and (et, b), corresponding to stock price growth rates of h and b,

respectively. In other words, if S(et) is the stock price in state et, its price

will be S(et)(1 + h) in state (et, h) or S(et)(1 + b) in state (et, b).

Consider a derivative on this stock, say a European option maturing at

T with a strike price of K. From the perspective of time 0 there are a large

number of final states. However, markets are dynamically complete: Since

each state is followed by two successors, the risky stock and the risk-free

security suffice to complete the markets (their payoffs are never proportional

since b and h differ). To value the option using (2.8), we need to evaluate

the state prices. For this, it is convenient to first compute the state prices

between two successive dates, and then apply (2.10).

• Calculation of the state prices q(et+1|et)
We apply (2.9) to the two assets in et, knowing that the two following

states are characterized by h and b:

1 = q(h|et)(1 + r) + q(b|et)(1 + r),

S(et) = q(h|et)S(et)(1 + h) + q(b|et)S(et)(1 + b).

Thus, it follows that state prices are independent of et, and are given by the

same expression as in the two periods Example 2:

q(h) =
r − b

(1 + r)(h− b)
, q(b) =

h− r

(1 + r)(h− b)
.

• Calculation of the state prices q discounted in 0.

A state et is characterized by the succession of growth rates, high or low,

realized from date 0 up to t. The state price, which is the product of the

intermediate prices, is equal to q(h)iq(b)t−i if there were exactly i times h

and t − i times b between 0 and t. Consequently, it is independent of the

order in which the jumps occurred.

• The price at t = 0 of an option maturing at T and with a strike price

of K.

The option does not distribute intermediate dividends, and at time T it
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pays out
[

S(1 + h)i(1 + b)T−i −K
]+

(we denote α+ = max(α, 0)) if there

were i high yields between 0 and T . Setting π̄ = (r−b)/(h−b) and grouping

all the states in which the yield was high i times, we obtain:

C =
1

(1 + r)T

∑

i=0,...,T

T !

(T − i)!i!
π̄i(1 − π̄)T−i

[

S(1 + h)i(1 + b)T−i −K
]+

π̄ can be interpreted as a probability of occurrence of h, since it is between

zero and one.

In the Cox-Ross-Rubinstein model the option price is equal to the expec-

tation, given the (risk-adjusted) probability π̄, of its final value discounted at

the risk-free rate.

This result can be generalized when the risk-free rate varies with the

state of nature (see the following section).

• Hedging strategies

The use of state prices allows the option price to be computed very easily.

Often a financial institution also wishes to calculate the portfolio strategy

that replicates the option. Indeed, having sold the option and unwilling

to assume the associated risk, a replicating portfolio strategy serves as a

hedge: it exactly gives the payoffs that the institution is required to pay to

the option holders. The following algorithm accomplishes this:

1. Starting from the “end” of the tree, in any state eT−1 preceding matu-

rity, compute the value of the option C(eT−1) in these states and the

portfolio z(eT−1) that replicates it.

2. For any state eT−2 at T − 2, we know from step 1 the option price in

the two successor states: C(eT−2, h) and C(eT−2, b). The value of the

option in eT−2 follows:

C(eT−2) = q(h)C(eT−2, h) + q(b)C(eT−2, b),

This is also the value of the portfolio z(eT−2) that will be worth

C(eT−2, h) and C(eT−2, b) in the two following states. This portfolio

permits the purchase of the replicating portfolio in the two succeeding
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states.

3. Continue “up” the tree in the same fashion until time 0.

This example illustrates two points:

– The usefulness of the valuation formula (2.8): if we only seek to value

the option it is much simpler to compute the state prices than to replicate

the option. The valuation however is only valid when such a replicate exists,

which follows automatically if markets are dynamically complete;

– The flexibility provided by the algorithm : it allows to price and repli-

cate all derivatives written on the stock. For example, consider an American

option (recall that such an option can be exercised at various dates before

maturity). In each state, compare the value of the option if it is not exercised

with the profit generated by exercising it immediately: this simultaneously

determines the value of the option as the greater of these two terms, and

the optimal exercise strategy.

Example 5

Valuation of an option with a sliding strike price

The binomial tree allows the valuation of options with complex charac-

teristics, known as “exotics.” Here we propose the valuation of an option on

stocks with the following features:

• The strike price is periodically redefined as a percentage of the stock

price, unless it reaches a floor fixed at the time of issue.

• The option can be exercised at certain predetermined periods.

Figure 5 represents the possible evolution of the stock price over four

periods, in which we have set h = 0.20 and 1+ b = 1/(1+h). If the risk-free

rate r is equal to 0.05, the risk-adjusted probability of the high state π̄ is

equal to 0.591.

Consider an option with a strike price of 95 at time 0, revisable at t = 2,

and whose new value will be the greater of 90 (the floor) or 95 per cent of

the stock price. The option can only be exercised on even dates, t = 2, 4 and

at the strike price determined two periods previously. Thus, 95 is the strike
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price that will prevail if it is exercised at time 2. At this time, the strike

price (which is to be exercised at t = 4) is adjusted to 136.8 if S = 144,

maintained at 95 if S = 100, and lowered to 90 if S = 69.4.

100

120

83.3

144

100

69.4

172.8

120

83.3

57.9

207.4

144

100

69.4

48.2

t=0 t=1 t=2 t=3 t=4

Figure 5: Binomial model

The calculation of the option value proceeds in several steps, starting

from the end of the tree. The retention value of the option at a given date is

defined as the value yielded by the option if it is not exercised immediately.

Step 1. We start at t = 2 in one of the three possible states.

Assuming that we keep the option, it can only be exercised at t = 4 and

at a known strike price. Thus, computing the retention value is a simple

matter.

This allows the exercise strategy to be determined at t = 2. To know

whether it is preferable to exercise the option immediately or hold on to it,

all that is needed is to compare the retention value with the profit yielded

by exercising it now.
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For example, assume that S = 144. The retention value is equal to

π̄2(207.4 − 136.8) + 2π̄(1 − π̄)(144 − 136.8) = 28.14,

while exercising it immediately yields 144−95 = 49: The option is exercised!

Similarly, we find that� if S = 100: the retention value, π̄2(144 − 95) + 2π̄(1 − π̄)(100 − 95) =

19.53, is larger than the exercise value, 5, (the option is not exercised),

and� if S = 69.4: the retention value, π̄2(100 − 95) = 1.75, is larger than

the exercise value, 0, (the option is not exercised),

respectively.

The option value at t = 2, before possibly being exercised, is the maxi-

mum of the two quantities, or 49 if S = 144, 19.53 if S = 100, and 1.75 if

S = 69.4.

Step 2. We can now easily compute the option price at t = 0. It is the

discounted sum, computed with the state prices, of its value at time 2:

π̄249 + 2π̄(1 − π̄)19.53 + (1 − π̄)(1 − π̄)1.75 = 26.98.

2.4 Probabilistic formulation: risk-adjusted probability

The notion of risk-adjusted probability introduced in the two-period model

(section 1.5) is particularly useful in a dynamic framework. Indeed, after

normalization, the formula (2.10) for constructing the state prices is trans-

formed into the Bayesian formula for conditional probabilities.

Consider a T -period model. Assume that there exists a short-term risk-

free security at all dates. Its return between t and t+ 1, knowing the state

et, is independent of the successor et+1 of et and denoted by r(et). Note that

r(et), which is the short term risk-free rate, depends upon the state et and
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may vary over time: The security is risk-less only between two successive

periods, once the state is known.

Theorem 2.4 Assume an economy with a risk-free short-term security

in each period. The three following properties are equivalent:

1. There are no opportunities for arbitrage,

2. There exists a strictly positive probability distribution π̄ for the tree,

such that the value of any strategy is equal to the expectation under

π̄ of the discounted sum at the risk-free rate for the future incomes it

generates:

p(e0)
′z(e0) =

∑

et,t=1,...,T

Eπ̄

t
∏

τ=1

1

1 + r(eτ−1)
cz(et),

3. There exists a strictly positive probability distribution for the transition

from any state et to its successors π̄(.|et) such that, for any k and et:

pk(et) =
1

1 + r(et)
Eπ̄ [pk(et+1) + ak(et+1) | et] ,

t = 0, . . . , T − 2

pk(eT−1) =
1

1 + r(eT−1)
Eπ̄ [ak(eT ) | eT−1] .

(2.11)

Comments As in the two-period model, π̄ is called the risk-adjusted

probability. This probability is particularly useful in the dynamic model

and in continuous time, which is obtained in the limit when the interval

separating successive transactions is allowed to tend towards zero. In this

situation powerful tools developed for stochastic processes can be used.

For a security k that does not distribute any dividends before the final

period, assuming the interest rate is constant and equal to r, Equation (2.11)

is often written as

(1 + r)−tpk(et) = Eπ̄
[

(1 + r)−t−1pk(et+1) | et
]

.
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The term (1+ r)−tpk(et) is the security price in state et counted in terms of

dollars at time 0, for short the discounted price. Thus, the above expression

says that the expectation at time t + 1 of the discounted security price,

conditional on the state at date t, is equal to its value in state et. The risk

of loss compensates for the chance of profit in mathematical expectation. In

mathematical terms, the discounted security price is a martingale.8

Proof of Theorem 4

All that is required is Theorem 3 and to define π̄ from the state prices

[q(et)] with

π̄(et) =
q(et)
∑

states at time t

q(e)
,

and the transition probabilities from the transition prices, with

π̄(et+1|et) = q(et+1|et)[1 + r(et)].
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conditional on the information available at time t, is equal to xt:

Etxt+1 = xt.
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Exercises

Exercise 2: Options and complete markets

The notion of complete markets is essential to valuation by arbitrage.

The following examples are designed to illustrate the notion that it may be

possible to complete markets by authorizing the negotiation of options on

pre-existing assets.

1. In a two-period model with three states of nature e1, e2, and e3, con-

sider a single asset with payoffs ã1 given by (4, 3, 1).

Show that the introduction of two call options with different strike

prices on the asset allows the market to be completed.

How would this result be changed if the revenue a1 in state e3 were no

longer 1, but 3? Explain your results.
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2. Consider a second scenario in which the market is comprised of two

assets. The states of nature in the second period are e1, e2, e3, and

e4, and the revenue vectors are:

e1 e2 e3 e4

a1 1 1 2 2

a2 1 2 1 2

Is it possible to complete this market by introducing options on a1 and

a2? Explain your results.

3. Prove that it is possible to constitute a portfolio (or fund) with the two

assets so that call options on this fund allow to complete the market.

Note : Question 1 illustrates the following, more general, result: Options on

the securities can complete market only if the securities allow the different

states of nature to be distinguished. Question 2 reveals that the converse is

not trivial. Indeed, the condition that the income from the available securi-

ties allows a distinction to be made between the various states is necessary

and sufficient for the existence of a portfolio of initial securities for which

call (or put) options allow the market to be completed (see Ross, 1976).

Exercise 3: Consider a firm whose underlying value per share increases

either by h or b between t = 0 and t = 1 and between t = 1 and t = 2, where

h > b. At date 1 it pays out a dividend of d, so that if the share price at

t = 0 is 1, the share price after the dividend is paid evolves as follows:

p(e3) = (1 + h− d)(1 + h)

p(e1) = (1 + h− d)

p(e4) = (1 + h− d)(1 + b)

p(e0) = 1

p(e5) = (1 + b− d)(1 + h)
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p(e2) = (1 + b− d)

p(e6) = (1 + b− d)(1 + b)

t = 0 t = 1 t = 2

The risk-free interest rate is r.

1. Compute the state prices associated with e1 and e2, at time t = 0.

Verify that they are independent of the dividend. Under what condition are

there no opportunities for arbitrage? Similarly, at e1 and e2, compute the

state prices of the two possible successor states.

2. Consider a call option that can be exercised at t = 2, with a strike

price of K, and with (1 + h− d)(1 + b) < K < (1 + h− d)(1 + h). Find an

expression for its price at t = 0.

3. Consider a call option that can be exercised at t = 1 before distribution

of the dividend, or at t = 2 at the strike price K. Under what condition on

d is it advantageous to exercise this option at t = 1?

4. Compute both option prices at t = 0 for:

h = 0.05, b = 0.01, r = 0.02, d = 0.04,K = 1.04.

Exercise 4: Arbitrage and transaction costs

The organization of markets creates operating costs that are supported

by the participants. The purpose of this exercise is to examine some of the

interactions between these costs and arbitrage operations.

Consider a two period model in which there are two states of nature and

two securities. The first security is risk-free indexed with 0. To simplify, the

interest rate is nil, so that one dollar invested in it yields one dollar in each

state of nature. The other security yields a(1) in state 1 and a(2) in state

2, with a(2) > a(1) > 0. The purchase price of this security is denoted by
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p+
1 , may be greater than its sale price, p−1 .

We wish to value another security, defined by a contingent revenue

stream [b(1), b(2)] in the two states of nature, where b(2) > b(1). This se-

curity is exchanged on a market with no transaction costs: there is a single

buy and sell price, p2.

1. In the absence of opportunities for arbitrage, calculate the state prices

q(e1) and q(e2) when p+
1 = p−1 . Use this to derive the price of security

2. Now assume that p+
1 > p−1 .

a) Determine the portfolio (z0, z1) of assets 0 and 1 that replicates the

asset b. Verify that z1 > 0.

b) In the absence of opportunities for arbitrage, determine upper and

lower bounds p2 and p
2

for the price of asset 2.

2. Here we examine how the Arrow-Debreu formula for asset valuation

(Theorem 2) can be extended.

a) Calculate the bounds for the prices of the Arrow-Debreu assets:

(q+(ei), q
−(ei)) for the asset yielding 1 in state i.

b) Assume that b(1) > 0. Show that the pricing formula:

p+
2 = q+(e1)b(1) + q+(e2)b(2), p−2 = q−(e1)b(1) + q−(e2)b(2),

yields upper and lower bounds for the asset price, but that these

bounds can be improved upon.
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Portfolio choice

This chapter examines the portfolio choices of investors who allot a given

amount of wealth to various securities. Determining how much wealth to in-

vest is studied in subsequent chapters. “Rational” investors select a portfolio

that best suits their objectives and their needs. Their demands for finan-

cial securities are derived from preferences represented with a von Neumann

Morgenstern utility criterion, as discussed in the previous chapter. We are

especially interested in how the selected portfolio is related to attitudes to-

wards risk, (possibly risky) future non financial incomes, and assessment on

securities payoffs.

Section 1 examines a particular case, referred to as the mean-variance

analysis, that merits a detailed examination. Under some specifications, an

investor ranks portfolios solely on the basis of the expectation and variance

of their returns. Thus, given his budget constraint, he selects a portfolio

that is mean-variance efficient, meaning that the expected return cannot

be increased without also increasing the variance. An examination of all

mean-variance efficient portfolios provides a first approach to the notion of

risk diversification, the basis of many widely-used models in finance. When

a risk-free security is available, the two “funds” theorem is obtained: mean-

variance efficient portfolios are combinations of the risk-free security and a

single portfolio of risky securities, analogous to a mutual fund. The specific

composition of the risky fund is independent of the investors attitudes to-

109
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wards risk, as long as these investors have the same beliefs on the expectation

and the variance of the securities returns. Thus the optimal composition of

the risky fund represents an ideal diversification of risky investments. Atti-

tudes vis-à-vis risk only come into play in the determination of the respective

amounts invested in the risk-free security and the fund.

No such clear cut results hold in general: Section 2 analyses the demand

for financial securities with an unrestricted von Neumann Morgenstern cri-

terion. Finally, two specific cases, that of a quadratic utility function or

of constant absolute risk aversion and normal returns, are studied in more

details. They illustrate one of the themes underlying portfolio choice, spec-

ulative and hedging demand, and provide a link to mean-variance analysis.

1 Mean-variance efficient portfolios

This section presents the mean-variance framework. Whereas it can be

linked to a von Neumann Morgenstern model (see the final section), this

framework is used in practice for convenience. Indeed, it is simpler to work

exclusively on the expectation and variance of a random variable rather than

on its entire distribution.

The mean-variance hypothesis:

An investor ranks portfolios on the basis of the expectations and

variances of their payoffs. The ranking is increasing in expecta-

tion and decreasing in variance.

Note that we do not fully specify the investor’s attitude towards risk:

In particular, we do not address how he arbitrates between the expectation

and the variance of the payoff.

Under the mean-variance hypothesis, the investor selects a portfolio that

is mean-variance efficient, meaning that the expected payoff cannot be in-

creased without also increasing the variance. Of course, the expectation and

the variance are evaluated by the investor, using his own beliefs.

As defined in the previous chapter, recall that a portfolio (z∗, z) with an
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initial value of ω0 = p∗z∗ + p′z yields a stochastic payoff in period 1:

c̃ = z∗ +

K
∑

k=1

zkãk = z∗ + z′ã.

The expectation and the variance of the portfolio payoff are thus respectively

given by z∗+Ez′ã and var(z′ã). The set of mean-variance efficient portfolios

is found by solving the following family of programs parameterized with a

scalar M: 1










min var(z′ã)

z∗ + Ez′ã ≥M

p∗z∗ + p′z = ω0.

The parameter M is interpreted as the smallest expected payoff that the

investor has set as a target. The solution to this problem is the portfolio(s)

with the smallest variance meeting this target.

Thus, the mean-variance efficiency criterion does not determine a unique

portfolio. Indeed, to derive the demand for securities, one needs to specify

the investor’s attitude towards risk, which in turn dictates the trade-off

between the expectation and variance of the payoff. However, any solution

to the above program—any efficient portfolio—features the key property of

risk diversification, regardless of the level of risk aversion.

We first demonstrate that the analysis can be conducted on the basis of

the return on each dollar invested. Then we characterize efficient portfolios

in two stages, starting with the situation in which no risk-free security is

available.

1.1 Portfolio composition and returns

The set of all mean-variance efficient portfolios is homogeneous of degree 1

in wealth ω0. Indeed, starting with a solution (z∗, z) to the program for

the parameters (ω0,M), (λz∗, λz) solves the program for (λω0, λM) for any

positive λ. This naturally leads us to work per dollar invested, as is done in

1The analysis conducted in this chapter is valid when the number of states of nature
is infinite, provided that the variance var(ã) is finite.
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finance. To this purpose, the rate of return of a security describes the payoff

obtained from investing one dollar in the security, and the composition of

a portfolio describes how much of each dollar is invested in each security

(rather than the number of shares of each security in a portfolio). Formally,

this is equivalent to a change of variables:

Definition 1 The gross rate of return of a security is the stochastic

payoff that one dollar invested in this security today pays at time 1:

R̃k =
ãk
pk
, k = ∗, 1, ..,K.

A portfolio composition is a vector (x∗, x), such that x∗ +
∑K

k=1 xk = 1,

where xk is the fraction of the portfolio value invested in k.

Notice that the rate of return of a risk-free security is constant, given by

R∗ = (1 + r). Frequently, the net returns equal to the gross returns minus

1 are used: r̃k = R̃k − 1. We often abbreviate ‘rate of return’ into ‘return’.

Let us rewrite the investor’s problem with these variables. The value

of the portfolio (z∗, z) is ω0 = p∗z∗ + p′z. If ω0 is not nil, the portfolio

composition is given by (x∗, x):

x∗ =
p∗z∗
ω0

, xk =
pkzk
ω0

, k = 1, . . . ,K.

Thus, the portfolio is characterized by its value and its composition. More-

over, the associated stochastic payoff satisfies:

c̃ = z∗ + z′ ã = ω0(x∗R∗ + x′R̃).

As for a single security, the gross return of a portfolio is equal to its

random payoff per dollar invested. According to the expression above, the

gross return of a portfolio whose composition is (x∗, x) is given by

x∗R∗ + x′R̃ = x∗R∗ +
K
∑

k=1

xkR̃k,
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or, in words :

The return of a portfolio is the linear combination of the returns of the

component securities weighted by their respective shares in the portfolio com-

position.

Letting 11K represent the K-dimensional column vector consisting en-

tirely of ones, mean-variance efficiency can be written in terms of the new

variables:

Definition 2 The portfolio with composition (x∗, x) is mean-variance

efficient if it solves:

min var(x′R̃) s.t.

{

x∗R∗ + Ex′R̃ ≥ m

x∗ + 11′Kx = 1.

for some value of m.

The parameterm is interpreted as the smallest expected return per dollar

invested that the investor has set as a target, and the solution to this problem

yields the portfolio(s) with the smallest variance meeting this target.

1.2 Diversification

Assume that no risk free security is available. What is the best way to

combine investments so as to minimize risks? The variance of a portfolio

returns is simply expressed as a function of the variance-covariance matrix

Γ of the returns of risky securities. This matrix is given by Γ = (γhk) where

γhk is the covariance between the returns of securities h and k. The variance
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of the return of a portfolio of composition x is2

var(x′R̃) = x′Γx.

Consider first the“degenerate” case, in which all securities have the same

expected return, R. In this case, the expected returns of all portfolios are

identical and equal to that value. A portfolio is thus mean-variance efficient

if and only if its variance is lowest. We are seeking x, the solution to

minx′ Γx s.t. 11′Kx = 1,

If 2µ is the Lagrange multiplier associated with the constraint 11′Kx = 1,

x = µΓ−111K ,

where µ is computed so as to satisfy the constraint.

Thus, there exists a unique optimal composition. For example, assume

that all returns are independent and have the same variance : The variance-

covariance matrix is proportional to the identity matrix. The optimal com-

position is then given by 11K/K: The same amount, 1/K, should be invested

in each security. This is diversification. Otherwise, without independence or

identical variance, the optimal composition reflects differences between the

variances of the security returns and their correlations.

In the general case in which expected returns differ across securities, it

2x is a K-dimensional column vector and Γ is a (K ×K) matrix. We have

γhk =
EX

e=1

π(e)
h
R̃h(e) − ER̃h

i h
(R̃k(e) − ER̃k

i
.

and can write
Γ = E[(R̃− ER̃)(R̃− ER̃)′],

where the ′ denotes transposition. The variance of the return of a portfolio composed of
(x∗, x) is

var(x′R̃) = Ex′(R̃− ER̃)(R̃− ER̃)′x,

or x′Γx. If we assume that there is no redundancy, the matrix Γ has an inverse. Otherwise,
there would exist a non-nil vector x such that x′(R̃−ER̃) = 0, so that a portfolio of risky
securities would replicate the risk-free security.
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is necessary to arbitrate between the expectation and the variance of the

return. For a given target on expected return, there exists a portfolio com-

position that minimizes risk. A graphical representation is helpful. Figure 7

plots the set of couples (standard error, expectation) associated with each

possible portfolio in a (σ, m)-space. The couples associated with efficient

compositions are on the frontier of that set, and constitute what is called

the efficiency frontier.

1.3 The efficiency frontier in the absence of a riskless security

Assume that there are at least two securities with different expected returns.

The problem to be solved is written:

minx′ Γx s.t.

{

Ex′R̃ = m

11′Kx = 1,

for some values of m in IR. In contrast to the preceding formulation, the

inequality on the expected return is replaced by an equality. For each target

m, a solution is a portfolio with the smallest variance whose expected return

is exactly m. Since there are two securities with distinct expected returns,

the domain defined by the two constraints is not empty, regardless of the

value of m (we are using the assumption that there are no limits on short

sales). Imposing an equality constraint on the expected returns simplifies the

math. Extending this solution to the formulation with inequalities, which is

associated with the economic problem, is trivial.

Since the function to be minimized is a convex quadratic form, bounded

below by zero, and the constraints are linear, the solution exists and is

characterized by the first-order necessary and sufficient conditions. Letting

2λ and 2µ respectively represent the multipliers for the expected return and

the budget constraints, these conditions are:

Γx = λER̃+ µ11K . (4.1)

They give together with the two constraints a linear system of K + 1 equa-

tions in the K + 1 unknowns (x, λ, µ). To solve this system, x can be
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expressed as a function of the multipliers from the first-order condition (4.1)

because under the assumption of no redundancy the matrix Γ has an inverse.

Plugging this expression into the constraints gives.

ER̃′Γ−1ER̃λ+ ER̃′Γ−111Kµ = m,

11′KΓ−1ER̃λ+ 11′KΓ−111Kµ = 1.

This is a symmetric linear system with a strictly positive determinant.

Inverting it3 yields

λ =
dm− b

∆
and µ =

−bm+ c

∆
.

The optimal portfolio is simply obtained by using again (4.1). We keep this

calculation for later and first focus on finding the expression for the least

variance as a function of m. For this, premultiply the first-order condition

by x′, yielding:

σ2 = λm+ µ,

where σ2 = x′Γx is the value of the variance of the efficient portfolio.

Inserting the expressions obtained for λ and µ yields

σ2 =
dm2 − 2bm+ c

∆
,

or
(

∆

d

)

σ2 −
(

m− b

d

)2

=
∆

d2
.

This is the equation for a hyperbola in the (standard error, mean), (σ,m)

plane. The standard error is lowest at m = b/d, where its value is 1/
√
d. In

terms of the initial problem, where we sought the portfolio with the smallest

variance generating an expected return of at least m (we are reverting to

the formulation with inequality rather than equality), only the section of

the hyperbola in which the expected return exceeds b/d is of interest. For

3We set d = 11′
KΓ−111K , b = 11′

KΓ−1ER̃, c = ER̃′Γ−1ER̃, ∆ = dc− b2. It is trivial to
verify that ∆ is strictly positive provided there are two securities with different expected
returns.
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Figure 7: The two-fund theorem

all values of m below b/d, we wish to retain the least-variance portfolio.

Any risky portfolio entails a level of risk equal to at least the minimum

standard error 1/
√
d: the non-diversifiable minimum risk. An investor who

is prepared to accept a risk exceeding that minimal level can obtain a higher

expected return.

1.4 Efficient portfolios: the case with a risk-free security

Now assume a risk-free security exists. The graphic representation of the

new efficiency frontier can easily be found from its version with only risky

securities. We will subsequently derive it analytically.

For one dollar to invest, x∗ dollars can be put into the risk-free security

(standard error=0, mean=R∗), and (1 − x∗) =
∑K

k=1 xk dollars into some
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risky portfolio with standard error σ̂ and mean m̂. This operation yields a

portfolio with standard error and mean given by:

σ = |1 − x∗|σ̂, m = x∗R∗ + (1 − x∗)m̂.

Consider first an investment x∗ in the risk-free security that is less than

one, implying that the value of the risky part of the portfolio is positive.

Graphically, for a given (σ̂, m̂), the point (σ,m) describes the ray originating

at the point representing the risk-free security (0, R∗) and passing through

(σ̂, m̂). Now, if we consider all possible risky portfolios, (σ̂, m̂) varies within

a zone delimited by the hyperbola in Figure 7 and the set of rays describes

the cone resting on the efficiency frontier.

Consider now an investment x∗ greater than 1: the cone supported by

the branch of the hyperbola that is symmetric with respect to the m-axis is

obtained.

Mean-variance efficient combinations are located on the upper frontier

of this cone: it is the ray that is tangent to the hyperbola which originates

at the point representing the risk-free security. The point of tangency cor-

responds to a portfolio made only of risky securities x∗. This shows that all

efficient portfolios are linear combinations of x∗ and the risk-free security:

Theorem 4.1 The two-fund theorem

Assume there is a riskless security. For given expected returns and co-

variance matrix, all mean-variance efficient portfolios can be made up from

two pooled investment funds: the risk-free security and a single risky fund.

These results can easily be derived analytically. Let (x∗, x) be a portfolio

composition, where x is the risky component and x∗ the risk-free component.

Efficient compositions are solutions to

minx′ Γx s.t.

{

x∗R∗ + Ex′R̃ ≥ m

x∗ + 11′Kx = 1,
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and the first-order conditions are written

Γx = λER̃+ µ11K and 0 = λR∗ + µ, (4.2)

whence, eliminating µ

Γx = λ(ER̃−R∗11K). (4.3)

Assume first that λ is non-nil and that the expected-return constraint is

binding. We immediately see that the risky component of the portfolio is

independent of the target expectation m and proportional to

x∗ = αΓ−1(ER̃−R∗11K), (4.4)

where α is set so as to normalize x∗. The expected return m determines

the amount x∗ invested in the risk-free security. Thus, the optimal portfolio

consists of x∗ invested in the risk-free security and (1 − x∗) in portfolio x∗.

If λ is nil, then so are µ and x. We invest everything in the risk-free

security, which only works if the target expectation is less than R∗—in this

case the variance is minimum, equal to zero.

Remark

In practice, the return of the riskless security, R∗, is less than b/d. This

is the case pictured in Figure 7. All efficient portfolios contain (positive)

investments in risky securities, and the amount invested in them increases

with the portfolio expected return. It is theoretically possible for R∗ to be

greater than b/d. Then, x∗ is greater than 1 for all efficient portfolios, and

investors take short positions on risky securities. Here again, the greater the

absolute value of the position in risky securities, the greater the expected

return.

2 Portfolio choice under the von Neumann Mor-

genstern criterion

We revert to the framework introduced in Chapter 3, assuming that the in-

vestor’s tastes are represented by a von Neumann Morgenstern utility func-
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tion, Ev(c̃). The function v is increasing, concave, and twice differentiable

everywhere. Since a portfolio (z∗, z) yields a stochastic payoff in period 1

c̃ = z∗ +
K
∑

k=1

zkãk = z∗ + z′ã,

the portfolio choice is described by the following program:

An investor chooses a portfolio (z∗, z) maximizing

Ev(ω̃ + z∗ + z′ã)

subject to the budget constraint:

p∗z∗ + p′z = ω0.

It is convenient to define the “indirect” utility function, V (z∗, z), derived

from the “primal” utility function and containing the decision variables:

V (z∗, z) ≡ Ev(ω̃ + z∗ + z′ã).

The investor’s program is then written:

maxz∗,z V (z∗, z), s.t. p∗z∗ + p′z = ω0. (4.5)

In contrast to the mean-variance framework, this program is not in general

homogeneous with respect to wealth. By construction, the function V in-

herits the properties of being increasing and concave from the function v

(note, however, that the domain of portfolios over which V is defined may

depend upon the matrix of incomes ã). Thus, this problem has the tradi-

tional structure of a consumer’s utility maximization subject to a budget

constraint. There is one important difference: the domain of maximization

may be unbounded because sales are allowed without restriction. Therefore

the existence of a solution is not guaranteed. When security prices offer op-

portunities for arbitrage, the investor benefits by taking short positions on
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an expensive security to finance a purchase of an inexpensive one. Without

limits on trades, no optimal solution exists, as shown in Theorem 3.2.

Remark

Working directly with future contingent income, rather than using the in-

termediary of the portfolio, is possible. It is convenient if markets are

complete and without arbitrage opportunities. The vectors of security pay-

offs generate the entire space of contingent incomes (E = K+1). As seen in

Chapter 2, working directly with disposable income in each state of nature

is equivalent to dealing with contingent goods whose prices are equal to the

state prices. Thus, we end up with a formulation that is identical to that

of the consumer in traditional microeconomic theory. Also, dropping possi-

ble redundant securities, portfolios are in a one-to-one correspondence with

future incomes. When markets are incomplete, which is a possibility we do

not want to preclude, the set of attainable incomes is constrained. Using

future incomes as variables forces us to account for E − K − 1 additional

constraints, and it is just as easy to work with portfolios.

The investor’s program (4.5) consists of maximizing a concave function

on a convex set. Thus, the first-order conditions characterize the solution.

Letting λ be the multiplier associated with the budget constraint at time 0,

they are written

{

Ev′(c̃) = λp∗

Ev′(c̃)ãk = λpk, k = 1, . . . ,K.
(4.6)

As expected, these conditions can be satisfied only if there are no opportu-

nities for arbitrage. Indeed they yield the investor’s ‘implicit’ state prices.4

To see this, writing expectation as a sum, (4.6) gives:

E
∑

e=1

π(e)v′[c(e)]ak(e) = λpk, k = ∗, 1, . . . ,K.

4These state prices are those for which the investor would chose the same contingent
income profile if all contingent markets were to exist.
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This shows, comparing with Theorem 2.1, If an optimal portfolio exists,

there are no opportunities for arbitrage, and the positive vector q defined by

q(e) = π(e)v′(ce)λ

is a vector of state prices. It satisfies the equalities

E
∑

e=1

q(e)ak(e) = pk, k = ∗, 1, . . . ,K.

If markets are complete, this last system of equations is of full rank and

state prices are unique. All investors’ vectors of marginal utilities for the

contingent goods are thus proportional to each other.

To find a solution, note that completing the first order conditions with

the budget constraint, a system with K + 2 equations for solving K + 2

variables (z∗, z, λ) is obtained. Eliminating the multiplier λ and using the

equality p∗ = 1/(1 + r), an optimal portfolio is thus characterized by

{

Ev′(c̃)[ãk − (1 + r)pk] = 0, k = ∗, 1, . . . ,K,
p∗z∗ + p′z = ω0.

(4.7)

3 Finance paradigms: quadratic and CARA-normal

In two specifications widely used in finance, quasi-explicit expressions can

be derived for savings and the demands of securities. The determinants of

the demand for financial securities can be easily interpreted. Furthermore,

a link is established with the mean-variance criterion.

In the first specification, a quadratic utility function is assumed:

v(c) = c− α

2
c2,

where α is sufficiently small so that the function is increasing in c in the

relevant domain.
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The identity Ec̃2 = (Ec̃)2 + var(c̃) allows to write

Ev(c̃) = E(c̃) − α

2
(Ec̃)2 − α

2
var(c̃),

or

Ev(c̃) = v(Ec̃) − α

2
var(c̃). (4.8)

In the second specification, referred to, for short, as CARA-normal, util-

ity exhibits constant absolute risk aversion (CARA)

v(c) = −exp(−ρc),

with ρ positive, and the distribution of payoffs is normal. Using the standard

formula for the expectation of a log-normal variable, the expected utility of

income during the second period is written

Ev(c̃) = −exp
{

−ρ
[

Ec̃− ρ

2
var(c̃)

]}

= v
[

Ec̃− ρ

2
var(c̃)

]

. (4.9)

In both cases, the agent’s utility is increasing in the expectation of future

income Ec̃ and decreasing in its variance var(c̃). It is independent of the

other moments of future income.

The expectation and variance of income associated with the purchase of

portfolio (z∗, z) can be easily computed, using the expression c̃ = ω̃+z∗+z
′ã.

The linearity of the expectation and the bilinearity of the covariance give:

Ec̃ = Eω̃ + z∗ + z′Eã

var(c̃) = z′ var(ã) z + 2z′cov(ã, ω̃) + var(ω̃).

In both the quadratic and CARA-normal cases, the optimal portfolio is

the solution of a program

maxV (z∗, z) = f [Ec̃, var(c̃)] s.t. p∗z∗ + p′z = ω0,

for some function f , where Ec̃ and var(c̃) are given by their expressions in

terms of (z∗, z).
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The important point to note here is that total income, not only financial

income, matters. In the presence of risky non financial income, the optimal

portfolio is generally not mean-variance efficient because the variance of total

income, ω̃+z∗+z′ã, differs from that of financial income, z∗+z′ã . However,

when the non financial income is risk free (or uncorrelated with the secu-

rities payoffs), the quadratic and CARA-normal specifications both lead the

investor to choose a mean-variance efficient portfolio.

3.1 Hedging portfolios

Definition 3

A portfolio that minimizes the variance of total income in period 1 is

called a hedging portfolio.

The variance only depends on the risky securities in the portfolio, and

the hedging portfolio zh minimizes:

var(ω̃ + z′ã ) = z′ var(ã) z + 2z′cov(ã, ω̃) + var(ω̃).

This portfolio is the one that would be chosen by an individual who is

infinitely averse to variance in income (α or ρ equal to +∞ in the quadratic

and CARA-normal models, respectively). Thus, its value is

zh = − var(ã)−1cov(ã, ω̃). (4.10)

This result has a geometric interpretation. Note that we are only in-

terested in the variance of incomes. Thus their expectations can be sub-

tracted so as to work exclusively on centered incomes, that is in the (E − 1)-

dimensional space of variables with zero expectation. In this space, the co-

variance is a scalar product with associated norm the square root of the

variance, that is the standard error. The centered incomes that are at-

tainable with these portfolios define a subset spanned by the centered risky

security payoffs, ãk − (Eãk), in a K-dimensional subspace.5 Hedging con-

5Owing to the assumption of no redundancy, the vector made of one, 1∗, is independent
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sists of choosing an income in this subspace that reduces the variance of

total income to the greatest possible extent. This amounts to a projection.

By definition, the projection of a vector onto a subspace is the closest vector

of that subspace. Income is thus decomposed into the sum of its projec-

tion and a vector that is orthogonal to the subspace. Using the variance as

the square of the distance between random variables, we can write for any

centered x̃:

x̃ = projãx̃+ x̃⊥ with projãx̃ = cov(x̃, ã)var(ã)−1(ã− Eã)

where:� projãx̃ is a linear combination of the payoffs ãk − Eãk and can thus

be attained by a portfolio.� x̃⊥ is in a subspace that is orthogonal to security payoffs (by construc-

tion, its covariance with ã is equal to 0). It is not correlated with

security payoffs and consequently cannot be insured by the market.

Applying this result to non financial income ω̃−Eω̃, its projection onto

security payoffs is from (4.10) exactly the opposite of the payoffs of the hedg-

ing portfolio, that is −zh′(ã−Eã). Therefore, after hedging, final income is

uncorrelated with security payoffs.6 If markets are complete, K = E−1, the

investor can completely insure herself against non financial risks: By selling

the portfolio that duplicates non financial income, the residual variance is

nil. When markets are incomplete, some of the non financial risks typically

remain uninsurable on the markets.

of the vectors ãk, k = 1, . . . ,K. Thus, by centering, the dimension of the spanned space
is not reduced, and remains equal to K.

6This can be confirmed by calculating:

cov[ã, ω̃ − Eω̃ − z′h(ã− Eã)] = cov(ã, ω̃) − var(ã)zh = 0.
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3.2 The demand for risky securities

The calculation of the demand differs slightly in the quadratic and CARA-

normal cases.

Let us begin with the quadratic case. Recall the first-order conditions

(4.7) for the K risky securities:

Ev′(c̃)[ãk − (1 + r)pk] = 0,

which can be also written as:

Ev′(c̃)Eãk + cov[v′(c̃), ãk] = (1 + r)pkEv
′(c̃).

Since v′(c̃) = 1 − αc̃, we have

Ev′(c̃) = v′(Ec̃) and cov[v′(c̃), ãk] = −αcov(ω̃ + z′ã, ãk).

Stacking up these equations gives

v′(Ec̃)[Eã− (1 + r)p] − α[var(ã)z + cov(ã, ω̃)] = 0.

Factoring out v′(Ec̃), yields

z = var(ã)−1

{

−cov(ã, ω̃) +
v′(Ec̃)

α
[Eã− (1 + r)p]

}

or, using the expression for risk tolerance T (c) = v′(c)/α (see Chapter 3,

Section 3.8)

z = var(ã)−1 {−cov(ã, ω̃) + T (Ec̃) [Eã− (1 + r)p]} . (4.11)

The CARA-normal case yields the same equation, but the calculations

are simpler, starting directly from the investor’s problem. The investor max-

imizes v {Ec̃− ρ/2[var(c̃)]} subject to the budget constraint. Substituting

z∗ from the budget constraint as a function of z, the first-order condition in

z yields Equation (4.11), using the fact that risk tolerance is equal to 1/ρ
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for CARA utility functions.

Thus, the investor’s demand for securities appears as the sum of two

portfolios:� The first is the hedging portfolio,� The second is proportional to var(ã)−1 [Eã− (1 + r)p] . It is called

speculative because it coincides with the demand of an investor with

no risky non financial income to hedge (ω̃ constant). By interven-

ing in the market, he is taking some risk. When security payoffs are

not correlated and have the same variance, the speculative portfolio

is proportional to Eã − (1 + r)p, the vector of the expected security

payoffs in excess of discounted prices (the discounting is necessary be-

cause prices are paid at time 0 and payoff received in the next period.)

The investor buys a security if the expected payoff is larger that the

discounted price and sells it if it is lower.

Thus, in the two specifications just examined, the portfolio choice re-

sponds to two goals, risk reduction and speculation. Clearly, the relative

weights assigned to each of these elements depend on the amount of initial

risk to hedge and the opportunities reflected by the securities, but also on

risk tolerance: the speculative part increases with the investor’s risk toler-

ance.

The difference with the mean-variance case merits emphasis. The two-

fund theorem is only applicable to speculative demand: Speculators with

the same expectations choose the same portfolios, and they behave accord-

ing to the mean-variance model. Instead, the composition of the hedging

portfolio depends on individual non financial incomes and usually vary from

one investor to the other. Overall, in this model any difference in portfolio

composition must be attributable to variations in hedging requirements or

to heterogeneous beliefs on the securities payoffs.

Remarks

1. The expression (4.11) for the optimal portfolio is not entirely explicit

in the quadratic case, since risk tolerance depends on total expected income,
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and thus on the investment on the risk-free security and ultimately on the

interest rate.

2. When we move beyond these two simple specifications, the first-order

conditions in (4.6) are no longer linear in z and the demand for securities si-

multaneously reflects hedging needs and a desire for profitable investments—

though it is usually not feasible to distinguish between these two elements.
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Exercises

Exercise 7: The mean-variance criterion

Consider a stock market with two risky securities (k = 1,2). Their re-

turns (per dollar invested) are denoted by R̃k, k = 1,2, with mathemati-

cal expectation and standard deviation mk and σk, respectively. Let ρ be

the correlation coefficient between R̃1 and R̃2, i.e. ρ = cov(R̃1, R̃2)/(σ1σ2).

There is also a riskless security (k = ∗) that yields R∗ = (1 + r) per dollar

invested.

Let R̃ be the return of a portfolio of composition x, i.e.:

R̃ = x∗R∗ + x1R̃1 + x2R̃2,
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in which xk represents the fraction invested in k (k = ∗, 1, 2):

x∗ + x1 + x2 = 1.

There is no condition on the sign of the xk, implying that short selling of

any security is allowed. Finally, denote the mathematical expectation and

the standard deviation of R̃ by m and σ, respectively.

1. Show that all portfolios that consist exclusively of risky securities de-

fine a curve in the plane (σ, m). Represent this curve by assuming

m1 = 2,m2 = 1, σ1 = 2, σ2 = 1, in the cases ρ = 1, ρ = 1/2, ρ = 0 and

ρ = −1. Identify the part of the curve that can be reached when short

sales are not allowed. Comment.

2. Assume that ρ = 1/2 andm∗ = 1/2. Find the equation of the efficiency

frontier. What is the composition of the mutual fund of risky securities

chosen by any investor? Comment.

3. Characterize the demand of securities of an investor with preferences

represented by a utility function U(m,σ) = m− ασ2, α > 0.

Exercise 8: Maximizing utility and the mean-variance criterion

Under some circumstances the quadratic utility function leads to the

choice of mean-variance efficient portfolios. However, it has two drawbacks:

First, the possible values for income must be restricted to the domain on

which the function is increasing (recall that a concave quadratic function is

surely decreasing for sufficiently high values of its argument). But most of

all, absolute risk aversion increases with the level of wealth in the case of

the quadratic function, which violates current observations.

An alternative rationale for mean-variance analysis makes use of assump-

tions that are not on the form of the utility function, but rather on the

distribution of portfolio returns.

I. The normal case



130 Chapter 4: portfolio choice

An investor invests wealth ω0 to acquire a portfolio z comprised of K

securities. With the usual notations, p′z = ω0, and the portfolio yields a

random financial income of z′ã =
∑K

k=1 zkãk at time 1.

The investors’ preferences over financial incomes are represented by a

von Neumann Morgenstern utility index v : IR → IR—a strictly increasing,

strictly concave, and twice continuously differentiable function.

Let g denote the probability density function of the standard normal

distribution:

g(x) =
1√
2π

exp

(

−x
2

2

)

.

To ensure that the integrals are well defined, we assume that there exists a

number M such that, for all m and σ, the functions f(x) = v(x), v′(x) or

v′′(x) satisfy:

lim
x→±∞

|x2f(m+ σx)g(x)| ≤M.

1. Check that the choice of a portfolio only depends on the mean and

variance of its payoffs. Denoting by (m,σ) the couple (mean, standard

error) associated with the portfolio z, define:

V (m,σ) = Ev(z′ã).

Show that:

∂V

∂m
= Ev′(z′ã), and

∂V

∂σ
= σEv′′(z′ã).

Demonstrate that the function V is concave in (m,σ). What is the

form of the indifference curves of V in the (σ,m) plane?

2. Compute the optimal portfolio for a utility function with constant

absolute risk aversion ρ > 0:

v(x) = −exp(−ρx).

Assume that there exists a risk free security . How do investor’s choices

vary with their risk aversions?
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II. Non-normal distributions

The preceding analysis relies on two properties: (1) Normal distributions

are characterized by two parameters, and (2) Any linear combination of

normal distributions is a normal distribution.

The mean-variance analysis extends to families of random variables whose

distributions depend on two parameters and that are stable by linear com-

bination. There are many such families besides the multivariate normal

distribution: They are called elliptical distributions. We examine here an

example. Let (α̃, β̃) be a couple of real random variables with density func-

tion h(α, β) where β̃ is strictly positive with probability 1.

1. Consider the family of random variables ã, whose conditional distribu-

tion given (α, β) is a normal distribution with mean αM and variance

βΣ2, for a couple (M,Σ) of IR × IR+.

(a) Demonstrate that the family is stable by linear combination.

(b) Compute the unconditional expectation and variance of ã. Show

that, if Eα̃ 6= 0, the unconditional expectation and variance char-

acterize the distribution within the family studied. Does this

property extend to the multivariate case?

2. Consider an investor with constant absolute risk aversion ρ. In the

specific case in which α = 1 and β̃ has an exponential distribution

with parameter µ,

h(β) = µexp(−µβ),

compute the indirect utility function V (m,σ) where (m,σ) represent

the unconditional mean and standard error of a portfolio payoff. Spec-

ify the domain over which it is defined. Derive the portfolio demand.

Compare it with the normal case above.

Exercise 9: Speculative and hedging demands
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Let a security be priced p at time t = 0 with an expected payoff at

t = 1 (future price + dividend) denoted by ã. The risk free interest rate

between t = 0 and t = 1 is r. We consider an investor whose preferences are

represented by a strictly concave von Neumann Morgenstern criterion v on

income at date 1.

1. The investor’s initial wealth is composed of w0 units of money. If she

purchases z shares of the security at t = 1, her expected wealth at

t = 1 is

w̃ = (1 + r)w0 + (ã− (1 + r)p)z.

Write the first-order conditions characterizing the demand of security.

Show that the demand is

– nil if (1 + r)p = Eã

– positive if (1 + r)p < Eã

– negative if (1 + r)p > Eã.

2. Now assume that the investor initially has w0 units of money and z0

of the security. Using 1), decompose her demand into a speculative

and a hedging component.




