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Introduction (1/3) ➣➟ ➠ ➪

• Problem: Optimal information transmission in organizations.

• Focus: Increasing knowledge forces specialization. We deal with prob-

lems where knowing others’ knowledge is a scarce resource.

• The organization is modelled as a network:
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Introduction (2/3) ➢➣➟ ➠ ➪

1. Individuals are specialized problem-solving nodes

2. Problems arrive at random nodes, with random (independent) des-

tinations.

3. The (mutual) communication abilities and knowledge of other’s

knowledge are the links.

4. Search must respect this knowledge constraint.

5. Aim: Find best way to connect, given fixed number of links and

local algorithm.

➪➲ ➪ ➟➠ ➥ ➢➣ ➥ 2
22



Introduction (3/3) ➢➟ ➠ ➪

• Findings: We show tradeoff between distance and congestion.

1. We solve for smallest arrival rate or problems that collapses net-

work.

2. Below critical rate, we find its average stock of floating problems

(thus, length of time to solve them).

3. Then we solve for optimal organizational form: either very central-

ized or very decentralized.
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Related literature (1/3) ➣➟ ➠ ➪

• Economics of organizations: Radner (1992), Bolton Dewatripoint (1994),
or van Zandt (1999). Abstract from search. Tradeoff: Benefit of par-
allel processing vs. coordination problem of communication.

• Sah and Stiglitz (1986) and Visser (2000) focus on contrast between
hyerarchic and polyarchic organizations.

• Closer in is Garicano (2000). Each individual specializes. If she cannot
solve a problem, there is another person to deal with it. Task of the
designer: assign knowledge sets and design the routes.

• Crucial difference between Garicano’s (2000) model and ours. We
abstract from the knowledge acquisition problem.

• We feel that our model is relevant for firms in which endowments of
knowledge are not easy to replicate in a standardized fashion.
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Related literature (2/3) ➢➟ ➠ ➪

• Watts and Strogatz (1998) - small-worlds. Many local links and a

few long-range links, but low average distance. Abstracts from search.

Albert and Lászlo-Barabási (2002) survey.

• Kleinberg (1999, 2000), addresses search. Helped by knowledge of

topology: effective in small-world, not so in random net. Abstracts

from congestion.

• Arenas, D́ıaz-Guilera and Guimerà (2001) similar to us. They restrict,

organizational forms, so no genuine search.
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The model (1/5) ➣➟ ➠ ➪

• Our organization is modeled as an undirected graph.

• Nodes are the individuals. N = {1,2, ..., n}.

• A link between i and j implies both know each others’ knowledge and

can communicate.

• We define gij ∈ {0,1}. Graph is undirected, gij = 1 if and only if

gji = 1.

• Let Γ = {N, (gij)
n
i,j=1} be a given network. Neighborhood Ni = {j ∈

N : gij = 1}.
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The model (2/5) ➢➣➟ ➠ ➪

• The mission of this organization is to solve problems.

• Problems first appear in an organization with independent probability

ρ at each node.

• Each problem has an “address” indicating the node k where it is to be

solved. Let us then refer to “problem k ”.
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The model (3/5) ➢➣➟ ➠ ➪

• Rules by which the problem travels:

1. If the arrival node can solve it, then it will do so.

2. Problems that are chosen to travel further:

• If k ∈ Ni, the problem is sent to k with pk
ik = 1 and it is solved.

• If k /∈ Ni, the problem is sent to some j ∈ Ni with some probability

pk
ij . (Of course,

∑
j∈Ni

pk
ij = 1.)
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The model (4/5) ➢➣➟ ➠ ➪

The network plus search protocol leads to:

{P k ≡ (pk
ij)i,j∈N}k∈N . (1)

Stochastic process governing steps:

pk
ij = 0 if j /∈ Ni

pk
ik = 1 if k ∈ Ni

pk
kj = 0 ∀j ∈ Ni.

We may compute, for each r ∈ N :

qk
ij(r) =

∑
l1,l2,...,lr−1

pk
il1

pk
l1l2

· · · pk
lr−1j

as the probability of a problem k arising in i to be in node j after r steps.
Or simply,

Qk(r) = (P k)r = P k(r times)
· · · P k
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Analysis (1/7) ➣➟ ➠ ➪

No-congestion

• First, assume no congestion. Then, qk
ij(r) reinterpreted as the proba-

bility that, at any given time t(≥ r),a problem k originated r periods
ago in i is faced by j.

• Then

bk
ij ≡

∞∑
r=1

qk
ij(r)

steady-state expected number of problems k which arose in i currently
passing through j.

• Let Bk denote the matrix (bk
ij)i,j∈N for any given k. Then, compactly:

Bk =
∞∑

r=1

Qk(r) =
∞∑

r=1

(P k)r = (I − P k)−1P k
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Analysis (2/7) ➢➣➟ ➠ ➪

Define notional betweenness of node j by:

βj ≡
∑

i,k∈N

bk
ij,

Interpret βj as the expected number of problems going through node j in

the long run.

• Effective betweenness:

β̃j(ρ) ≡
ρβj

n− 1
,
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Analysis (3/7) ➢➣➟ ➠ ➪

Congestion and collapse

• Nodes behave as statistical queues (departures assumed to follow ex-

ponential distribution, so arrivals are Poisson) - More on this later.

• Length of queue grows without bound when arrival rate higher than

delivery rate (normalized to one). Thus, a node j saturates/collapses,

provided no other does, iff β̃j(ρ) > 1,

• Implies that the maximum ρ consistent with no node collapsing in the

network is:

ρc =
n− 1

β∗
(2)

where β∗ ≡ maxj βj is the maximum effective betweenness.
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Analysis (4/7) ➢➣➟ ➠ ➪

CONCRETE EXAMPLE

(a) For all i, j, k ∈ N, such that i 6= k and k /∈ Ni,

pk
ij =

1

|Ni|
.

(b) Every problem k at node i, is processed with prob 1
qi

, and qi the number

in the queue.
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Analysis (5/7) ➢➣➟ ➠ ➪

Below the point of collapse

• Arrivals and departures from each node i follow a Poisson processes

with rates equal to νi = ρ βi
n−1and unity, respectively.

• Below the critical ρc, well-defined steady state probabilities.

• Denote by pim the steady state probability of a queue of size m in node

i. The induced distribution (pim)∞m=0 must satisfy:

νipi,m−1 + pi,m+1 = (νi + 1)pim

pi1 = νipi0
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Analysis (6/7) ➢➣➟ ➠ ➪

• Left-hand side of first equation is the flow rate into the state m. No

other possible transitions, since two simultaneous events do not hap-

pen.

• Right-hand side is the departure rate from state m, it adds the rates at

which a queue that has m problem receives one more, or solves one.

• The second equation is like the first one, except it notes that a queue

in state zero cannot go to state minus one.

• The solution to the system:

pim = (1− νi)ν
m
i , m = 0,1,2, . . .
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Analysis (7/7) ➢➟ ➠ ➪

• Given this, the expectation for the length of the queue at i, denoted

by λi, is:

λi =
∞∑

m=0

m(1− νi)ν
m
i =

νi

1− νi
.

• Over the whole network, the stock of floating problems is

λ(ρ) =
∑
i∈N

λi(ρ) =
∑
i∈N

ρ βi
n−1

1− ρ βi
n−1

. (3)

• This magnitude, implies average delay, denoted ∆(ρ), by Law of Little,

∆(ρ) =
1

nρ
λ(ρ).
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Optimal Networks (1/9) ➣➟ ➠ ➪

• Given any network Γ, denote by λΓ, ρΓ
c , βΓ

i . Then:

λΓ(0) = 0

lim
ρ↑ρΓ

c

λΓ(ρ) = ∞.

• Let U be the set of all networks with a fixed number of nodes and
links, by λ∗ the lower envelope of {λΓ}Γ∈U , i.e.

λ∗(ρ) ≡ min
Γ∈U

λΓ(ρ)

with

B∗(ρ) ≡ argmin
Γ∈U

λΓ(ρ).

• Our aim is to characterize the topological properties of networks in
B∗(ρ) . We shall focus on their polarization.
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Optimal Networks (2/9) ➢➣➟ ➠ ➪

• We first define the topological betweenness and denote it by γi: It

considers minimum distance paths between nodes.

• Now define polarization:

θ(Γ) =
maxi∈N γi − 〈γi〉

〈γi〉

• For networks associated to a B∗(ρ) denote their polarization θ∗(ρ).
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Optimal Networks (3/9) ➢➣➟ ➠ ➪

1. For ρ low, optimality should involve minimizing distance, which is

achieved with high polarization: a star network. We expect θ∗(ρ) to

take the highest possible value.

2. As ρ draws close to the maximum ρ̄c, congestion becomes crucial, and

optimality should involve a balanced network. θ∗(ρ) should take the

smallest possible value.

• Note that, for low ρ, the performance of Γ can be approximated:

λΓ(ρ) =
∑
i∈N

ρ
βΓ

i
n−1

1− ρ
βΓ

i
n−1

≈ ρ

n− 1

∑
i∈N

βΓ
i .

Therefore, finding the optimal Γ∗(ρ) involves minimizing the aggregate

betweenness. This, happens for a star-like network.
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Optimal Networks (4/9) ➢➣➟ ➠ ➪

• Instead, for high ρ, we have that, as the stock of floating problems

rises its order of magnitude satisfies:

λΓ(ρ) ∼ O

max
i∈N

1

1− ρ
βΓ

i
n−1


= O

 1

1− ρ
n−1 maxi∈N βΓ

i

 .

This implies that optimizing Γ∗(ρ) involves minimizing the maximal

β∗ ≡ maxi βi.Such a maximal β∗ obtains in a homogenous network.

• Confirmed by the simulations.
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Optimal Networks (5/9) ➢➣➟ ➠ ➪
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Optimal Networks (6/9) ➢➣➟ ➠ ➪

• Two further interesting features:

1. First, there is an abrupt (threshold) change between the two ex-

treme topologies (i.e. star-like and symmetric) as ρ varies.

2. The larger is the number of links, the lower is the threshold for

change and the larger the magnitude of this change.
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Optimal Networks (7/9) ➢➟ ➠ ➪

EXPLANATION

• Optimize over vector of betweenness:

min
β

∑
i∈N

ρ βi
n−1

1− ρ βi
n−1

subject to

(β1, β2 . . . , βn) ∈ H

where H is the feasible set.

• Symmetry forces homogeneous (interior) vector of β in a concave prob-
lem.

• But objective function is convex and H does not depend on ρ
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Optimal Networks (8/9) ➢➣➟ ➠ ➪

1β

2β

B

{ }1 2 2( , ) : ( ) Kββ β β λ ρ= =

{ }1 2 1( , ) : ( ) 'Kββ β β λ ρ= =

45!

1 2ρ ρ<
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Summary and extensions (1/2) ➣ ➲ ➪

• We propose an abstract model of a problem solving organization which:

1. Operates through local communication,

2. Is forced to search restricted by local information

3. Is subject to the effects of congestion.

• We provide an analytical characterization of the threshold of collapse

and the stock of floating problems and we then find the network which

optimizes performance.
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Summary and extensions (2/2) ➢ ➲ ➪

• A number of extensions could be explored. One is effect of a larger

“information radius”:

1. Concerning the analytical approach used to characterize the collapse

threshold and average delay, may be applied unchanged for any

information radius.

2. The optimal network becomes less polarized as the information ra-

dius expands.
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