3402 CONTRACTS AND GAME THEORY
 Midterm Exam
 Universitat Pompeu Fabra - Winter 1995
 Professor: Antonio Cabrales

1. Consider the three-player extensive-form game depicted in the following figure.
$(3,0,0)$
(a) Show that (A, A) is not the outcome of a Nash equilibrium.
(b) What are the Nash equilibria in this game?
(c) Suppose that Player 1 thought that the probability of L was 0 and Player 2 thought that the probability of L was 1 . What would be the outcome of the game in this case? Why is this outcome not a Nash equilibrium?
2. The accompanying simultaneous-move game is played twice, with the actions of the first stage observed before the second stage begins. There is no discounting. The variable x is greater than 4 , so that $(4,4)$ is not an equilibrium payoff in the oneshot game. For what values of x is the following strategy (played by both players) a subgame-perfect Nash equilibrium?

Play Q_{i} in the first stage. If the first-stage outcome is $\left(y, Q_{2}\right)$ where $y \neq Q_{1}$, play R_{i} in the second stage. If the first-stage outcome is $\left(Q_{1}, z\right)$ where $z \neq Q_{2}$, play S_{i} in the second stage. If the first-stage outcome is (y, z) where $y \neq Q_{1}$ and $z \neq Q_{2}$, play P_{i} in the second stage.

	P_{2}	Q_{2}	R_{2}	S_{2}
P_{1}	2,2	$x, 0$	$-1,0$	0,0
Q_{1}	$0, x$	4,4	$-1,0$	0,0
R_{1}	0,0	0,0	0,2	0,0
S_{1}	$0,-1$	$0,-1$	$-1,-1$	2,0

3. In Rubinstein's infinite horizon bargaining game suppose that the players are restricted to proposing either that Player 1 gets the whole dollar or that Player 2 gets the whole dollar.
(a) Describe a subgame perfect equilibrium (and show that it is subgame perfect) in which Player 1 begins by proposing that Player 1 gets the whole dollar and Player 2 agrees.
(b) Describe a subgame perfect equilibrium (and show that it is subgame perfect) in which Player 1 begins by proposing that Player 2 gets the whole dollar and Player 2 agrees.
(c) Describe a subgame perfect equilibrium (and show that it is subgame perfect) in which agreement does not take place immediately.
4. The following game is called the game of Chicken.

	Dove	Hawk
Dove	2,2	0,3
Hawk	3,0	$-1,-1$

Assume this game is repeated 100 times. The repeated game payoffs are just the sum of the stage-game payoffs. Consider a strategy s that tells you always to choose dove up until the 100th stage and to use dove and hawk with equal probabilities at the 100th stage-unless the two players have failed to use the same actions at the preceding stage. If such a coordination failure has occurred in the past, s tells a player to look for the first stage at which differing actions were used and then always to use whatever action he or she did not play at that stage.
(a) Why is (s, s) a Nash equilibrium?
(b) Prove that (s, s) is a subgame-perfect equilibrium.
(c) What is it about Chicken that allows "folk theorems" results to be possible in the finitely repeated case?

