1113 CONTRACTS AND GAME THEORY Final Exam
 Universitat Pompeu Fabra - Spring 1997
 Professor: Antonio Cabrales

1. Consider the following game:

Show that there is a Perfect Bayesian Equilibrium for that game where all types of player 1 choose action X.
2. Consider a duopoly whose inverse demand functio is given by

$$
P(Q)=\max \{M-Q, 0\}, \quad M>0
$$

The cost functions of the firms are $C_{i}\left(q_{i}\right)=0$, for $i=1,2$, and this is common knowledge. M can take one of two values $M=A$ and $M=B$, where $A>$ $B>\frac{1}{4} A$, both with identical probabilities. Firm 1 is informed about the value of M. Assuming that the firms take their decisions simulataneously, compute the the Bayes-Nash equilibrium of this game.
3. In the game of the previous problem assume that $A=6$ and $B=4$. Consider now the alternative game where firm 1 decides first how much to produce, while firm 2 takes the production decision after observing the production of firm 1 (but without being informed of M). Find an equilibrium in which the two types of firm 1 produce $q_{1}=1$.
4. Consider the following game:
(a) Find the three pure strategy Nash equilibria of this game.
(b) Show that two of the three Nash equilibria are sequential but the other is not. Hint: Characterize the beliefs that would make this equilibrium sequentially rational and show that they are not consistent.
5. Consider the following game:
(a) Find a subgame perfect Nash equilibrium of this game. Is it unique? Are there any other Nash equilibria?
(b) Now suppose that player 2 cannot observe player 1's move. Write down the new extensive form. What is the set of Nash equilibria?
(c) Now suppose that player 2 observes player 1's move correctly with probability $p \in(0,1)$ and incorrectly with probability $1-p$ (e.g., if player 1 says T, player 2 observes T^{s} with probability p and observes B^{s} with probability $1-p$) is common knowledge to the two players. What is the extensive form now? Show that there is a unique Perfect Bayesian Equilibrium.
6. Player 1 is involved in an accident with player 2. Player 1 knows whether she she is negligent or not, but player 2 does not know; if the case comes to court the judge learns the truth. Player 1 sends a "take-it-or-leave-it" pretrial offer of compensation that must be either 3 or 5 , which player 2 either accepts or rejects. If he accepts the offer the parties do not go to court. If he rejects it the parties go to court and player 1 has to pay 5 to player 2 if he is negligent and 0 otherwise; in either case player 1 had to pay the court expenses of 6 . Write the extensive form of this signaling game and find its sequential equilibria.

