Microeconomics II - Winter 2006

Chapter 3

Games with Incomplete Information - Bayes-Nash equilibrium

Antonio Cabrales

January 9, 2006

《介 \Rightarrow

Summary

- Examples ${ }^{\| \rightarrow} \rightarrow$
- Bayesian games $\stackrel{\mu l}{ }$ |nı
- Bayesian equilibria for examples $" m$

Examples (1/4)

A Entry and capacity building game.

I,E	e	n	I,E	e	n
B	0,-1	2,0	B	1.5,-1	3.5,0
N	2,1	3,0	N	2,1	3,0

In the left-hand side game, the cost of building capacity is 3 , in the lefthand side, it is 1.5. Nature chooses left-hand side with probability p. Player 1 is informed (and only him), then both players choose actions simultaneously.

Examples (2/4)

B Contribution game.

1,2	C	N
C	$1-c_{1}, 1-c_{2}$	$1-c_{1}, 1$
N	$1,1-c_{2}$	0,0

Cost, if contribution is chosen, c_{i} is private information and distributed $U[0,2]$. Benefit is 1 if at least one contributes.

Examples（3／4）

C Second price auction．Two players，strategies $b_{i} \in \Re^{+}, i=1,2$ ．

$$
u_{1}\left(b_{1}, b_{2}\right)=\left\{\begin{array}{c}
v_{1}-b_{2} \text { if } b_{1}>b_{2} \\
\frac{v_{1}-b_{2}}{2} \text { if } b_{1}=b_{2} \\
0 \text { if } b_{1}<b_{2}
\end{array}, \quad u_{2}\left(b_{1}, b_{2}\right)=\left\{\begin{array}{c}
v_{2}-b_{1} \text { if } b_{2}>b_{1} \\
\frac{v_{2}-b_{1}}{2} \text { if } b_{2}=b_{1} \\
0 \text { if } b_{2}<b_{1}
\end{array}\right.\right.
$$

v_{i} is private information and distributed $D[0,1]$ ．

D First price auction. Two players, strategies $b_{i} \in \Re^{+}, i=1,2$.

$$
u_{1}\left(b_{1}, b_{2}\right)=\left\{\begin{array}{c}
v_{1}-b_{1} \text { if } b_{1}>b_{2} \\
\frac{v_{1}-b_{1}}{2} \text { if } b_{1}=b_{2} \\
0 \text { if } b_{1}<b_{2}
\end{array}, u_{2}\left(b_{1}, b_{2}\right)=\left\{\begin{array}{c}
v_{2}-b_{2} \text { if } b_{2}>b_{1} \\
\frac{v_{2}-b_{2} \text { if } b_{2}=b_{1}}{2} \\
0 \text { if } b_{2}<b_{1}
\end{array}\right.\right.
$$

v_{i} is private information and distributed $U[0,1]$.

1. Players

$$
N=\{1, \ldots, n\}
$$

2. Set of types (for each player)
$\forall i \in N$, there is a set T_{i} of types representing what player i knows (preferences, technology, information) $T \equiv \prod_{i=1}^{n} T_{i}$. That is, i knows which $t_{i} \in T_{i}$ is true, but only knows that t_{-i} is some member of T_{-i}.
3. Probability distribution of types
$P: T \rightarrow[0,1]$

Bayesian games (2/5)

4. Possible actions
$\forall i \in N$, there is a set A_{i}, a generic member is a_{i}. The generic profile of actions $a=\left(a_{1}, \ldots, a_{n}\right) \in A \equiv \prod_{i=1}^{n} A_{i}$.
5. Payoffs
$\forall i \in N$, there is a function $\Pi_{i}: T \times A \rightarrow \Re$.

To transform this into a game, we need a strategy set

Strategies

$\forall i \in N$, a strategy $\gamma_{i} \in \Gamma_{i}$ is a function $\gamma_{i}: T_{i} \rightarrow A_{i}$.

Bayes-Nash Equilibrium

A strategy profile $\gamma^{*}=\left(\gamma_{1}^{*}, \ldots, \gamma_{n}^{*}\right)=\left(\gamma_{i}^{*}, \gamma_{-i}^{*}\right) \in \Gamma$ is a Bayes- Nash equilibrium if, for all $i \in N, \gamma_{i} \in \Gamma_{i}$

$$
\begin{array}{r}
\sum_{t_{1} \in T_{1}} \ldots \sum_{t_{n} \in T_{n}} P\left(t_{1}, \ldots, t_{n}\right) \pi_{i}\left(t_{1}, \ldots, t_{n}, \gamma_{1}^{*}\left(t_{1}\right), \ldots, \gamma_{i}^{*}\left(t_{i}\right), \ldots, \gamma_{n}^{*}\left(t_{n}\right)\right) \geq \\
\sum_{t_{1} \in T_{1}} \ldots \sum_{t_{n} \in T_{n}} P\left(t_{1}, \ldots, t_{n}\right) \pi_{i}\left(t_{1}, \ldots, t_{n}, \gamma_{1}^{*}\left(t_{1}\right), \ldots, \gamma_{i}\left(t_{i}\right), \ldots, \gamma_{n}^{*}\left(t_{n}\right)\right)
\end{array}
$$

We can rewrite this as

$$
\begin{array}{r}
\sum_{t_{i} \in T_{i}} \sum_{t_{-i} \in T_{-i}} P\left(t_{i}, t_{-i}\right) \pi_{i}\left(t_{i}, t_{-i}, \gamma_{i}^{*}\left(t_{i}\right), \gamma_{-i}^{*}\left(t_{-i}\right)\right) \geq \\
\sum_{t_{i} \in T_{i}} \sum_{t_{-i} \in T_{-i}} P\left(t_{i}, t_{-i}\right) \pi_{i}\left(t_{i}, t_{-i}, \gamma_{i}\left(t_{i}\right), \gamma_{-i}^{*}\left(t_{-i}\right)\right)
\end{array}
$$

More importantly, this definition is equivalent to:

A strategy profile $\gamma^{*}=\left(\gamma_{1}^{*}, \ldots, \gamma_{n}^{*}\right)=\left(\gamma_{i}^{*}, \gamma_{-i}^{*}\right) \in \Gamma$ is a Bayes- Nash equilibrium if, for all $i \in N, a_{i} \in A_{i}$ and for all $t_{i} \in T_{i}$
$\sum_{t_{-i} \in T_{-i}} P\left(t_{-i} \mid t_{i}\right) \pi_{i}\left(t_{i}, t_{-i}, \gamma_{i}^{*}\left(t_{i}\right), \gamma_{-i}^{*}\left(t_{-i}\right)\right) \geq \sum_{t_{-i} \in T_{-i}} P\left(t_{-i} \mid t_{i}\right) \pi_{i}\left(t_{i}, t_{-i}, a_{i}, \gamma_{-i}^{*}\left(t_{-i}\right)\right)$

Bayesian games (5/5)

Why?

First note that the definition below certainly implies the one above. Remember that $P\left(t_{i}, t_{-i}\right)=P\left(t_{i}\right) P\left(t_{-i} \mid t_{i}\right)$, then add over t_{i}.

Now, suppose the one above did not imply the one below. Then there must exist a type t_{i}^{\prime} and an action a_{i}^{\prime} with
$\sum_{t_{-i} \in T_{-i}} P\left(t_{-i} \mid t_{i}^{\prime}\right) \pi_{i}\left(t_{i}^{\prime}, t_{-i}, a_{i}^{\prime}, \gamma_{-i}^{*}\left(t_{-i}\right)\right)>\sum_{t_{-i} \in T_{-i}} P\left(t_{-i} \mid t_{i}^{\prime}\right) \pi_{i}\left(t_{i}^{\prime}, t_{-i}, \gamma_{i}^{*}\left(t_{i}^{\prime}\right), \gamma_{-i}^{*}\left(t_{-i}\right)\right)$
But then let us construct γ_{i}^{\prime}, such that $\gamma_{i}^{\prime}\left(t_{i}\right)=\gamma_{i}^{*}\left(t_{i}\right)$ for $t_{i} \neq t_{i}^{\prime}$ and $\gamma_{i}^{\prime}\left(t_{i}^{\prime}\right)=a_{i}^{\prime}$. Then by noticing again that $P\left(t_{i}, t_{-i}\right)=P\left(t_{i}\right) P\left(t_{-i} \mid t_{i}\right)$ and adding over t_{i}. we see that

$$
\begin{array}{r}
\sum_{t_{i} \in T_{i}} \sum_{t_{-i} \in T_{-i}} P\left(t_{i}, t_{-i}\right) \pi_{i}\left(t_{i}, t_{-i}, \gamma_{i}^{\prime}\left(t_{i}\right), \gamma_{-i}^{*}\left(t_{-i}\right)\right)> \\
\sum_{t_{i} \in T_{i}} \sum_{t_{-i} \in T_{-i}} P\left(t_{i}, t_{-i}\right) \pi_{i}\left(t_{i}, t_{-i}, \gamma_{i}^{*}\left(t_{i}\right), \gamma_{-i}^{*}\left(t_{-i}\right)\right)
\end{array}
$$

and so we reach a contradiction.

Bayesian equilibria for examples (1/7)

Game A

I, E	e	n
BB	$1.5(1-p),-1$	$2 p+3.5(1-p), 0$
BN	$2(1-p),-p+(1-p)$	$2 p+3(1-p), 0$
NB	$2 p+1.5(1-p), p-(1-p)$	$3 p+3.5(1-p), 0$
NN	2,1	3,0

- Note first that $B B$ and $B N$ are strictly dominated for player I.
- If $p>0.5, \mathrm{n}$ is strictly dominated for E and then there is only one equilibrium ($N N, e$).
- If $p \leq 0.5$, there are two equilibria in pure strategies ($N N, e$) and ($N B, n$). There is also an equilibrium in mixed strategies (if $p<0.5$), namely $((1 / 2(1-p), 1-1 / 2(1-p)),(1 / 2,1 / 2))$.

Game B

$\gamma_{i}:[0,2] \rightarrow\{C, N\}$. Let $z_{j}=\operatorname{Pr}\left(\gamma_{j}\left(c_{j}\right)=C\right)$. Then

$$
\pi_{1}\left(C, \gamma_{2}\left(c_{2}\right) \mid c_{1}\right)=1-c_{1} ; \pi_{1}\left(N, \gamma_{2}\left(c_{2}\right) \mid c_{1}\right)=z_{2}
$$

Thus the optimal strategy (best-response) is:

$$
\gamma_{1}^{*}\left(c_{1}\right)=\left\{\begin{array}{l}
C \text { if } c_{1} \leq 1-z_{2} \\
N \text { if } c_{1}>1-z_{2}
\end{array}\right.
$$

and similarly

$$
\gamma_{2}^{*}\left(c_{2}\right)=\left\{\begin{array}{l}
C \text { if } c_{2} \leq 1-z_{1} \\
N \text { if } c_{2}>1-z_{1}
\end{array}\right.
$$

The indifferent type is c_{i}^{*}. Thus, $1-z_{2}=c_{1}^{*}$, and $1-z_{1}=c_{2}^{*}$. From the definition of z_{i} we have $1-\frac{c_{2}^{*}}{2}=c_{1}^{*}, 1-\frac{c_{1}^{*}}{2}=c_{2}^{*}$. Thus $c_{1}^{*}=c_{2}^{*}=\frac{2}{3}$.

No contribution, even though, $\frac{2}{3}<c_{i}<1$.

Game C

$\gamma_{1}\left(v_{1}\right)=v_{1}$ is a weakly dominant strategy.

1. Let $b_{1}^{\prime}>v_{1}$.
(a) If $b_{2}>b_{1}^{\prime}$

$$
u_{1}\left(v_{1}, b_{2}\right)=0=u_{1}\left(b_{1}^{\prime}, b_{2}\right)
$$

(b) If $b_{2}<b_{1}^{\prime}, b_{2} \geq v_{1}$

$$
u_{1}\left(v_{1}, b_{2}\right)=0>u_{1}\left(b_{1}^{\prime}, b_{2}\right)=v_{1}-b_{2}
$$

(c) If $b_{2}=b_{1}^{\prime}, b_{2} \geq v_{1}$

$$
u_{1}\left(v_{1}, b_{2}\right)=0>u_{1}\left(b_{1}^{\prime}, b_{2}\right)=\frac{v_{1}-b_{2}}{2}
$$

(d) If $b_{2}<b_{1}^{\prime}, b_{2}<v_{1}$

$$
u_{1}\left(v_{1}, b_{2}\right)=v_{1}-b_{2}=u_{1}\left(b_{1}^{\prime}, b_{2}\right)
$$

2. Let $b_{1}^{\prime}<v_{1}$.
(a) If $b_{2} \geq v_{1}, b_{2}>b_{1}^{\prime}$

$$
u_{1}\left(v_{1}, b_{2}\right)=0=u_{1}\left(b_{1}^{\prime}, b_{2}\right)
$$

(b) If $b_{2}<v_{1}, b_{2} \geq b_{1}^{\prime}$

$$
u_{1}\left(v_{1}, b_{2}\right)=v_{1}-b_{2}>\frac{v_{1}-b_{2}}{2} \geq u_{1}\left(b_{1}^{\prime}, b_{2}\right)
$$

(c) If $b_{2}<v_{1}, b_{2}<b_{1}^{\prime}$

$$
u_{1}\left(v_{1}, b_{2}\right)=v_{1}-b_{2}=u_{1}\left(b_{1}^{\prime}, b_{2}\right)
$$

Game D

Equilibrium:

1. In pure strategies.
2. Strategies are affine functions: $\gamma_{i}\left(v_{i}\right)=\max \left\{\alpha_{i}+\beta_{i} v_{i}, 0\right\}$
3. Symmetric: $\alpha_{i}=\alpha, \beta_{i}=\beta, \forall i=1,2$.

The equilibrium is like this, but strategies are best against anything else.

- $\alpha \geq 0$. Otherwise, let $v_{1}<\frac{-\alpha_{1}}{\beta_{1}}$. This type must bid 0 . But then

$$
u_{1}\left(0, \gamma_{2} \mid v_{1}\right)=\frac{v_{1}}{2} \operatorname{Pr}\left(v_{2} \leq \frac{-\alpha_{2}}{\beta_{2}}\right)<\left(v_{1}-\varepsilon\right) \operatorname{Pr}\left(v_{2} \leq \frac{-\alpha_{2}}{\beta_{2}}\right) \leq u_{1}\left(\varepsilon, \gamma_{2} \mid v_{1}\right)
$$

Thus $b_{1}=0$ is not optimal for $v_{1}<\frac{-\alpha_{1}}{\beta_{1}}$.

- $\alpha \leq 0$. Otherwise some types v_{i} have $\gamma_{i}\left(v_{i}\right)=\alpha_{i}+\beta_{i} v_{i}>v_{i}$ (v_{i} is small enough so that $\left.\alpha_{i}>\left(1-\beta_{i}\right) v_{i}\right)$.
- So we have $\gamma_{i}\left(v_{i}\right)=\beta v_{i}(\beta>0)$.
$u_{1}\left(b_{1}, \gamma_{2} \mid v_{1}\right)=\left(v_{1}-b_{1}\right) \operatorname{Pr}\left(v_{2}<b_{1} / \beta \mid v_{1}\right)+\frac{\left(v_{1}-b_{1}\right)}{2} \operatorname{Pr}\left(v_{2}=b_{1} / \beta \mid v_{1}\right)$.
Given $v_{i}{ }^{\sim} U[0,1], \operatorname{Pr}\left(v_{2}=b_{1} / \beta \mid v_{1}\right)=0$, thus $u_{1}\left(b_{1}, \gamma_{2} \mid v_{1}\right)=\left(v_{1}-b_{1}\right) \frac{b_{1}}{\beta}$. Thus the optimal strategy for agent 1 is: $\gamma_{1}\left(v_{1}\right)=\frac{v_{1}}{2}$, and thus, identifying coefficients $\beta=\frac{1}{2}$.

Microeconomics II - Winter 2006

Chapter 3

Games with Incomplete Information - Bayes-Nash equilibrium

Antonio Cabrales

January 9, 2006

《介 \Rightarrow

