

Networks - Fall 2005 Chapter 2 Play on networks 3: Coordination and social action Morris (2000) and Chwe (2000)

September 16, 2005

Summary

- Introduction: Morris 2000 🛶 🗰
- Questions 🛶 📫
- Cohesion → →
- Introduction (Chwe 2000) → →
- Sufficient networks and cliques →

- Set of players N on a network g.
- Agents on nodes play a coordination game with neighbors. Use same action on all.
- Game Γ is:

$s_1 \setminus s_2$	0	1
0	u(0,0);u(0,0)	u(0,1);u(1,0)
1	u(1,0);u(0,1)	u(1,1);u(1,1)

• Assume u(0,0) > u(1,0) and u(1,1) > u(0,1).

• If agent 2 chooses strategy 1 with probability p, agent 1 prefers 1 to 0 if:

$$(1-p) \cdot u(0,0) + p \cdot u(0,1) > (1-p) \cdot u(1,0) + p \cdot u(1,1).$$

• That is agent 2 prefers 1 to 0 if q < p, where

$$q \equiv \frac{u(0,0) - u(1,0)}{(u(0,0) - u(1,0)) + (u(1,1) - u(0,1))}$$

<

• Then, let the game Γ' :

$s_1 \setminus s_2$	0	1
0	q,q	0,0
1	0,0	$oxed{1-q,1-q}$

- The game Γ' is strategically equivalent to Γ .
- In effect notice that agent 2 prefers 1 to 0 if:

$$(1-p)\cdot 0 + p\cdot (1-q) > (1-p)\cdot q + p\cdot 0 \Leftrightarrow p > q.$$

- So we will use the simpler Γ' .
- We let g given, $n \to \infty$.

- Suppose initially everybody plays $s_i(0) = 0$: s(0) = (0, 0, ..., 0).
- Suppose that a finite group of players switches to $s_i = 1$.
- Can the whole network switch to $s_j = 1$?
- It depends on the value of q and the network g.
- Suppose some play 1 and some play zero at time t-1.
 - Payoff for player *i* playing 0 is:

$$u_i(0, s_{-i}(t-1) = q \cdot \sharp \{ j \in N | ij \in g, s_j(t-1) = 0 \}.$$

• Payoff for player *i* playing 1 is:

$$u_i(1, s_{-i}(t-1)) = (1-q) \cdot \sharp \{ j \in N | ij \in g, s_j(t-1) = 1 \}.$$

• A switch occurs if $u_i(1, s_{-i}(t-1) > u_i(0, s_{-i}(t-1))$:

$$q < \frac{\sharp\{j \in N | ij \in g, s_j(t-1) = 1\}}{\sharp\{j \in N | ij \in g\}} = \frac{\sharp\{j \in N | ij \in g, s_j(t-1) = 1\}}{\sum_{j \in N} g_{ij}}$$

- Take a line. A few people switch to play 1. Then for somebody in the boundary of the "switchers" the condition is $q < \frac{1}{2}$.
- For a regular *m*-dimensional grid interacting with 1 step away in at most 1 dimension (interaction between x and x' if $\sum_{i=1}^{m} |x_i x'_i| = 1$).
 - Then contagion occurs if $q < \frac{1}{2n}$.

• Now take *m*-dimensional grid, but interaction with agents situated *n*-steps away at most in all dimensions (interaction between *x* and *x'* if $\max_{i=1,...,n} |x_i - x'_i| = n$).

• Contagion if
$$q < \frac{n(2n+1)^{m-1}}{(2n+1)^m - 1}$$
.

- Denominator: The 2n + 1 combinations in m dimensions (-1 as you do not count yourself).
- Numerator: Any advancing "frontier" has to be one-dimension less, but has a "depth" n.

- Important property for contagion.
- Intuition: how likely it is that friends of my friends are also my friends (in physics lit. "clustering.")
- Take a finite set V, and $i \in V$. Let the proportion of i's contacts in V.

$$B_i(V) = \frac{\sharp\{\{j \in N | ij \in g\} \cap V\}}{\sharp\{j \in N | ij \in g\}}$$

Definition 1 The cohesion of V, denoted by $B(V) = \min_{i \in V} B_i(V)$

• That is, the cohesion of V is the minimum proportion of contacts in V among all members of V, or the minimum proportion of inner links (resp. outer links) is at least B(V) (resp. 1 - B(V).)

Definition 2 A finite set of nodes V is (1-q)-cohesive if $B(V) \ge 1-q$

- V is (1-q)-cohesive if the proportion of outer links is at most q.
- A set is cofinite if its complementary is finite.

Lemma 3 Diffusion is not possible if every cofinite set contains a finite (1-q)-cohesive subset.

Remark 4 Decreasing *q* increases possibility of contagion.

- Contagion by definition starts in a finite set X.
- So take its complement X^c . This is a cofinite set.

- By the assumption of the lemma, X^c contains a finite (1 − q)-cohesive subset. Call it V.
- $q \ge 1 B(V)$, so even if all people around V switch to playing 1, the people in V will not switch. Thus contagion is not possible.

Remark 5 If there exists a cofinite set such that none of its subsets is (1-q)-cohesive, then contagion is possible.

• This will happen if the "epidemic" starts in the complement of the cofinite set which has no (1 - q)-cohesive subsets.

Definition 6 Contagion threshold ξ is the largest q such that action 1 spreads to the whole population starting by best-response from some finite group.

Proposition 7 The contagion threshold is the smallest p (call it p^*) such that every co-finite group contains an infinite (1 - p)-cohesive subgroup.

- Suppose not. Then ξ(g) > p*. Let ξ(g) > q > p*. For such q contagion is possible.
- But for q there by the contradiction assumption there is a cofinite group which contains an infinite (1 q)-cohesive subgroup. But by previous lemma, contagion is not possible. A contradiction.

Proposition 8 Let D such that for all $i \in N$, $\sharp\{j \in N | ij \in g\} \leq D$. Then $\xi(g) \geq \frac{1}{D}$.

• Suppose not. Then $\xi(g) < \frac{1}{D}$. Then let $\xi(g) < q < \frac{1}{D}$.

- But every person who comes in contact with one 1-player will switch over to 1.
- This is true since for that person $\sharp\{j \in N | ij \in g, s_j(t-1) = 1\} \ge 1$, and for everybody $\sharp\{j \in N | ij \in g\} \le D$.

• Thus
$$q < \frac{1}{D} \leq \frac{\sharp\{j \in N | ij \in g, s_j(t-1) = 1\}}{\sharp\{j \in N | ij \in g\}}.$$

Corollary 9 If players are connected within g, in the long-run co-existence of conventions is possible if $\xi(g) < q < 1 - \xi(g)$.

Remark 10 In the line, co-existence is not possible since $\xi(g) = 1/2$.

Remark 11 If you want to get rid of coexistence, you should change q or the structure of the network,

- ایک 🔍

- Question: Why are all of a sudden people interested in collective action?
- N set of players.
- $N = \{1, ..., n\}$, set of players.
- $X_i = \{0, 1\}, x_i \in X_i$ is player *i*'s action.
- Types are $\theta_i \in \Theta_i = \{w, y\}$ (willing, unwilling), private information.

•
$$\theta = (\theta_1, ..., \theta_n) \in \Theta = \{w, y\}^n$$
.

•
$$u_i(x_i, y) = \begin{cases} 0 \text{ if } x_i = 0 \\ 1 \text{ if } x_i = 0 \end{cases}$$
. So *unwilling* do not revolt no matter what.

•
$$u_i(x_i, w) = \begin{cases} -1 \text{ if } x_i = 1, \text{ and } \sharp\{j \in N | x_j = 1\} < e_i \\ 1 \text{ if } x_i = 1, \text{ and } \sharp\{j \in N | x_j = 1\} \ge e_i \\ 0 \text{ if } x_i = 0 \end{cases}$$
. So the *willing* revolt if enough other people do so.

- The game is denoted by $\Gamma_{e_1,e_2,...,e_n}$
- The communication *network* is *directed*: $g_{ji} = 1$ means that *i* knows *j*'s type.
- So each individual *i* knows the people in her ball: $B(i) = \{j | g_{ji} = 1\}$.

Introduction (Chwe 2000) (3/4)

• The state of the world is θ , but each *i* only knows that:

$$\theta \in P_i(\theta) = \{(\theta_{B(i)}, \phi_{N \setminus B(i)}) : \phi_{N \setminus B(i)} \in \{w, y\}^{n - \sharp B(i)}\}$$

- The union of sets $\cup_{\theta \in \Theta} \{P_i(\theta)\}$ is a partition of Θ , which we denote \mathcal{P}_i .
- A strategy is a function $f_i : \Theta \to \{0,1\}$, which is measurable with respect to \mathcal{P}_i .
- That is, if both $\theta, \theta' \in P$ and $P \in \mathcal{P}_i$, then $f_i(\theta) = f_i(\theta')$.
- F_i is the set of all strategies for *i*.
- Let prior beliefs $\pi \in \Delta(\Theta)$.

• Then ex-ante expected utility of strategy profile f is

$$EU_i(f) = \sum_{\theta \in \Theta} \pi(\theta) u_i(f(\theta), \theta).$$

• A strategy profile f is an *equilibrium* if

 $EU_i(f) \ge EU_i(g_i, f_{N \setminus \{i\}})$ for all $g_i \in F_i$.

- A pure strategy equilibrium exists (use supermodularity.) One can even talk of a "maximal" equilibrium.
- It is important that the information on types only travels one link.

• What are *sufficient networks* so that "all go" for *all priors*?

Definition 12 We say that g is a sufficient network if for all $\pi \in \Delta(\Theta)$, there exists an equilibrium f of $\Gamma(g,\pi)$ such that $f_i(w,...,w) = 1$ for all $i \in N$.

- Sufficient networks exist since the complete network is sufficient.
- In a complete network, types are common knowledge, so if $\theta_i = w$ for all $i \in N$, then if all willing types except i revolt, then i prefers to revolt.
- Priors do not matter at this point since types are common knowledge.
- What are the *minimal* sufficient networks?

Sufficient networks and cliques (2/6)

Definition 13 We say that g is a minimal sufficient network if for all g, if $g' \subset g$ and g' is a sufficient network, then g' = g.

Definition 14 A clique of g is a set $M_k \subset N$ such that $g_{ij} = 1$ for all $i, j \in M_k$.

• A *clique* is, then, a component of a network of fully intraconnected individuals.

Proposition 15 Say g is a minimal sufficient network. Then there exist cliques $M_1, ..., M_z$ such that $N = M_1 \cup ... \cup M_z$ and a binary relation \rightarrow over the M_i such that:

1. $g_{ji} = 1$ iff there exist M_k and M_l such that $i \in M_k$ and $j \in M_l$ and $M_k \to M_l$

() (口

Sufficient networks and cliques (3/6)

- 2. If $M_{i_y-1} \rightarrow M_{i_y}$ then there exists a totally ordered set $M_{i_1}, ..., M_{i_y-1}, M_{i_y}$, where M_{i_1} is maximal.
 - Fact 1: in a minimal sufficient network if I talk to you everybody in my clique also talks to you/knows your type.
 - Fact 2: the cliques are arranged in a hierarchical order, that is, all cliques are ordered in "chains."
 - Take the threshold game $\Gamma_{2,2,4,4}$. We represent below the minimal sufficient network and the hierarchy of cliques:

Sufficient networks and cliques (4/6)

• For the game $\Gamma_{3,3,3,3}$ there are two minimal sufficient networks, represented below:

• In that same game it is interesting to see why the following graph is not a sufficient network (even though all people know there is sufficient "impetus" for revolt):

Sufficient networks and cliques (6/6)

• For the game $\Gamma_{1,3,3,4,4,4,6,6,9,9,9}$ the minimal sufficient network has two leading cliques.

Networks - Fall 2005 Chapter 2 Play on networks 3: Coordination and social action Morris (2000) and Chwe (2000)

September 16, 2005

