Networks - Fall 2005

Chapter 2

Play on networks 3: Coordination and social action Morris (2000) and Chwe (2000)

September 16, 2005

《介 \Rightarrow

- Introduction: Morris 2000 \Rightarrow m
- Questions ${ }^{-1 \rightarrow}$ min

- Introduction (Chwe 2000) $m \rightarrow m$
- Sufficient networks and cliques $\stackrel{m}{ } \rightarrow$

Introduction: Morris 2000 (1/3)

- Set of players N on a network g.
- Agents on nodes play a coordination game with neighbors. Use same action on all.
- Game Γ is:

$s_{1} \backslash s_{2}$	0	1
0	$u(0,0) ; u(0,0)$	$u(0,1) ; u(1,0)$
1	$u(1,0) ; u(0,1)$	$u(1,1) ; u(1,1)$

- Assume $u(0,0)>u(1,0)$ and $u(1,1)>u(0,1)$.

Introduction: Morris 2000 (2/3)

- If agent 2 chooses strategy 1 with probability p, agent 1 prefers 1 to 0 if:

$$
(1-p) \cdot u(0,0)+p \cdot u(0,1)>(1-p) \cdot u(1,0)+p \cdot u(1,1)
$$

- That is agent 2 prefers 1 to 0 if $q<p$, where

$$
q \equiv \frac{u(0,0)-u(1,0)}{(u(0,0)-u(1,0))+(u(1,1)-u(0,1))}
$$

Introduction: Morris 2000 (3/3)

- Then, let the game Γ^{\prime} :

$s_{1} \backslash s_{2}$	0	1
0	q, q	0,0
1	0,0	$1-q, 1-q$

- The game Γ^{\prime} is strategically equivalent to Γ.
- In effect notice that agent 2 prefers 1 to 0 if:

$$
(1-p) \cdot 0+p \cdot(1-q)>(1-p) \cdot q+p \cdot 0 \Leftrightarrow p>q .
$$

- So we will use the simpler Γ^{\prime}.
- We let g given, $n \rightarrow \infty$.
- Suppose initially everybody plays $s_{i}(0)=0: s(0)=(0,0, \ldots, 0)$.
- Suppose that a finite group of players switches to $s_{i}=1$.
- Can the whole network switch to $s_{j}=1$?
- It depends on the value of q and the network g.
- Suppose some play 1 and some play zero at time $t-1$.
- Payoff for player i playing 0 is:

$$
u_{i}\left(0, s_{-i}(t-1)=q \cdot \sharp\left\{j \in N \mid i j \in g, s_{j}(t-1)=0\right\} .\right.
$$

Questions (2/3)

- Payoff for player i playing 1 is:

$$
u_{i}\left(1, s_{-i}(t-1)=(1-q) \cdot \sharp\left\{j \in N \mid i j \in g, s_{j}(t-1)=1\right\}\right.
$$

- A switch occurs if $u_{i}\left(1, s_{-i}(t-1)>u_{i}\left(0, s_{-i}(t-1)\right.\right.$:

$$
q<\frac{\sharp\left\{j \in N \mid i j \in g, s_{j}(t-1)=1\right\}}{\sharp\{j \in N \mid i j \in g\}}=\frac{\sharp\left\{j \in N \mid i j \in g, s_{j}(t-1)=1\right\}}{\sum_{j \in N} g_{i j}}
$$

- Take a line. A few people switch to play 1. Then for somebody in the boundary of the "switchers" the condition is $q<\frac{1}{2}$.
- For a regular m-dimensional grid interacting with 1 step away in at most 1 dimension (interaction between x and x^{\prime} if $\sum_{i=1}^{m}\left|x_{i}-x_{i}^{\prime}\right|=1$).
- Then contagion occurs if $q<\frac{1}{2 n}$.
- Now take m-dimensional grid, but interaction with agents situated n steps away at most in all dimensions (interaction between x and x^{\prime} if $\max _{i=1, \ldots, n}\left|x_{i}-x_{i}^{\prime}\right|=n$).
- Contagion if $q<\frac{n(2 n+1)^{m-1}}{(2 n+1)^{m}-1}$.
- Denominator: The $2 n+1$ combinations in m dimensions (-1 as you do not count yourself).
- Numerator: Any advancing "frontier" has to be one-dimension less, but has a "depth" n.
- Important property for contagion.
- Intuition: how likely it is that friends of my friends are also my friends (in physics lit. "clustering.")
- Take a finite set V, and $i \in V$. Let the proportion of i 's contacts in V.

$$
B_{i}(V)=\frac{\sharp\{\{j \in N \mid i j \in g\} \cap V\}}{\sharp\{j \in N \mid i j \in g\}}
$$

Definition 1 The cohesion of V, denoted by $B(V)=\min _{i \in V} B_{i}(V)$

- That is, the cohesion of V is the minimum proportion of contacts in V among all members of V, or the minimum proportion of inner links (resp. outer links) is at least $B(V)$ (resp. $1-B(V)$.)

Cohesion (2/5)

Definition 2 A finite set of nodes V is $(1-q)$-cohesive if $B(V) \geq 1-q$

- V is $(1-q)$-cohesive if the proportion of outer links is at most q.
- A set is cofinite if its complementary is finite.

Lemma 3 Diffusion is not possible if every cofinite set contains a finite ($1-q$)-cohesive subset.

Remark 4 Decreasing q increases possibility of contagion.

- Contagion by definition starts in a finite set X.
- So take its complement X^{c}. This is a cofinite set.

Cohesion (3/5)

- By the assumption of the lemma, X^{c} contains a finite ($1-q$)-cohesive subset. Call it V.
- $q \geq 1-B(V)$, so even if all people around V switch to playing 1 , the people in V will not switch. Thus contagion is not possible.

Remark 5 If there exists a cofinite set such that none of its subsets is ($1-q$)-cohesive, then contagion is possible.

- This will happen if the "epidemic" starts in the complement of the cofinite set which has no ($1-q$)-cohesive subsets.

Definition 6 Contagion threshold ξ is the largest q such that action 1 spreads to the whole population starting by best-response from some finite group.
\qquad

Cohesion (4/5)

Proposition 7 The contagion threshold is the smallest p (call it p^{*}) such that every co-finite group contains an infinite $(1-p)$-cohesive subgroup.

- Suppose not. Then $\xi(g)>p^{*}$. Let $\xi(g)>q>p^{*}$. For such q contagion is possible.
- But for q there by the contradiction assumption there is a cofinite group which contains an infinite $(1-q)$-cohesive subgroup. But by previous lemma, contagion is not possible. A contradiction.

Proposition 8 Let D such that for all $i \in N, \sharp\{j \in N \mid i j \in g\} \leq D$. Then $\xi(g) \geq \frac{1}{D}$.

- Suppose not. Then $\xi(g)<\frac{1}{D}$. Then let $\xi(g)<q<\frac{1}{D}$.

Cohesion (5/5)

- But every person who comes in contact with one 1-player will switch over to 1.
- This is true since for that person $\sharp\left\{j \in N \mid i j \in g, s_{j}(t-1)=1\right\} \geq 1$, and for everybody $\sharp\{j \in N \mid i j \in g\} \leq D$.
- Thus $q<\frac{1}{D} \leq \frac{\sharp\left\{j \in N \mid i j \in g, s_{j}(t-1)=1\right\}}{\sharp\{j \in N \mid i j \in g\}}$.

Corollary 9 If players are connected within g, in the long-run co-existence of conventions is possible if $\xi(g)<q<1-\xi(g)$.

Remark 10 In the line, co-existence is not possible since $\xi(g)=1 / 2$.

Remark 11 If you want to get rid of coexistence, you should change q or the structure of the network,

Introduction (Chwe 2000) (1/4)

- Question: Why are all of a sudden people interested in collective action?
- N set of players.
- $N=\{1, \ldots, n\}$, set of players.
- $X_{i}=\{0,1\}, x_{i} \in X_{i}$ is player i 's action.
- Types are $\theta_{i} \in \Theta_{i}=\{w, y\}$ (willing, unwilling), private information.
- $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \Theta=\{w, y\}^{n}$.

Introduction (Chwe 2000) (2/4)

- $u_{i}\left(x_{i}, y\right)=\left\{\begin{array}{l}0 \text { if } x_{i}=0 \\ 1 \text { if } x_{i}=0\end{array}\right.$. So unwilling do not revolt no matter what.
- $u_{i}\left(x_{i}, w\right)=\left\{\begin{array}{c}-1 \text { if } x_{i}=1, \text { and } \sharp\left\{j \in N \mid x_{j}=1\right\}<e_{i} \\ 1 \text { if } x_{i}=1, \text { and } \sharp\left\{j \in N \mid x_{j}=1\right\} \geq e_{i} \\ 0 \text { if } x_{i}=0\end{array}\right.$. So the willing revolt if enough other people do so.
- The game is denoted by $\Gamma_{e_{1}, e_{2}, \ldots, e_{n}}$
- The communication network is directed: $g_{j i}=1$ means that i knows j 's type.
- So each individual i knows the people in her ball: $B(i)=\left\{j \mid g_{j i}=1\right\}$.

Introduction (Chwe 2000) (3/4)

- The state of the world is θ, but each i only knows that:

$$
\theta \in P_{i}(\theta)=\left\{\left(\theta_{B(i)}, \phi_{N \backslash B(i)}\right): \phi_{N \backslash B(i)} \in\{w, y\}^{n-\sharp B(i)}\right\}
$$

- The union of sets $\cup_{\theta \in \Theta}\left\{P_{i}(\theta)\right\}$ is a partition of Θ, which we denote \mathcal{P}_{i}.
- A strategy is a function $f_{i}: \Theta \rightarrow\{0,1\}$, which is measurable with respect to \mathcal{P}_{i}.
- That is, if both $\theta, \theta^{\prime} \in P$ and $P \in \mathcal{P}_{i}$, then $f_{i}(\theta)=f_{i}\left(\theta^{\prime}\right)$.
- F_{i} is the set of all strategies for i.
- Let prior beliefs $\pi \in \Delta(\Theta)$.

Introduction (Chwe 2000) (4/4)

- Then ex-ante expected utility of strategy profile f is

$$
E U_{i}(f)=\sum_{\theta \in \Theta} \pi(\theta) u_{i}(f(\theta), \theta)
$$

- A strategy profile f is an equilibrium if

$$
E U_{i}(f) \geq E U_{i}\left(g_{i}, f_{N \backslash\{i\}}\right) \text { for all } g_{i} \in F_{i}
$$

- A pure strategy equilibrium exists (use supermodularity.) One can even talk of a "maximal" equilibrium.
- It is important that the information on types only travels one link.

Sufficient networks and cliques (1/6)

- What are sufficient networks so that "all go" for all priors?

Definition 12 We say that g is a sufficient network if for all $\pi \in \Delta(\Theta)$, there exists an equilibrium f of $\Gamma(g, \pi)$ such that $f_{i}(w, \ldots, w)=1$ for all $i \in N$.

- Sufficient networks exist since the complete network is sufficient.
- In a complete network, types are common knowledge, so if $\theta_{i}=w$ for all $i \in N$, then if all willing types except i revolt, then i prefers to revolt.
- Priors do not matter at this point since types are common knowledge.
- What are the minimal sufficient networks?
\square

Sufficient networks and cliques (2/6)

Definition 13 We say that g is a minimal sufficient network if for all g, if $g^{\prime} \subset g$ and g^{\prime} is a sufficient network, then $g^{\prime}=g$.

Definition $14 A$ clique of g is a set $M_{k} \subset N$ such that $g_{i j}=1$ for all $i, j \subset M_{k}$.

- A clique is, then, a component of a network of fully intraconnected individuals.

Proposition 15 Say g is a minimal sufficient network. Then there exist cliques M_{1}, \ldots, M_{z} such that $N=M_{1} \cup \ldots \cup M_{z}$ and a binary relation \rightarrow over the M_{i} such that:

```
1. \(g_{j i}=1\) iff there exist \(M_{k}\) and \(M_{l}\) such that \(i \in M_{k}\) and \(j \in M_{l}\) and
    \(M_{k} \rightarrow M_{l}\)
```

2. If $M_{i_{y}-1} \rightarrow M_{i_{y}}$ then there exists a totally ordered set $M_{i_{1}}, \ldots, M_{i_{y}-1}, M_{i_{y}}$, where $M_{i_{1}}$ is maximal.

- Fact 1: in a minimal sufficient network if I talk to you everybody in my clique also talks to you/knows your type.
- Fact 2: the cliques are arranged in a hierarchical order, that is, all cliques are ordered in "chains."
- Take the threshold game $\Gamma_{2,2,4,4}$. We represent below the minimal sufficient network and the hierarchy of cliques:

- For the game $\Gamma_{3,3,3,3}$ there are two minimal sufficient networks, represented below:

- In that same game it is interesting to see why the following graph is not a sufficient network (even though all people know there is sufficient "impetus" for revolt):

- For the game $\Gamma_{1,3,3,4,4,4,4,6,6,9,9,9}$ the minimal sufficient network has two leading cliques.

Networks - Fall 2005

Chapter 2

Play on networks 3: Coordination and social action Morris (2000) and Chwe (2000)

September 16, 2005

《介 \Rightarrow

