Networks - Fall 2005

Chapter 2
Play on networks 2: Strategic complements
Ballester, Calvó-Armengol and Zenou 2005

October 31, 2005

- Introduction $" \Rightarrow$ "
- Nash equilibrium in pure strategies. $" m$ " $\|=$
- Example $\stackrel{ }{ } \rightarrow$ "
- Interpretation: Counting path length ${ }^{\prime \prime \prime} \Rightarrow$
- Policy: The Key Player $\stackrel{ }{ } \Rightarrow$ "
- Generalization of above set-up. $" \Rightarrow \|$

Introduction (1/4)

- Let network g with $g_{i j} \in\{0,1\}$.
- For all $i \in N$, action $x_{i} \geq 0$.
- $\frac{\partial^{2} u_{i}}{\partial x_{i} \partial x_{j}}=g_{i j} b^{\prime \prime}\left(x_{i}+\bar{x}_{i}\right) \leq 0$ in Bramoullé-Kranton.
- $\frac{\partial^{2} u_{i}}{\partial x_{i} \partial x_{j}}=g_{i j} \lambda \geq 0$ here. Local strategic complements.
- Linear-quadratic utilities

$$
u_{i}\left(x_{1}, \ldots, x_{n} ; g\right)=\alpha x_{i}-\frac{1}{2} x_{i}^{2}+\lambda \sum_{j \in N} g_{i j} x_{i} x_{j} ; \lambda \geq 0, \alpha>0
$$

Introduction (2/4)

- With $\lambda=0$, no interdependence and $x_{i}^{*}=\alpha$.
- With $\lambda>0$, interdependence.
- FOC:

$$
\frac{\partial u_{i}}{\partial x_{i}}=\alpha-x_{i}+\lambda \sum_{j \in N} g_{i j} x_{j}=0
$$

- FOC $\left(x_{i}-\lambda \sum_{j \in N} g_{i j} x_{j}=\alpha\right)$ in general gives a system of equations

$$
[I-\lambda G] \vec{x}=\alpha \overrightarrow{1}
$$

- Determinant of $[I-\lambda G]$ is a polynomial in λ, thus generically invertible matrix.

Introduction (3/4)

- We study this more in depth later.
- Now, suppose you have a regular network, where for all $i \in N, \sum_{j \in N} g_{i j}=$ k.
- Then an equilibrium exists with $x_{i}=x$ for all $i \in N$. We must have $\alpha-x+\lambda k x=0$, thus $x^{*}=\frac{\alpha}{1-\lambda k}$ (assuming $\lambda k<1$).
- For $\lambda>0, x^{*}(\lambda)$ is increasing in λ (when equilibrium exists).
- In general, outcome will depend on the network, when there is heterogeneity.

Nash equilibrium in pure strategies. (1/5)

Remark 1 We show here there is a generically unique Nash equilibrium in pure strategies.

- Notice that $u_{i}\left(x_{1}, \ldots, x_{n} ; g\right)$ is such that $\frac{\partial^{2} u_{i}}{\partial x_{i}^{2}}=-1<0$. This implies:
- x^{*} is a Nash equilibrium iff for all $i \in N$ either

1(.a) $x_{i}^{*}=0$ and $\frac{\partial u_{i}}{\partial x_{i}}\left(0, x_{-i}^{*}\right) \leq 0$
(b) $x_{i}^{*}>0$ and $\frac{\partial u_{i}}{\partial x_{i}}\left(x^{*}\right)=0$.

- But notice that if $x_{i}^{*}=0, \frac{\partial u_{i}}{\partial x_{i}}\left(0, x_{-i}^{*}\right)=\alpha+\lambda \sum_{j \in N} g_{i j} x_{j}^{*}>0$.
- Thus only (b) is relevant and x^{*} is a Nash equilibrium iff:

$$
[I-\lambda G] \vec{x}^{*}=\alpha \overrightarrow{1}, \text { and } x_{i}^{*}>0 \text { for all } i \in N
$$

Nash equilibrium in pure strategies. (2/5)

- Solution of former equation exists and is unique iff det $[I-\lambda G] \neq 0$.
- There exists a finite number of values of λ such that $[I-\lambda G]$ is degenerate, and it has Lebesgue measure zero, thus generically unique Nash equilibrium.
- When a solution exists, is it necessarily in \Re^{+}?
- Debreu and Herstein (1953), the matrix $[I-\lambda G]^{-1}=M(g, \lambda)$ is welldefined and non-negative iff λ is smaller than the largest eigenvalue of G.
- If λ is small enough

$$
[I-\lambda G]^{-1}=\sum_{k \geq 0} \lambda^{k} G^{k}
$$

Nash equilibrium in pure strategies. (3/5)

- To see this diagonalize $G=P^{-1}\left[\begin{array}{ccc}\mu_{1} & \ldots & 0 \\ \ldots & \mu_{i} & \ldots \\ 0 & \ldots & \mu_{n}\end{array}\right] P$.
- Thus $\lambda^{k} G^{k}=P^{-1}\left[\begin{array}{ccc}\left(\lambda \mu_{1}\right)^{k} & \ldots & 0 \\ \ldots & \left(\lambda \mu_{i}\right)^{k} & \ldots \\ 0 & \ldots & \left(\lambda \mu_{n}\right)^{k}\end{array}\right] P$.
- So if $\lambda \max _{i}\left\{\mu_{i}\right\}<1, \sum_{k \geq 0} \lambda^{k} G^{k}$ converges and

$$
\vec{x}^{*}=\alpha[I-\lambda G]^{-1} \overrightarrow{1}
$$

- Summarizing the above we have:

Proposition 2 Let $\mu_{1}(g)$ be the largest positive eigenvalue of G. If $\lambda \mu_{1}(g)<$ 1, the game has a unique interior pure strategy equilibrium given by

$$
\frac{x_{i}^{*}}{\alpha}=m_{i 1}(g, \lambda)+\ldots+m_{i n}(g, \lambda)
$$

Nash equilibrium in pure strategies. (4/5)

with $M(g, \lambda)=\left[m_{i j}(g, \lambda)\right]=[I-\lambda G]^{-1}=\sum_{k \geq 0} \lambda^{k} G^{k}$.
Notice differences with previous model:

1. Equilibrium unique with complement - multiplicity with substitutes.
2. Equilibrium interior with complement - interior equilibria unstable with substitutes.

Example (1/3)

Suppose a 3 person network, with 1 connected to 2 and 3.

- $G=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right] \Rightarrow G^{2}=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right], G^{3}=\left[\begin{array}{lll}0 & 2 & 2 \\ 2 & 0 & 0 \\ 2 & 0 & 0\end{array}\right]$
- By induction $G^{2 p}=\left[\begin{array}{ccc}2^{p} & 0 & 0 \\ 0 & 2^{p-1} & 2^{p-1} \\ 0 & 2^{p-1} & 2^{p-1}\end{array}\right], G^{2 p+1}=\left[\begin{array}{ccc}0 & 2^{p} & 2^{p} \\ 2^{p} & 0 & 0 \\ 2^{p} & 0 & 0\end{array}\right]$
- $x_{1}^{*}=\sum_{p=0}^{\infty}\left[\lambda^{2 p 2^{p}}+\lambda^{2 p+1} 2^{p}+\lambda^{2 p+1} 2^{p}\right]=\frac{1}{1-2 \lambda^{2}}+\frac{2 \lambda}{1-2 \lambda^{2}}=\frac{1+2 \lambda}{1-2 \lambda^{2}}$
- $x_{2}^{*}=x_{3}^{*}=\sum_{p=0}^{\infty}\left[\lambda^{2 p+1} 2^{p}+\lambda^{2 p} 2^{p-1}+\lambda^{2 p} 2^{p-1}\right]=\frac{1+\lambda}{1-2 \lambda^{2}}$.

Example (2/3)

- Condition for existence $1-2 \lambda^{2}>0, \lambda<1 / \sqrt{2}$.
- In general for a star with n nodes, largest eigenvalue of $G=\sqrt{n-1}$.

Interpretation: Counting path length (1/3)

- How many paths are there (in example) starting at node i between individuals i and j with length 2 (not repeating traveled through nodes)?
- Between 1\&1-2, between $1 \& 2$ or $1 \& 3$ - 0 .
- Between 2\&1-0, between 2\&2 or 2\&3-1.
- Between 3\&1-0, between 3\&2 or 3\&3-1.
- Notice that $G^{2}=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$.
- This is general. For $G^{k}=\left[g_{i j}^{[k]}\right]$ counts total number of paths in g of length k starting at node i between individuals i and j.

Interpretation: Counting path length (2/3)

- Now $\sum_{k \geq 0} \lambda^{k} g_{i j}^{[k]}$ is the total number of paths in g of all lengths between individuals i and j but discounting paths of length k by λ^{k}.
- Remember $m_{i j}(g, \lambda)=\sum_{k \geq 0} \lambda^{k} g_{i j}^{[k]}$.

Definition 3 Bonacich (1987). Take network g and parameter λ small enough. The network centrality of individual i in g of parameter λ is

$$
b_{i}(g, \lambda) \equiv \sum_{j=1}^{n} m_{i j}(g, \lambda)=\underbrace{m_{i i}(g, \lambda)}_{\text {self-loops }}+\underbrace{\sum_{j \neq i} m_{i j}(g, \lambda)}_{\text {outer-paths }}
$$

- Since $\frac{x_{i}^{*}}{\alpha}=\sum_{j=1}^{n} m_{i j}(g, \lambda)=b_{i}(g, \lambda)$, the equilibrium action is proportional so Bonacich centrality.

Policy: The Key Player (1/7)

In first place one must propose a planner's objective.

1. $F(g ; \lambda, \alpha)=\sum_{j=1}^{n} x_{j}^{*}=\alpha \sum_{j=1}^{n} b_{i}(g, \lambda)$. This may be the measure if the network is simply a "factor of production" of a "good" or a "bad" (the model was originally created to study crime.)
2. $G(g ; \lambda, \alpha)=\sum_{j=1}^{n} u_{j}\left(x^{*} ; g\right)$. This is more useful if we think of a "public good" setup.

For the second measure notice that by FOC $\alpha-x_{i}^{*}+\lambda \sum_{j \in N} g_{i j} x_{j}^{*}=0$. Thus

$$
u_{j}\left(x^{*} ; g\right)=x_{i}^{*}\left(\alpha-\frac{1}{2} x_{i}^{*}+\lambda \sum_{j \in N} g_{i j} x_{j}^{*}\right)=x_{i}^{*}\left(0+\frac{1}{2} x_{i}^{*}\right)=\frac{1}{2} x_{i}^{*^{2}}
$$

Policy: The Key Player (2/7)

And thus

$$
G(g ; \lambda, \alpha)=\frac{1}{2} b_{i}(g, \lambda)^{2}
$$

PLANNER'S TOOLS-THE KEY PLAYER

- Classical public economics tools (tax subsidy) modify: λ, α.
- To the extent she can control it \rightarrow Modify g
- Reshuffle network.
- Eliminate link(s).

Definition 4 Node i is a Key Player iff

$$
i \in \arg \max _{j \in N}\left\{\sum_{k=1}^{n} b_{k}(g, \lambda)-\sum_{k \neq j} b_{k}\left(g^{-j}, \lambda\right)\right\}
$$

Policy: The Key Player (3/7)

- Notice that

$$
\sum_{k=1}^{n} b_{k}(g, \lambda)-\sum_{k \neq j} b_{k}\left(g^{-j}, \lambda\right)=\underbrace{b_{i}(g)}_{i \text { 's direct contribution }}+\underbrace{\sum_{k \neq j}\left(b_{k}(g, \lambda)-b_{k}\left(g^{-j}, \lambda\right)\right)}_{i \text { 's indirect contribution }}
$$

- Thus Key Player need not be the player with highest centrality, since indirect contribution also matters.
- Example:

Proposition 5 Node i is a Key Player iff

$$
i \in \arg \max _{j \in N}\left\{\frac{b_{j}(g, \lambda)^{2}}{m_{j j}(g)}\right\}
$$

To show this we first prove:

Policy: The Key Player (4/7)

Lemma $6 m_{i j}(g) \cdot m_{i k}(g)=\underbrace{m_{i i}(g)\left[m_{j k}(g)-m_{j k}\left(g^{-1}\right)\right]}_{B}$

Proof. $m_{i i}(g)=\sum_{p \geq 0} \lambda^{p} g_{i i}^{[p]}$

$$
m_{j k}(g)-m_{j k}\left(g^{-1}\right)=\sum_{\substack{p \geq 0 \\
p \geq 2 \text { (at least need 2 steps) }}} \lambda^{p} \underbrace{\left[g_{j k}^{[p]}-g_{j(-i) k}^{[p]}\right]}_{\begin{array}{c}
g_{j(i) k}^{[p]} \\
\text { paths } j k \text { through } i
\end{array}}
$$

Thus

$$
B=\sum_{p=2}^{\infty} \lambda^{p}\left[\sum_{\substack{r+s=p \\ r \geq 0, s \geq 2}} g_{i i}^{[r]} \cdot g_{j(i) k}^{[s]}\right]
$$

Policy: The Key Player (5/7)

Notice that $\left(\sum_{p \geq 1} \lambda^{p} x^{p}\right)\left(\sum_{p \geq 1} \lambda^{p} y^{p}\right)=\sum_{p \geq 2} \lambda^{p}\left(\sum_{r+s=p} x^{r} y^{s}\right)$
Thus

$$
\sum_{p \geq 2} \lambda^{p} \sum_{r^{i}+s^{i}=p} g_{j i}^{\left[r^{i}\right]} \cdot g_{i k}^{\left[s^{i}\right]}=\left(\sum_{p \geq 1} \lambda^{p} g_{j i}^{[p]}\right)\left(\sum_{p \geq 1} \lambda^{p} g_{j i}^{[p]}\right)
$$

Now to prove the proposition. By lemma:

$$
\begin{aligned}
\sum_{k \neq j}\left(b_{k}(g, \lambda)-b_{k}\left(g^{-j}, \lambda\right)\right) & =\sum_{j \neq i} \sum_{k}\left[m_{j k}(g)-m_{j k}\left(g^{-1}\right)\right] \\
& =\sum_{j \neq i} \sum_{k} \frac{m_{i j}(g) \cdot m_{i k}(g)}{m_{i i}(g)} \\
& =\sum_{j \neq i} \frac{m_{i j}(g)}{m_{i i}(g)} \underbrace{\sum_{k} m_{i k}(g)}_{b_{i}(g, \lambda)}
\end{aligned}
$$

Policy: The Key Player (6/7)

Thus:

$$
\begin{aligned}
b_{i}(g)+\sum_{k \neq j}\left(b_{k}(g, \lambda)-b_{k}\left(g^{-j}, \lambda\right)\right) & =b_{i}(g)\left[1+\sum_{j \neq i} \frac{m_{i j}(g)}{m_{i i}(g)}\right] \\
& =b_{i}(g)\left[\frac{m_{i i}(g)+\sum_{j \neq i} m_{i j}(g)}{m_{i i}(g)}\right] \\
& =\frac{b_{i}(g)^{2}}{m_{i i}(g)}
\end{aligned}
$$

- Note that $\frac{b_{i}(g)^{2}}{m_{i i}(g)}=b_{i}(g)\left[1+\sum_{j \neq i} \frac{m_{i j}(g)}{m_{i i}(g)}\right]$,
- Thus what matters is not only centrality, but also the composition of the contribution.
- If the relative weight of outer paths to self loops is larger, more likely to be Key Player.

Generalization of above set-up.

Let

$$
u_{i}\left(x_{1}, \ldots, x_{n} ; g\right)=\alpha x_{i}+\sum_{j \in N} \sigma_{i j} x_{i} x_{j} ; \lambda \geq 0, \alpha>0
$$

$\underline{\sigma}=\min _{i j \in g} \sigma_{i j} ; \bar{\sigma}=\max _{i j \in g} \sigma_{i j} ; \frac{\partial^{2} u_{i}}{\partial x_{i}^{2}}=\sigma_{i i}<0$

Conditions: $\sigma_{i i}=\sigma<\min \{0, \underline{\sigma}\}$, concavity on myself is highest.

In Bramoullé-Kranton: $\frac{\partial^{2} u_{i}}{\partial x_{i}^{2}}=b^{\prime \prime}\left(x_{i}+\bar{x}_{i}\right)=\frac{\partial^{2} u_{i}}{\partial x_{i} \partial x_{j}}$; if $g_{i j} \neq 0$.

Networks - Fall 2005

Chapter 2
Play on networks 2: Strategic complements
Ballester, Calvó-Armengol and Zenou 2005

October 31, 2005

