

Networks - Fall 2005 Chapter 2 Play on networks 1: Strategic substitutes Bramoullé and Kranton 2005

October 31, 2005

Summary

- Introduction \rightarrow
- Equilibria: characterization 🛶 🛶
- Equilibria: stability 🛶
- Welfare 🛶 📫
- Link addition: →

- $N = \{1, ..., n\}$, set of players.
- g an undirected network. That is: $g_{ij} \in \{0, 1\}, g_{ij} = g_{ji}, \forall i, j \in N$.
- $X_i = \Re^+, x_i \in X_i$ is player *i*'s action.
- $u_i(x_1, ..., x_n; g) = b(x_i + \overline{x}_i) cx_i$, with c > 0 and where $\overline{x}_i = \sum_{j \in N} g_{ij} x_j$.
- Assume b' > 0, b'' < 0 and there exists a unique x^* with $b'(x^*) = c$.

• Notice that
$$\frac{\partial^2 u_i}{\partial x_i \partial x_j} = g_{ij} b''(x_i + \overline{x}_i) \le 0$$
. Strategic substitutes.

Proposition 1 $x = (x_1, ..., x_n)$ is a Nash equilibrium if (a) $\overline{x}_i \ge x^*$ and $x_i = 0$ or (b) $\overline{x}_i < x^*$ and $x_i = x^* - \overline{x}_i$.

Remark 2 $BR_i(x_{-i}) = \max\{0, x^* - \overline{x}_i\}.$

Example 3 Let a completely connected network with N = 4, $x^* = 1$. The following are NE: (a) (1/4, 1/4, 1/4, 1/4) (b) (0, 0, 0, 1) (c) (0, 1/4, 3/4, 0).

Example 4 Let a circle with N = 4, $x^* = 1$ with an added link ij = 13. The following are NE: (a) (1,0,0,0) (b) (0,1,0,1) (c) (1/4,0,3/4,0).

Proposition 5 $x = (x_1, ..., x_n)$ is an expert Nash equilibrium if the corresponding set of experts is a maximal independent set of g.

Let us explain this proposition:

- 1. $x = (x_1, ..., x_n)$ is an *expert Nash equilibrium* if it is a Nash equilibrium and $x_i \in \{0, x^*\}$ for all $i \in N$.
- 2. Set of experts in x in an expert Nash equilibrium is $\{i \in N | x_i = x^*\}$.
- 3. $I \subseteq N$ is an *independent set* for g iff for all $i, j \in I, g_{ij} = 0$.
- 4. An independent set is called *maximal independent set*, if no additional member can be added without destroying independence (*maximal* with respect to set inclusion.)

•••• •••

Definition 6 $x = (x_1, ..., x_n)$ is a stable Nash equilibrium if there exists a $\rho > 0$ such that for any vector ε satisfying $|\varepsilon_i| < \rho$ for all $i \in N$, the sequence $x^{(n)}$ defined by $x^{(0)} = x + \varepsilon$ and $x^{(n+1)} = BR(x^{(n)})$ converges to x.

Proposition 7 For any network *g* an equilibrium is stable if and only if it is specialized and every non specialist is connected to (at least) two specialists.

- Networks were all $x_i > 0$ are neutrally stable, it leads to limit cycles. If *i* increases, *j* matches the decrease and vice versa.
- Center-sponsored stars diverge. A decrease of ε is matched by simultaneous increase of many, which is amplified.
- Center-subsidized stars converge. A decrease of ε by the periphery is not matched and back to normal.

> 🕪 🕪 🛟

 $W(x,g) = \sum_{i \in N} b(x_i + \overline{x}_i) - c \sum_{i \in N} x_i$, and notice $x_j > 0$ implies $x_j = x^* - \overline{x}_j$.

$$\frac{\partial W}{\partial x_j}\Big|_{x_j>0} = \underbrace{b'(x_j + \overline{x}_j) - c}_{=0} + \sum_{k \neq j, jk \in g} b'(x_k + \overline{x}_k) > 0 \tag{1}$$

- So any agent $j \in N$ with $x_j > 0$ would increase W by increasing x_j .
- What equilibrium has highest welfare?
- Let x be a Nash equilibrium for g. At equilibrium for all $i, x_i + \overline{x}_i \ge x^*$

• So
$$W(x,g) = n.b(x^*) + \sum_{i|x_i=0} (b(\overline{x}_i) - b(x^*)) - c \sum_{i \in N} x_i.$$

- $\sum_{i|x_i=0} (b(\overline{x}_i) b(x^*))$ is premium from specialization.
- In a completely connected graph, with all making same effort $(1/N * x^*)$ no premium from specialization but minimum possible cost.
- Expert equilibria, premium from specialization but higher cost.
- 1. Distributed equilibria $W(x,g) = nb(x^*) c \sum_{i \in N} x_i$
- 2. Expert equilibria. There are free riders $\sum_{i|x_i=0} (b(\overline{x}_i) b(x^*))$ free rider premium.

In a 4 person circle:

1.
$$W(dist) = 4b(x^*) - \frac{4}{3}cx^*$$
,

2.
$$W(\exp) = 4b(x^*) + 2(b(2x^*) - b(x^*)) - 2cx^*$$
.

Heuristic 1: For low c expert equilibria are better than distributed ones.

Let expert equilibria with maximal independent set I, and s_j be the number of contacts in I for $j \notin I$

$$W(x,g) = nb(x^*) + \sum_{j \notin I} (b(s_j x_j) - b(x^*)) - c|I|x^*$$
. But since $s_j \ge 2$

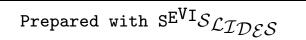
$$W(x,g) \ge nb(x^*) + (n - |I|) (b(2x^*) - b(x^*)) - c|I|x^*, \text{ decreasing with}|I|.$$

Heuristic 2: Look for expert equilibria with maximum number of free-riders.

Compare the Second-best welfare when adding a link *ij*.

- 1. Suppose either $x_i = 0$ or $x_j = 0$ in g. Then x is still an equilibrium in g + ij, so welfare can only increase.
- 2. Suppose both $x_i \neq 0$ and $x_j \neq 0$. Then x is not an equilibrium in g + ij and welfare could decrease.

- Take two three person stars. Second-best is two center-sponsored stars.
- Link two centers.
- New second best is one of the centers still specialist and the periphery of the other specialist.
- Welfare falls if increase in cost $2ce^*$ is bigger than new free-riding premium $b(4e^*) b(e^*)$.



Networks - Fall 2005 Chapter 2 Play on networks 1: Strategic substitutes Bramoullé and Kranton 2005

October 31, 2005

