

Networks - Fall 2005 Chapter 1 Network formation

October 25, 2005

Summary

- WHAT IS A NETWORK? → →
- JACKSON-WOLINSKY MODEL(S) → →
- STABILITY AND EFFICIENCY → →
- EXISTENCE AND PW-STABILITY → →
- MULTIPLICITY AND PW-STABILITY → →
- THE MYERSON GAME → →
- PAIRWISE NASH EQUILIBRIA → →

WHAT IS A NETWORK? (1/3)

• A collection of "entities" (nodes) and bilateral relationships (links).

The *links/relationships* can be:

Directed : Not necessarily reciprocal.

Undirected : Always reciprocal.

Weighted : Some links are more "equal" than others.

Stochastic : The links are realized with some probability.

> 🕪 🕪 🕻

Two crucial characteristics of networks:

- A : Interactions are not anonymous (as opposed to standard "market" transactions.)
- **B** : The particular place agents occupy in the set of relationships is important.

Network does potentially two things:

- 1. Production \implies Efficiency.
- 2. Allocation \implies Stability.

The interaction between the two produces a tension for network formation.

- **Q1** Which is the efficient productive network?
- **Q2** What is the stable network?

Q3 Are efficient networks stable and vice versa?

Let $N = \{1, 2, ..., n\}$ be the set of all individual nodes.

We denote by ij a potential link between players $i, j \in N$.

A graph g is a collection of *undirected* links ij.

We assume $ii \notin g$.

Let $N(g) = \{j \in N : \exists ij \in g\}$, and n(g) the cardinality of N(g).

Let $N_i(g) = \{j \in N : ij \in g\}$, and $n_i(g)$ the cardinality of $N_i(g)$.

Payoff functions for each player: $u_i : g \to \Re$.

Distance: We denote by $d_{ij}(g)$ the shortest (geodesic) distance between i and j in g.

Components: The graph $g' \subset g$ is a component of g if for all $i, j \in N(g')$ $(i \neq j)$, there exists a path in g' connecting i and j, and for any $i \in N(g')$, $j \in N(g)$ if $ij \in g$, then $ij \in g'$.

PARTICULAR MODELS

MODEL 1-CONNECTIONS:

 $u_i(g) = \sum_{j \notin i} \delta^{d_{ij}(g)} - c \cdot n_i(g), \ 0 < \delta < 1, \ c \ge 0.$

- Never detrimental to third parties if two agents creates a link between them (positive externality.)
- Two connections can have different effects on a player.

MODEL 2-CO-AUTHOR:

$$u_i(g) = \sum_{ij \in g} \left[\frac{1}{n_i(g)} + \frac{1}{n_j(g)} + \frac{1}{n_i(g)n_j(g)} \right].$$

$$u_i(g) = 0$$
 if $n_i(g) = 0$.

$$u_i(g) = 1 + \left(1 + \frac{1}{n_i}\right) \sum_{i \neq g} \left[\frac{1}{n_j(g)}\right].$$

Never beneficial to third parties if two agents creates a link between them (negative externality.)

STABILITY AND EFFICIENCY (1/17)

• Efficiency: Let $W(g) = \sum_{i \in N} u_i(g)$. We say g^* is efficient iff $W(g^*) \ge W(g) \ \forall g$.

Notice that this notion is *utilitarian* not *Paretian*.

• Stability: We say that a network g' is pairwise stable iff:

1.
$$u_i(g') \ge u_i(g'-ij)$$
 and $u_j(g') \ge u_j(g'-ij), \forall ij \in g$.

2.
$$u_i(g'+ij) > u_i(g') \Rightarrow u_j(g'+ij) < u_j(g'), \forall ij \notin g.$$

- Notice that:
 - Only checks single link deviation.
 - Checks bilateral creation and unilateral cutting.

EFFICIENCY IN CONNECTIONS MODEL

$$u_i(g) = \sum_{j \notin i} \delta^{d_{ij}(g)} - c \cdot n_i(g), 0 < \delta < 1, c \ge 0.$$

1. The complete graph is efficient if $c < \delta - \delta^2$.

 $\delta-\delta^2$ is minimum increased benefit from a new direct link. Cost of a direct link c

- 2. A star encompassing N is efficient if $\delta \delta^2 < c < \delta + ((N-2)/2)\delta^2$.
- 3. No links are efficient if $\delta + ((N-2)/2)\delta^2 < c$.

4. Proof of 2+3:

- Let a component g' with m nodes and k links.
- Value of direct links is $k(2\delta 2c)$.
- Maximum value of indirect links $(m(m-1)/2 k)2\delta^2$.
- So $W(g') \le \overline{W} = k(2\delta 2c) + (m(m-1) 2k)\delta^2$.
- $W(m star) = (m 1)(2\delta 2c) + (m 1)(m 2)\delta^2$.
- Thus $\overline{W} W(m star) = (k (m 1))(2\delta 2c 2\delta^2) \le 0$. (since $k \ge m - 1$ and $\delta - \delta^2 < c$).
- Thus every *component* of *efficient* graph must be a star. A star of m + n is more efficient than two separate stars.
- And $W(star) \ge 0 \Leftrightarrow \delta + \frac{m-2}{2}\delta^2 \ge c.$

STABILITY IN CONNECTIONS MODEL

1. The complete graph is pairwise stable if $c < \delta - \delta^2$.

Same reason as before, argument was pairwise.

- 2. Pairwise stable networks are always fully connected.
 - For a contradiction, assume g has pw-stable subcomponents g', g''.
 - Let $ij \in g'$, and $kl \in g''$.
 - Then pw-stability of $g' \Rightarrow u_i(g) u_i(g ij) \ge 0$.
 - But, $u_k(g + kj) u_k(g) > u_i(g) u_i(g ij)$, since any new benefit that *i* gets from *j*, *k* also gets and in addition *k* gets δ^2 times the benefits of *i*'s connections.
 - Similarly, $u_j(g+jk) u_j(g) > u_l(g) u_l(g-lk) \ge 0$.
 - This contradicts pw-stability since $jk \notin g$.

3. For $\delta - \delta^2 < c < \delta$ star is pw-stable, but not always uniquely so.

- Deleting means losing at least δ and gaining c.
- Adding ij: net gain $\delta \delta^2$, cost c.
- For N = 4, and $\delta \delta^3 < c < \delta$, the line is also pw-stable.
- For N = 4, and $\delta \delta^3 > c > \delta \delta^2$, the circle is also pw-stable.

- 4. For $\delta < c$, any non-empty network is inefficient.
 - For $\delta < c$, connection ij is unprofitable to i if $N_j(g) = i$ (cost to i is c, benefit δ).
 - Star is not stable.
 - For N = 5, and $\delta \delta^4 + \delta^2 \delta^3 > c$, the circle is pw-stable (deleting one link benefit is $\delta \delta^4 + \delta^2 \delta^3$, cost is c; adding one ling benefit is $\delta \delta^2$, cost is c).

EFFICIENCY IN CO-AUTHOR MODEL

1. For n even, the efficient network is n/2 pairs.

$$W(g) = \sum_{i \in N} u_i(g) = \sum_{i:n_i(g) > 0} \sum_{ij \in g} \left[\frac{1}{n_i} + \frac{1}{n_j} + \frac{1}{n_i n_j} \right]$$

But since $\sum_{i:n_i(g)>0} \sum_{ij\in g} \left[\frac{1}{n_i}\right] \le n$ (equality only if $n_i > 0$ for all i)

$$W(g) \leq 2n + \sum_{i:n_i(g)>0} \sum_{ij\in g} \left[\frac{1}{n_i n_j}\right]$$

But

$$\sum_{i:n_i(g)>0} \sum_{ij\in g} \left[\frac{1}{n_i n_j}\right] = \sum_{i:n_i(g)>0} \frac{1}{n_i} \sum_{ij\in g} \left[\frac{1}{n_j}\right] \le n$$

(since $\sum_{ij\in g} [1/n_j] \le n_i$) and equality can only be achieved if $n_j = 1$ for all $j \in N$.

STABILITY IN CO-AUTHOR MODEL

1. *Pairwise stable* networks are composed of fully intra-connected components of different sizes.

Let i and j not linked.

$$u_i(g+ij) = 1 + \left(1 + \frac{1}{n_i + 1}\right) \left[\frac{1}{n_j + 1} + \sum_{ik \in g} \frac{1}{n_k}\right]$$

A new link ij is beneficial to i iff:

$$\begin{pmatrix} 1 + \frac{1}{n_i + 1} \end{pmatrix} \frac{1}{n_j + 1} > \begin{pmatrix} \frac{1}{n_i} - \frac{1}{n_i + 1} \end{pmatrix} \sum_{ik \in g} \frac{1}{n_k} \\ \begin{pmatrix} \frac{n_i + 2}{n_i + 1} \end{pmatrix} \frac{1}{n_j + 1} > \begin{pmatrix} \frac{1}{n_i(n_i + 1)} \end{pmatrix} \sum_{ik \in g} \frac{1}{n_k} \\ \frac{n_i + 2}{n_j + 1} > \frac{1}{n_i} \sum_{ik \in g} \frac{1}{n_k}$$

(a) If
$$n_i = n_j i$$
 wants j and vice versa.
 $\frac{1}{n_i} \sum_{ik \in g} \frac{1}{n_k} \leq 1$ (average of fractions.)
So if $n_i \geq n_j$ linking to j is beneficial for i . When $n_i = n_j$ this is reciprocal.

Case 1 $n_i \ge n_j - 1$

$$\frac{n_i+2}{n_h+1} \ge \frac{n_i+2}{n_j+1} \ge 1 \begin{cases} \frac{n_i+2}{n_h+1} > 1 \Rightarrow i \text{ wants } h \\ \frac{n_i+2}{n_h+1} = 1 \Rightarrow n_h \ge 2 \Rightarrow n_j \ge 2 \\ \Rightarrow \frac{1}{n_i} \sum_{ik \in g} \frac{1}{n_k} < 1 \Rightarrow i \text{ wants } h \end{cases}$$

< > \rightarrow \parallel \diamond <

Case 2 $n_i < n_j - 1$

$$\frac{n_i+2}{n_h+1} \ge \frac{n_i+2}{n_j+1} = \frac{n_i+1+1}{n_j+1} > \frac{n_i+1}{n_j}$$

Since $ij \in g$ this implies

$$\frac{n_i + 1}{n_j} \ge \frac{1}{n_i - 1} \sum_{\substack{ik \in g \\ k \neq j}} \frac{1}{n_k} \ge \frac{1}{n_i} \sum_{\substack{ik \in g \\ ik \in g}} \frac{1}{n_k}$$

The last inequality holds since the extra term $1/n_j$ is smaller than other in the average. Thus,

$$\frac{n_i+2}{n_h+1} \ge \frac{1}{n_i} \sum_{ik \in g} \frac{1}{n_k}$$

STABILITY AND EFFICIENCY (14/17)

(c) If m is the number of members in one component, and n in the next largest, then $m > n^2$.

Let j in a component and i in the next largest. i does not want j iff:

$$\frac{n_i+2}{n_j+1} \le \frac{1}{n_i} \Rightarrow n_j+1 \ge (n_i+2) n_i \Rightarrow n_j \ge n_i^2$$

The first inequality is true since all connections of i have n_i connections.

Remark a) implies that all *i* with maximal n_i have to be inter-linked.

b) implies that if j is linked to one i with maximal n_i , j wants to be linked to all other k with maximal n_k and those with whom they are themselves connected.

So fully intra-connected components at maximum. Then, iterate.

- Evidence of "connectedness" in science in:
 - Newman (2004) PNAS.
 - Goyal, van der Leij, Moraga (2004).
- Seems like over-connected.
- Tension between stability and efficiency is well-captured by pw-stability.
- Positive issues in pw-stability: Existence.

Trading networks

- Set of players $N = \{1, ..., n\}$, players are nodes of a network g.
- Endowments for player i stochastic: $(x_i, y_i) \in \{(1, 0), (0, 1)\}$ equally likely.
- Production function: $f(x,y) = x \cdot y$.
- Trade is possible between agents *i* and *j* if they belong to the same component.
- Let $P = \{i_0, i_1, ..., i_p\} \subset N$, such that $g|_P$ is a component of g.

- Trading outcome for a player $i \in P$ is: $\omega_i = \frac{1}{p+1} \left(\sum_{k=0}^p x_{i_k}, \sum_{k=0}^p y_{i_k} \right)$.
- That is, endowments are aggregated within connected component and shared equally.
- Cost of every link is *c*.
- Network formation is done *before* endowments are realized (need to use expected payoffs.)

n = 4

1.(a)
$$Eu_i = \frac{1}{2}f\left(\frac{1}{2}, \frac{1}{2}\right) - c = \frac{1}{8} - c$$
, for all $i \in N$.
(b) $Eu_i = \frac{1}{2}f\left(\frac{1}{2}, \frac{1}{2}\right) - c$ for $i \in \{1, 2\}$ and $Eu_i = 0$ for $i \in \{3, 4\}$.
(c) $Eu_i = \frac{6}{8}f\left(\frac{2}{3}, \frac{1}{3}\right) - c = \frac{1}{6} - c$ for $i \in \{1, 3\}, Eu_i = \frac{1}{6} - 2c$ for $i = 2$, and $Eu_i = 0$ for $i = 4$.
(d) $Eu_i = \frac{8}{16}f\left(\frac{3}{4}, \frac{1}{4}\right) + \frac{6}{16}f\left(\frac{2}{4}, \frac{2}{4}\right) - c = \frac{3}{16} - c$ for $i \in \{1, 4\}$, and $Eu_i = \frac{3}{16} - 2c$ for $i \in \{2, 3\}$.

EXISTENCE AND PW-STABILITY (4/5)

- 2. (b) is not stable for $c \leq \frac{1}{8}$ since players 3 and 4 would like to create a link.
- 3. (a) is not stable for $c \le \frac{3}{16} \frac{1}{8} = \frac{1}{16}$ since players 2 and 3 would like to create a link.
- 4. (d) is not stable for $c \ge \frac{3}{16} \frac{1}{6} = \frac{1}{48}$ since player 3 would like to delete link 34.
- 5. (c) is not stable for $c \ge \frac{1}{6} \frac{1}{8} = \frac{1}{24}$ since player 2 would like to delete link 23.
- 6. All other configurations are unstable since links are redundant.

These observations together imply that for $\frac{1}{24} \le c \le \frac{1}{8}$ there is no stable *trading network*.

DYNAMIC STABILITY

- For many parameters/payoff functions (e.g. co-author) there are multiple pw-stable networks.
- In games one approach to decrease multiplicity is evolutionary dynamics.
- In particular *stochastic stability*
 - Young, or, Kandori, Mailath and Rob, both 1993 Econometrica

> 🕪 🕪 📖

- Stochastic process:
 - State variable past actually played strategies (perhaps time-averaged.)
 - Updating rule/transition probabilities:
 - Best-response (or better-response) to state with prob. 1ε .
 - Anything else with probability ε .
- Stochastic process reaches all states with positive probability.
- Thus, it is ergodic and has a stationary distribution μ^{ε} .
- Stochastically stable states are those with positive probability in $\overline{\mu} = \lim_{\varepsilon \to 0} \mu^{\varepsilon}$.

- Stochastically stable networks
 - State variable: network g.
 - Updating rule: one-link deviation possibility.
 - Example: co-author model two pw-stable networks.
 - More mistakes are needed to do one transition than the other.

THE MYERSON GAME (1/9)

- Set of players: $N = \{1, ..., n\}.$
- Strategy set: $S_i = \{0, 1\}^{n-1}$.

• Let strategy
$$s_i = (s_{i1}, s_{i2}, ..., s_{in}) \in S_i$$

• $s_{ij} = 0$ if *i* does not want to link to *j*,

•
$$s_{ij} = 1$$
 if *i* wants to link to *j*.

•
$$s = (s_1, ..., s_n) \in S$$
 is a strategy profile.

- Let g(s) be the network that arises from s.
- For g(s), let $g_{ij}(s) \in \{0, 1\}$ denote the presence of absence of link ij.

- One-sided link formation (directed networks): $g_{ij}(s) = s_{ij}$
- Two-sided link formation (undirected): $g_{ij}(s) = s_{ij} * s_{ji}$.
- Example of one- sided: Bala and Goyal (2000) Econometrica.

$$u_i(g) = \sum_{j \notin i} \delta^{d_{ij}(g)} - c \cdot n_i(g), 0 < \delta < 1, c \ge 0.$$

THE MYERSON GAME (3/9)

MULTIPLICITY IN MYERSON GAMES: REFINEMENTS

• Let:

$s_1 \setminus s_2$	s ₂₁	s ₂₂
s_{11}	-2,-2	-2,-2
s ₁₂	-2,-2	0,0

- *Trembling-hand perfect equilibrium* (THPE):
 - σ^{ε} is a ε -constrained equilibrium if it is:
 - 1. Completely mixed.
 - 2. $\sigma_i^{\varepsilon} \in \arg \max\{u_i(\sigma_i, \sigma_{-i}^{\varepsilon}) | \sigma_i(s_i) \geq \varepsilon(s_i)\}.$
 - σ is a THPE iff $\sigma = \lim_{\epsilon \to 0} \sigma^{\epsilon}$ where σ^{ϵ} is some sequence of ϵ -constrained eq.

- (s_{11}, s_{21}) in the example is NE but not THPE.
- Unfortunately that is not general.

Claim 1 THPE does not eliminate all "unwanted" Nash equilibria in the following Example.

It is easy to see that the null graph is a Nash equilibrium, but not stable. We will now show it is a THPE.

Represent a mixed strategy $\sigma \in \triangle \{0, 1\}^2$ as in:

< >> III III (

$$\sigma_1 = \begin{vmatrix} s_{13} = 0 & s_{13} = 1 \\ s_{12} = 0 & a & b \\ s_{12} = 1 & c & 1 - a - b - c \end{vmatrix}$$

Then we will check that the following in an ε - constrained equilibrium (for sufficiently small ε .)

• Easy to check σ_1^{ε} is optimal. Player 1 has a dominant strategy to create as many links as possible.

• Why is σ_2^{ε} optimal against $\sigma_{-2}^{\varepsilon} = (\sigma_1^{\varepsilon}, \sigma_3^{\varepsilon})$?

Let $u_2((s_{31} = 0, s_{32} = 1), \sigma_{-2}^{\varepsilon})$ and disregard terms of order ε^2 or more. Then

$$u_2((s_{31}=0,s_{32}=1),\sigma_{-2}^{\varepsilon})\approx((1-3\varepsilon)\varepsilon+\varepsilon^2)\cdot(-1)+2\varepsilon^2\cdot1<0$$

whereas

$$u_2((s_{31} = 0, s_{32} = 0), \sigma_{-2}^{\varepsilon}) = 0$$

- Notice that it is crucial that the "mistake" of sending links to both 1 and 2 by player 3 is ε, whereas the (less serious) of sending only to 3 is ε².
- Thus proper equilibrium may be better.
 - σ^{ε} is a ε -proper equilibrium if it is:
 - 1. Completely mixed.

2. $u_i(s_i, \sigma_{-i}^{\varepsilon}) < u_i(s'_i, \sigma_{-i}^{\varepsilon}) \Rightarrow \sigma_i(s_i) < \varepsilon \cdot \sigma_i(s'_i)$.

- σ is a *proper equilibrium* iff $\sigma = \lim_{\varepsilon \to 0} \sigma^{\varepsilon}$ where σ^{ε} is some sequence of ε -proper eq.
- (s_{11}, s_{21}) in the example is NE but not THPE.
- Unfortunately that is not general.

PAIRWISE NASH EQUILIBRIA (1/3)

- Let again the (Myerson) network formation game.
- We say that g is *pairwise Nash* iff:
 - g is a Nash equilibrium of the Myerson game.
 - $u_i(g+ij) > u_i(g) \Rightarrow u_j(g+ij) > u_j(g).$
- This is a Nash equilibrium for which every mutually beneficial link is created.
- A pairwise Nash network is robust to:
 - Bilateral single link creation.
 - Unilateral *multi*-link destruction.

- For the latter reason, this is more demanding than pw-stability.
- Pairwise stability:

$$g \in PS \Rightarrow u_i(g - ij) - u_i(g) \leq 0 \quad \forall i \in N, ij \in g \quad (*).$$

• Pairwise Nash:

$$g \in PN \Rightarrow u_i(g-ij_1-ij_2...-ij_p) - u_i(g) \le 0 \ \forall i \in N, ij_1, ij_2, ..., ij_p \in g \ (**).$$

- Obviously (**) ⇒ (*). If (*) ⇒ (**), then Pairwise stability and Pairwise Nash are equivalent.
- A condition guaranteing this is $u_i(.)$ being α convex.

•
$$u_i(.)$$
 is α - convex iff

$$u_i(g - ij_1 - ij_2... - ij_l) - u_i(g) \ge \alpha \sum_{k=1}^p (u_i(g - ij_k) - u_i(g)).$$

 \bullet To find α take the

$$\min_{g' \subset g} \left\{ u_i(g - ij_1 - ij_2 \dots - ij_l) - u_i(g) \right\} / \max_{ij_k} \left\{ u_i(g - ij_k) - u_i(g) \right\}.$$

 \prec

Networks - Fall 2005 Chapter 1 Network formation

October 25, 2005

