Networks - Fall 2005

Chapter 1

Network formation

October 25, 2005
$\langle\hat{B}\rangle$

- WHAT IS A NETWORK?
- JACKSON-WOLINSKY MODEL(S) $m \rightarrow$
- STABILITY AND EFFICIENCY $\stackrel{\rightarrow l}{ }$)
- EXISTENCE AND PW-STABILITY $\stackrel{\rightarrow 1}{ }$ m"
- MULTIPLICITY AND PW-STABILITY m m m
- THE MYERSON GAME $\| \rightarrow$ min
- PAIRWISE NASH EQUILIBRIA " \Rightarrow min

WHAT IS A NETWORK? (1/3)

- A collection of "entities" (nodes) and bilateral relationships (links).

The links/relationships can be:

Directed : Not necessarily reciprocal.

Undirected : Always reciprocal.

Weighted : Some links are more "equal" than others.

Stochastic: The links are realized with some probability.

WHAT IS A NETWORK? (2/3)

Two crucial characteristics of networks:

A : Interactions are not anonymous (as opposed to standard "market" transactions.)

B : The particular place agents occupy in the set of relationships is important.

WHAT IS A NETWORK? (3/3)

Network does potentially two things:

1. Production \Longrightarrow Efficiency.
2. Allocation \Longrightarrow Stability.

The interaction between the two produces a tension for network formation.

Q1 Which is the efficient productive network?

Q2 What is the stable network?

Q3 Are efficient networks stable and vice versa?

JACKSON-WOLINSKY MODEL(S) (1/4)

THE GENERAL MODEL

Let $N=\{1,2, \ldots, n\}$ be the set of all individual nodes.

We denote by ij a potential link between players $i, j \in N$.

A graph g is a collection of undirected links $i j$.

We assume $i i \notin g$.

Let $N(g)=\{j \in N: \exists i j \in g\}$, and $n(g)$ the cardinality of $N(g)$.

Let $N_{i}(g)=\{j \in N: i j \in g\}$, and $n_{i}(g)$ the cardinality of $N_{i}(g)$.

Payoff functions for each player: $u_{i}: g \rightarrow \Re$.

JACKSON-WOLINSKY MODEL(S) (2/4)

Distance: We denote by $d_{i j}(g)$ the shortest (geodesic) distance between i and j in g.

Components: The graph $g^{\prime} \subset g$ is a component of g if for all $i, j \in N\left(g^{\prime}\right)$ ($i \neq j$), there exists a path in g^{\prime} connecting i and j, and for any $i \in N\left(g^{\prime}\right)$, $j \in N(g)$ if $i j \in g$, then $i j \in g^{\prime}$.

JACKSON-WOLINSKY MODEL(S) (3/4)

PARTICULAR MODELS

MODEL 1-CONNECTIONS:
$u_{i}(g)=\sum_{j \notin i} \delta^{d_{i j}(g)}-c \cdot n_{i}(g), 0<\delta<1, c \geq 0$.

- Never detrimental to third parties if two agents creates a link between them (positive externality.)
- Two connections can have different effects on a player.

MODEL 2-CO-AUTHOR:
$u_{i}(g)=\sum_{i j \in g}\left[\frac{1}{n_{i}(g)}+\frac{1}{n_{j}(g)}+\frac{1}{n_{i}(g) n_{j}(g)}\right]$.
$u_{i}(g)=0$ if $n_{i}(g)=0$.
$u_{i}(g)=1+\left(1+\frac{1}{n_{i}}\right) \sum_{i j \in g}\left[\frac{1}{n_{j}(g)}\right]$.
Never beneficial to third parties if two agents creates a link between them (negative externality.)

- Efficiency: Let $W(g)=\sum_{i \in N} u_{i}(g)$. We say g^{*} is efficient iff $W\left(g^{*}\right) \geq$ $W(g) \forall g$.

Notice that this notion is utilitarian not Paretian.

- Stability: We say that a network g^{\prime} is pairwise stable iff:

1. $u_{i}\left(g^{\prime}\right) \geq u_{i}\left(g^{\prime}-i j\right)$ and $u_{j}\left(g^{\prime}\right) \geq u_{j}\left(g^{\prime}-i j\right), \forall i j \in g$.
2. $u_{i}\left(g^{\prime}+i j\right)>u_{i}\left(g^{\prime}\right) \Rightarrow u_{j}\left(g^{\prime}+i j\right)<u_{j}\left(g^{\prime}\right), \forall i j \notin g$.

- Notice that:
- Only checks single link deviation.
- Checks bilateral creation and unilateral cutting.

STABILITY AND EFFICIENCY (2/17)

EFFICIENCY IN CONNECTIONS MODEL

$$
u_{i}(g)=\sum_{j \notin i} \delta^{d_{i j}(g)}-c \cdot n_{i}(g), 0<\delta<1, c \geq 0
$$

1. The complete graph is efficient if $c<\delta-\delta^{2}$.
$\delta-\delta^{2}$ is minimum increased benefit from a new direct link.
Cost of a direct link c
2. A star encompassing N is efficient if $\delta-\delta^{2}<c<\delta+((N-2) / 2) \delta^{2}$.
3. No links are efficient if $\delta+((N-2) / 2) \delta^{2}<c$.

STABILITY AND EFFICIENCY (3/17)

4. Proof of $2+3$:

- Let a component g^{\prime} with m nodes and k links.
- Value of direct links is $k(2 \delta-2 c)$.
- Maximum value of indirect links $(m(m-1) / 2-k) 2 \delta^{2}$.
- So $W\left(g^{\prime}\right) \leq \bar{W}=k(2 \delta-2 c)+(m(m-1)-2 k) \delta^{2}$.
- $W(m-s t a r)=(m-1)(2 \delta-2 c)+(m-1)(m-2) \delta^{2}$.
- Thus $\bar{W}-W(m-$ star $)=(k-(m-1))\left(2 \delta-2 c-2 \delta^{2}\right) \leq 0$. (since $k \geq m-1$ and $\delta-\delta^{2}<c$).
- Thus every component of efficient graph must be a star. A star of $m+n$ is more efficient than two separate stars.
- And W (star $) \geq 0 \Leftrightarrow \delta+\frac{m-2}{2} \delta^{2} \geq c$.

STABILITY AND EFFICIENCY (4/17)

STABILITY IN CONNECTIONS MODEL

1. The complete graph is pairwise stable if $c<\delta-\delta^{2}$.

Same reason as before, argument was pairwise.

STABILITY AND EFFICIENCY (5/17)

2. Pairwise stable networks are always fully connected.

- For a contradiction, assume g has pw-stable subcomponents $g^{\prime}, g^{\prime \prime}$.
- Let $i j \in g^{\prime}$, and $k l \in g^{\prime \prime}$.
- Then pw-stability of $g^{\prime} \Rightarrow u_{i}(g)-u_{i}(g-i j) \geq 0$.
- But, $u_{k}(g+k j)-u_{k}(g)>u_{i}(g)-u_{i}(g-i j)$, since any new benefit that i gets from j, k also gets and in addition k gets δ^{2} times the benefits of i 's connections.
- Similarly, $u_{j}(g+j k)-u_{j}(g)>u_{l}(g)-u_{l}(g-l k) \geq 0$.
- This contradicts pw-stability since $j k \notin g$.

STABILITY AND EFFICIENCY (6/17)

3. For $\delta-\delta^{2}<c<\delta$ star is pw-stable, but not always uniquely so.

- Deleting means losing at least δ and gaining c.
- Adding $i j$: net gain $\delta-\delta^{2}$, cost c.
- For $N=4$, and $\delta-\delta^{3}<c<\delta$, the line is also pw-stable.
- For $N=4$, and $\delta-\delta^{3}>c>\delta-\delta^{2}$, the circle is also pw-stable.

STABILITY AND EFFICIENCY (7/17)

4. For $\delta<c$, any non-empty network is inefficient.

- For $\delta<c$, connection $i j$ is unprofitable to i if $N_{j}(g)=i$ (cost to i is c, benefit δ).
- Star is not stable.
- For $N=5$, and $\delta-\delta^{4}+\delta^{2}-\delta^{3}>c$, the circle is pw-stable (deleting one link benefit is $\delta-\delta^{4}+\delta^{2}-\delta^{3}$, cost is c; adding one ling benefit is $\delta-\delta^{2}$, cost is c).

STABILITY AND EFFICIENCY (8/17)

EFFICIENCY IN CO-AUTHOR MODEL

1. For n even, the efficient network is $n / 2$ pairs.

$$
W(g)=\sum_{i \in N} u_{i}(g)=\sum_{i: n_{i}(g)>0} \sum_{i j \in g}\left[\frac{1}{n_{i}}+\frac{1}{n_{j}}+\frac{1}{n_{i} n_{j}}\right]
$$

But since $\sum_{i: n_{i}(g)>0} \sum_{i j \in g}\left[\frac{1}{n_{i}}\right] \leq n$ (equality only if $n_{i}>0$ for all i)

$$
W(g) \leq 2 n+\sum_{i: n_{i}(g)>0} \sum_{i j \in g}\left[\frac{1}{n_{i} n_{j}}\right]
$$

STABILITY AND EFFICIENCY (9/17)

But

$$
\sum_{i: n_{i}(g)>0} \sum_{i j \in g}\left[\frac{1}{n_{i} n_{j}}\right]=\sum_{i: n_{i}(g)>0} \frac{1}{n_{i}} \sum_{i j \in g}\left[\frac{1}{n_{j}}\right] \leq n
$$

(since $\sum_{i j \in g}\left[1 / n_{j}\right] \leq n_{i}$) and equality can only be achieved if $n_{j}=1$ for all $j \in N$.

STABILITY AND EFFICIENCY (10/17)

STABILITY IN CO-AUTHOR MODEL

1. Pairwise stable networks are composed of fully intra-connected components of different sizes.

Let i and j not linked.

$$
u_{i}(g+i j)=1+\left(1+\frac{1}{n_{i}+1}\right)\left[\frac{1}{n_{j}+1}+\sum_{i k \in g} \frac{1}{n_{k}}\right]
$$

A new link $i j$ is beneficial to i iff:

$$
\begin{aligned}
\left(1+\frac{1}{n_{i}+1}\right) \frac{1}{n_{j}+1} & >\left(\frac{1}{n_{i}}-\frac{1}{n_{i}+1}\right) \sum_{i k \in g} \frac{1}{n_{k}} \\
\left(\frac{n_{i}+2}{n_{i}+1}\right) \frac{1}{n_{j}+1} & >\left(\frac{1}{n_{i}\left(n_{i}+1\right)}\right) \sum_{i k \in g} \frac{1}{n_{k}} \\
\frac{n_{i}+2}{n_{j}+1} & >\frac{1}{n_{i}} \sum_{i k \in g} \frac{1}{n_{k}}
\end{aligned}
$$

STABILITY AND EFFICIENCY (11/17)

(a) If $n_{i}=n_{j} i$ wants j and vice versa.
$\frac{1}{n_{i}} \sum_{i k \in g} \frac{1}{n_{k}} \leq 1$ (average of fractions.)
So if $n_{i} \geq n_{j}$ linking to j is beneficial for i. When $n_{i}=n_{j}$ this is reciprocal.

STABILITY AND EFFICIENCY (12/17)

(b) If $n_{h} \leq \max \left\{n_{k} \mid i k \in g\right\}$ then i wants a link to h.

Let j such that $i j \in g$ and $n_{j}=\max \left\{n_{k} \mid i k \in g\right\}$.
Case $1 n_{i} \geq n_{j}-1$

$$
\frac{n_{i}+2}{n_{h}+1} \geq \frac{n_{i}+2}{n_{j}+1} \geq 1\left\{\begin{array}{c}
\frac{n_{i}+2}{n_{h}+1}>1 \Rightarrow i \text { wants } h \\
\frac{n_{i}+2}{n_{h}+1}=1 \Rightarrow n_{h} \geq 2 \Rightarrow n_{j} \geq 2 \\
\Rightarrow \frac{1}{n_{i}} \sum_{i k \in g} \frac{1}{n_{k}}<1 \Rightarrow i \text { wants } h
\end{array}\right.
$$

Case $2 n_{i}<n_{j}-1$

$$
\frac{n_{i}+2}{n_{h}+1} \geq \frac{n_{i}+2}{n_{j}+1}=\frac{n_{i}+1+1}{n_{j}+1}>\frac{n_{i}+1}{n_{j}}
$$

Since $i j \in g$ this implies

$$
\frac{n_{i}+1}{n_{j}} \geq \frac{1}{n_{i}-1} \sum_{\substack{i k \in g \\ k \neq j}} \frac{1}{n_{k}} \geq \frac{1}{n_{i}} \sum_{i k \in g} \frac{1}{n_{k}}
$$

The last inequality holds since the extra term $1 / n_{j}$ is smaller than other in the average. Thus,

$$
\frac{n_{i}+2}{n_{h}+1} \geq \frac{1}{n_{i}} \sum_{i k \in g} \frac{1}{n_{k}}
$$

STABILITY AND EFFICIENCY (14/17)

(c) If m is the number of members in one component, and n in the next largest, then $m>n^{2}$.

Let j in a component and i in the next largest. i does not want j iff:

$$
\frac{n_{i}+2}{n_{j}+1} \leq \frac{1}{n_{i}} \Rightarrow n_{j}+1 \geq\left(n_{i}+2\right) n_{i} \Rightarrow n_{j} \geq n_{i}^{2}
$$

The first inequality is true since all connections of i have n_{i} connections.

Remark a) implies that all i with maximal n_{i} have to be inter-linked.
b) implies that if j is linked to one i with maximal n_{i}, j wants to be linked to all other k with maximal n_{k} and those with whom they are themselves connected.

So fully intra-connected components at maximum. Then, iterate.

STABILITY AND EFFICIENCY (15/17)

- Evidence of "connectedness" in science in:
- Newman (2004) PNAS.
- Goyal, van der Leij, Moraga (2004).
- Seems like over-connected.
- Tension between stability and efficiency is well-captured by pw-stability.
- Positive issues in pw-stability: Existence.

EXISTENCE AND PW-STABILITY (1/5)

Trading networks

- Set of players $N=\{1, \ldots, n\}$, players are nodes of a network g.
- Endowments for player i stochastic: $\left(x_{i}, y_{i}\right) \in\{(1,0),(0,1)\}$ equally likely.
- Production function: $f(x, y)=x \cdot y$.
- Trade is possible between agents i and j if they belong to the same component.
- Let $P=\left\{i_{0}, i_{1}, \ldots, i_{p}\right\} \subset N$, such that $\left.g\right|_{P}$ is a component of g.

EXISTENCE AND PW-STABILITY (2/5)

- Trading outcome for a player $i \in P$ is: $\omega_{i}=\frac{1}{p+1}\left(\sum_{k=0}^{p} x_{i_{k}}, \sum_{k=0}^{p} y_{i_{k}}\right)$.
- That is, endowments are aggregated within connected component and shared equally.
- Cost of every link is c.
- Network formation is done before endowments are realized (need to use expected payoffs.)

EXISTENCE AND PW-STABILITY (3/5)

$n=4$

1.(a) $E u_{i}=\frac{1}{2} f\left(\frac{1}{2}, \frac{1}{2}\right)-c=\frac{1}{8}-c$, for all $i \in N$.
(b) $E u_{i}=\frac{1}{2} f\left(\frac{1}{2}, \frac{1}{2}\right)-c$ for $i \in\{1,2\}$ and $E u_{i}=0$ for $i \in\{3,4\}$.
(c) $E u_{i}=\frac{6}{8} f\left(\frac{2}{3}, \frac{1}{3}\right)-c=\frac{1}{6}-c$ for $i \in\{1,3\}, E u_{i}=\frac{1}{6}-2 c$ for $i=2$, and $E u_{i}=0$ for $i=4$.
(d) $E u_{i}=\frac{8}{16} f\left(\frac{3}{4}, \frac{1}{4}\right)+\frac{6}{16} f\left(\frac{2}{4}, \frac{2}{4}\right)-c=\frac{3}{16}-c$ for $i \in\{1,4\}$, and $E u_{i}=$ $\frac{3}{16}-2 c$ for $i \in\{2,3\}$.

EXISTENCE AND PW-STABILITY (4/5)

2. (b) is not stable for $c \leq \frac{1}{8}$ since players 3 and 4 would like to create a link.
3. (a) is not stable for $c \leq \frac{3}{16}-\frac{1}{8}=\frac{1}{16}$ since players 2 and 3 would like to create a link.
4. (d) is not stable for $c \geq \frac{3}{16}-\frac{1}{6}=\frac{1}{48}$ since player 3 would like to delete link 34.
5. (c) is not stable for $c \geq \frac{1}{6}-\frac{1}{8}=\frac{1}{24}$ since player 2 would like to delete link 23.
6. All other configurations are unstable since links are redundant.

These observations together imply that for $\frac{1}{24} \leq c \leq \frac{1}{8}$ there is no stable trading network.

MULTIPLICITY AND PW-STABILITY (1/3)

DYNAMIC STABILITY

- For many parameters/payoff functions (e.g. co-author) there are multiple pw-stable networks.
- In games one approach to decrease multiplicity is evolutionary dynamics.
- In particular - stochastic stability
- Young, or, Kandori, Mailath and Rob, both 1993 Econometrica

MULTIPLICITY AND PW-STABILITY (2/3)

- Stochastic process:
- State variable - past actually played strategies (perhaps time-averaged.)
- Updating rule/transition probabilities:
- Best-response (or better-response) to state - with prob. $1-\varepsilon$.
- Anything else - with probability ε.
- Stochastic process reaches all states with positive probability.
- Thus, it is ergodic and has a stationary distribution μ^{ε}.
- Stochastically stable states are those with positive probability in $\bar{\mu}=$ $\lim _{\varepsilon \rightarrow 0} \mu^{\varepsilon}$.

MULTIPLICITY AND PW-STABILITY (3/3)

- Stochastically stable networks
- State variable: network g.
- Updating rule: one-link deviation possibility.
- Example: co-author model - two pw-stable networks.
- More mistakes are needed to do one transition than the other.
- Set of players: $N=\{1, \ldots, n\}$.
- Strategy set: $S_{i}=\{0,1\}^{n-1}$.
- Let strategy $s_{i}=\left(s_{i 1}, s_{i 2}, \ldots, s_{i n}\right) \in S_{i}$
- $s_{i j}=0$ if i does not want to link to j,
- $s_{i j}=1$ if i wants to link to j.
- $s=\left(s_{1}, \ldots, s_{n}\right) \in S$ is a strategy profile.
- Let $g(s)$ be the network that arises from s.
- For $g(s)$, let $g_{i j}(s) \in\{0,1\}$ denote the presence of absence of link $i j$.

THE MYERSON GAME (2/9)

- One-sided link formation (directed networks): $g_{i j}(s)=s_{i j}$
- Two-sided link formation (undirected): $g_{i j}(s)=s_{i j} * s_{j i}$.
- Example of one- sided: Bala and Goyal (2000) Econometrica.

$$
u_{i}(g)=\sum_{j \notin i} \delta^{d_{i j}(g)}-c \cdot n_{i}(g), 0<\delta<1, c \geq 0
$$

THE MYERSON GAME (3/9)

MULTIPLICITY IN MYERSON GAMES: REFINEMENTS

- Let:

$s_{1} \backslash s_{2}$	s_{21}	s_{22}
s_{11}	$-2,-2$	$-2,-2$
s_{12}	$-2,-2$	0,0

- Trembling-hand perfect equilibrium (THPE):
- σ^{ε} is a ε-constrained equilibrium if it is:

1. Completely mixed.
2. $\sigma_{i}^{\varepsilon} \in \arg \max \left\{u_{i}\left(\sigma_{i}, \sigma_{-i}^{\varepsilon}\right) \mid \sigma_{i}\left(s_{i}\right) \geq \varepsilon\left(s_{i}\right)\right\}$.

- σ is a THPE iff $\sigma=\lim _{\varepsilon \rightarrow 0} \sigma^{\varepsilon}$ where σ^{ε} is some sequence of ε-constrained eq.
- $\left(s_{11}, s_{21}\right)$ in the example is NE but not THPE.
- Unfortunately that is not general.

THE MYERSON GAME (5/9)

Claim 1 THPE does not eliminate all "unwanted" Nash equilibria in the following Example.

It is easy to see that the null graph is a Nash equilibrium, but not stable. We will now show it is a THPE.

Represent a mixed strategy $\sigma \in \triangle\{0,1\}^{2}$ as in:

THE MYERSON GAME (6/9)

$\sigma_{1}=$| | $s_{13}=0$ | $s_{13}=1$ |
| :--- | :--- | :--- |
| $s_{12}=0$ | a | b |
| $s_{12}=1$ | c | $1-a-b-c$ |

Then we will check that the following in an ε - constrained equilibrium (for sufficiently small ε.)

$\sigma_{1}^{\varepsilon}=$| | $s_{13}=0$ | $s_{13}=1$ |
| :--- | :--- | :--- |
| $s_{12}=0$ | ε | ε |
| $s_{12}=1$ | ε | $1-3 \varepsilon$ |
| | $s_{32}=0$ | $s_{32}=1$ |, \quad| | | $s_{23}=0$ |
| :--- | :--- | :--- |
| $s_{21}=0$ | $1-2 \varepsilon^{4}-\varepsilon$ | $s_{23}=1$ |
| $s_{21}=1$ | ε^{4} | ε |
| $s_{31}=0$ | $1-2 \varepsilon^{4}-\varepsilon$ | ε^{4} |
| $s_{31}=1$ | ε^{4} | ε |

- Easy to check σ_{1}^{ε} is optimal. Player 1 has a dominant strategy to create as many links as possible.
- Why is σ_{2}^{ε} optimal against $\sigma_{-2}^{\varepsilon}=\left(\sigma_{1}^{\varepsilon}, \sigma_{3}^{\varepsilon}\right)$?

THE MYERSON GAME (8/9)

Let $u_{2}\left(\left(s_{31}=0, s_{32}=1\right), \sigma_{-2}^{\varepsilon}\right)$ and disregard terms of order ε^{2} or more. Then

$$
u_{2}\left(\left(s_{31}=0, s_{32}=1\right), \sigma_{-2}^{\varepsilon}\right) \approx\left((1-3 \varepsilon) \varepsilon+\varepsilon^{2}\right) \cdot(-1)+2 \varepsilon^{2} \cdot 1<0
$$

whereas

$$
u_{2}\left(\left(s_{31}=0, s_{32}=0\right), \sigma_{-2}^{\varepsilon}\right)=0
$$

- Notice that it is crucial that the "mistake" of sending links to both 1 and 2 by player 3 is ε, whereas the (less serious) of sending only to 3 is ε^{2}.
- Thus proper equilibrium may be better.
- σ^{ε} is a ε-proper equilibrium if it is:

1. Completely mixed.

THE MYERSON GAME (9/9)

2. $\left.u_{i}\left(s_{i}, \sigma_{-i}^{\varepsilon}\right)<u_{i}\left(s_{i}^{\prime}, \sigma_{-i}^{\varepsilon}\right) \Rightarrow \sigma_{i}\left(s_{i}\right)<\varepsilon \cdot \sigma_{i}\left(s_{i}^{\prime}\right)\right\}$.

- σ is a proper equilibrium iff $\sigma=\lim _{\varepsilon \rightarrow 0} \sigma^{\varepsilon}$ where σ^{ε} is some sequence of ε-proper eq.
- $\left(s_{11}, s_{21}\right)$ in the example is NE but not THPE.
- Unfortunately that is not general.
- Let again the (Myerson) network formation game.
- We say that g is pairwise Nash iff:
- g is a Nash equilibrium of the Myerson game.
- $u_{i}(g+i j)>u_{i}(g) \Rightarrow u_{j}(g+i j)>u_{j}(g)$.
- This is a Nash equilibrium for which every mutually beneficial link is created.
- A pairwise Nash network is robust to:
- Bilateral single link creation.
- Unilateral multi-link destruction.
- For the latter reason, this is more demanding than pw-stability.
- Pairwise stability:

$$
g \in P S \Rightarrow u_{i}(g-i j)-u_{i}(g) \leq 0 \quad \forall i \in N, i j \in g \quad(*)
$$

- Pairwise Nash:

$$
g \in P N \Rightarrow u_{i}\left(g-i j_{1}-i j_{2} \ldots-i j_{p}\right)-u_{i}(g) \leq 0 \quad \forall i \in N, i j_{1}, i j_{2}, \ldots, i j_{p} \in g(* *)
$$

- Obviously $(* *) \Rightarrow(*)$. If $(*) \Rightarrow(* *)$, then Pairwise stability and Pairwise Nash are equivalent.
- A condition guaranteing this is u_{i} (.) being α - convex.
- $u_{i}($.$) is \alpha-$ convex iff

$$
u_{i}\left(g-i j_{1}-i j_{2} \ldots-i j_{l}\right)-u_{i}(g) \geq \alpha \sum_{k=1}^{p}\left(u_{i}\left(g-i j_{k}\right)-u_{i}(g)\right)
$$

- To find α take the

$$
\min _{g^{\prime} \subset g}\left\{u_{i}\left(g-i j_{1}-i j_{2} \ldots-i j_{l}\right)-u_{i}(g)\right\} / \max _{i j_{k}}\left\{u_{i}\left(g-i j_{k}\right)-u_{i}(g)\right\}
$$

Networks - Fall 2005

Chapter 1

Network formation

October 25, 2005
$\langle\hat{B}\rangle$

