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WHAT IS A NETWORK? (1/3) ➣➟ ➠ ➪

• A collection of “entities” (nodes) and bilateral relationships (links).

The links/relationships can be:

Directed : Not necessarily reciprocal.

Undirected : Always reciprocal.

Weighted : Some links are more “equal” than others.

Stochastic : The links are realized with some probability.
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WHAT IS A NETWORK? (2/3) ➢➣➟ ➠ ➪

Two crucial characteristics of networks:

A : Interactions are not anonymous (as opposed to standard “market”

transactions.)

B : The particular place agents occupy in the set of relationships is im-

portant.
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WHAT IS A NETWORK? (3/3) ➢➟ ➠ ➪

Network does potentially two things:

1. Production =⇒ Efficiency.

2. Allocation=⇒ Stability.

The interaction between the two produces a tension for network formation.

Q1 Which is the efficient productive network?

Q2 What is the stable network?

Q3 Are efficient networks stable and vice versa?
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JACKSON-WOLINSKY MODEL(S) (1/4) ➣➟ ➠ ➪

THE GENERAL MODEL

Let N = {1,2, ..., n} be the set of all individual nodes.

We denote by ij a potential link between players i, j ∈ N.

A graph g is a collection of undirected links ij.

We assume ii /∈ g.

Let N(g) = {j ∈ N : ∃ij ∈ g}, and n(g) the cardinality of N(g).

Let Ni(g) = {j ∈ N : ij ∈ g}, and ni(g) the cardinality of Ni(g).

Payoff functions for each player: ui : g → <.
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JACKSON-WOLINSKY MODEL(S) (2/4) ➢➣➟ ➠ ➪

Distance: We denote by dij(g) the shortest (geodesic) distance between

i and j in g.

Components: The graph g′ ⊂ g is a component of g if for all i, j ∈ N(g′)
(i 6= j), there exists a path in g′ connecting i and j, and for any i ∈ N(g′),
j ∈ N(g) if ij ∈ g, then ij ∈ g′.
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JACKSON-WOLINSKY MODEL(S) (3/4) ➢➣➟ ➠ ➪

PARTICULAR MODELS

MODEL 1-CONNECTIONS:

ui(g) =
∑

j /∈i δdij(g) − c · ni(g), 0 < δ < 1, c ≥ 0.

• Never detrimental to third parties if two agents creates a link between

them (positive externality.)

• Two connections can have different effects on a player.
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JACKSON-WOLINSKY MODEL(S) (4/4) ➢➟ ➠ ➪

MODEL 2-CO-AUTHOR:

ui(g) =
∑

ij∈g

[
1

ni(g)
+ 1

nj(g)
+ 1

ni(g)nj(g)

]
.

ui(g) = 0 if ni(g) = 0.

ui(g) = 1 +
(
1 + 1

ni

)∑
ij∈g

[
1

nj(g)

]
.

Never beneficial to third parties if two agents creates a link between them

(negative externality.)
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STABILITY AND EFFICIENCY (1/17) ➣➟ ➠ ➪

• Efficiency: Let W (g) =
∑

i∈N ui(g). We say g∗ is efficient iff W (g∗) ≥
W (g) ∀g.

Notice that this notion is utilitarian not Paretian.

• Stability: We say that a network g′ is pairwise stable iff:

1. ui(g
′) ≥ ui(g

′ − ij) and uj(g
′) ≥ uj(g

′ − ij), ∀ij ∈ g.

2. ui(g
′ + ij) > ui(g

′) ⇒ uj(g
′ + ij) < uj(g

′), ∀ij /∈ g.

• Notice that:

• Only checks single link deviation.

• Checks bilateral creation and unilateral cutting.
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STABILITY AND EFFICIENCY (2/17) ➢➣➟ ➠ ➪

EFFICIENCY IN CONNECTIONS MODEL

ui(g) =
∑
j /∈i

δdij(g) − c · ni(g),0 < δ < 1, c ≥ 0.

1. The complete graph is efficient if c < δ − δ2.

δ − δ2 is minimum increased benefit from a new direct link.

Cost of a direct link c

2. A star encompassing N is efficient if δ − δ2 < c < δ + ((N − 2)/2)δ2.

3. No links are efficient if δ + ((N − 2)/2)δ2 < c.
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STABILITY AND EFFICIENCY (3/17) ➢➣➟ ➠ ➪

4. Proof of 2+3:

• Let a component g′ with m nodes and k links.

• Value of direct links is k(2δ − 2c).

• Maximum value of indirect links (m(m− 1)/2− k)2δ2.

• So W (g′) ≤ W = k(2δ − 2c) + (m(m− 1)− 2k)δ2.

• W (m− star) = (m− 1)(2δ − 2c) + (m− 1)(m− 2)δ2.

• Thus W −W (m− star) = (k − (m− 1))(2δ − 2c− 2δ2) ≤ 0.

(since k ≥ m− 1 and δ − δ2 < c).

• Thus every component of efficient graph must be a star. A star of
m + n is more efficient than two separate stars.

• And W (star) ≥ 0 ⇔ δ + m−2
2 δ2 ≥ c.
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STABILITY AND EFFICIENCY (4/17) ➢➣➟ ➠ ➪

STABILITY IN CONNECTIONS MODEL

1. The complete graph is pairwise stable if c < δ − δ2.

Same reason as before, argument was pairwise.
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STABILITY AND EFFICIENCY (5/17) ➢➣➟ ➠ ➪

2. Pairwise stable networks are always fully connected.

• For a contradiction, assume g has pw-stable subcomponents g′, g′′.

• Let ij ∈ g′, and kl ∈ g′′.

• Then pw-stability of g′ ⇒ ui(g)− ui(g − ij) ≥ 0.

• But, uk(g + kj) − uk(g) > ui(g) − ui(g − ij), since any new benefit

that i gets from j, k also gets and in addition k gets δ2 times the

benefits of i’s connections.

• Similarly, uj(g + jk)− uj(g) > ul(g)− ul(g − lk) ≥ 0.

• This contradicts pw-stability since jk /∈ g.
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STABILITY AND EFFICIENCY (6/17) ➢➣➟ ➠ ➪

3. For δ − δ2 < c < δ star is pw-stable, but not always uniquely so.

• Deleting means losing at least δ and gaining c.

• Adding ij : net gain δ − δ2, cost c.

• For N = 4, and δ − δ3 < c < δ, the line is also pw-stable.

• For N = 4, and δ − δ3 > c > δ − δ2, the circle is also pw-stable.
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STABILITY AND EFFICIENCY (7/17) ➢➣➟ ➠ ➪

4. For δ < c, any non-empty network is inefficient.

• For δ < c, connection ij is unprofitable to i if Nj(g) = i (cost to i is

c, benefit δ).

• Star is not stable.

• For N = 5, and δ − δ4 + δ2− δ3 > c, the circle is pw-stable (deleting

one link benefit is δ− δ4 + δ2− δ3, cost is c; adding one ling benefit

is δ − δ2, cost is c).
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STABILITY AND EFFICIENCY (8/17) ➢➣➟ ➠ ➪

EFFICIENCY IN CO-AUTHOR MODEL

1. For n even, the efficient network is n/2 pairs.

W (g) =
∑
i∈N

ui(g) =
∑

i:ni(g)>0

∑
ij∈g

[
1

ni
+

1

nj
+

1

ninj

]

But since
∑

i:ni(g)>0
∑

ij∈g

[
1
ni

]
≤ n (equality only if ni > 0 for all i)

W (g) ≤ 2n +
∑

i:ni(g)>0

∑
ij∈g

[
1

ninj

]
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STABILITY AND EFFICIENCY (9/17) ➢➣➟ ➠ ➪

But ∑
i:ni(g)>0

∑
ij∈g

[
1

ninj

]
=

∑
i:ni(g)>0

1

ni

∑
ij∈g

[
1

nj

]
≤ n

(since
∑

ij∈g

[
1/nj

]
≤ ni) and equality can only be achieved if nj = 1

for all j ∈ N.
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STABILITY AND EFFICIENCY (10/17) ➢➣➟ ➠ ➪

STABILITY IN CO-AUTHOR MODEL

1. Pairwise stable networks are composed of fully intra-connected com-
ponents of different sizes.

Let i and j not linked.

ui(g + ij) = 1 +

(
1 +

1

ni + 1

) 1

nj + 1
+
∑
ik∈g

1

nk

 .

A new link ij is beneficial to i iff:(
1 +

1

ni + 1

)
1

nj + 1
>

(
1

ni
−

1

ni + 1

) ∑
ik∈g

1

nk(
ni + 2

ni + 1

)
1

nj + 1
>

(
1

ni(ni + 1)

) ∑
ik∈g

1

nk

ni + 2

nj + 1
>

1

ni

∑
ik∈g

1

nk
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STABILITY AND EFFICIENCY (11/17) ➢➣➟ ➠ ➪

(a) If ni = nj i wants j and vice versa.

1
ni

∑
ik∈g

1
nk
≤ 1 (average of fractions.)

So if ni ≥ nj linking to j is beneficial for i. When ni = nj this is

reciprocal.
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STABILITY AND EFFICIENCY (12/17) ➢➣➟ ➠ ➪

(b) If nh ≤ max{nk|ik ∈ g} then i wants a link to h.

Let j such that ij ∈ g and nj = max{nk|ik ∈ g}.

Case 1 ni ≥ nj − 1

ni + 2

nh + 1
≥

ni + 2

nj + 1
≥ 1


ni+2
nh+1 > 1 ⇒ i wants h

ni+2
nh+1 = 1 ⇒ nh ≥ 2 ⇒ nj ≥ 2

⇒ 1
ni

∑
ik∈g

1
nk

< 1 ⇒ i wants h
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STABILITY AND EFFICIENCY (13/17) ➢➣➟ ➠ ➪

Case 2 ni < nj − 1

ni + 2

nh + 1
≥

ni + 2

nj + 1
=

ni + 1 + 1

nj + 1
>

ni + 1

nj

Since ij ∈ g this implies

ni + 1

nj
≥

1

ni − 1

∑
ik∈g
k 6=j

1

nk
≥

1

ni

∑
ik∈g

1

nk

The last inequality holds since the extra term 1/nj is smaller than

other in the average. Thus,

ni + 2

nh + 1
≥

1

ni

∑
ik∈g

1

nk
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STABILITY AND EFFICIENCY (14/17) ➢➣➟ ➠ ➪

(c) If m is the number of members in one component, and n in the next

largest, then m > n2.

Let j in a component and i in the next largest. i does not want j

iff:
ni + 2

nj + 1
≤

1

ni
⇒ nj + 1 ≥ (ni + 2)ni ⇒ nj ≥ n2

i

The first inequality is true since all connections of i have ni con-

nections.

Remark a) implies that all i with maximal ni have to be inter-linked.

b) implies that if j is linked to one i with maximal ni, j wants to be

linked to all other k with maximal nk and those with whom they are

themselves connected.

So fully intra-connected components at maximum. Then, iterate.
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STABILITY AND EFFICIENCY (15/17) ➢➣➟ ➠ ➪

• Evidence of “connectedness” in science in:

• Newman (2004) PNAS.

• Goyal, van der Leij, Moraga (2004).

• Seems like over-connected.

• Tension between stability and efficiency is well-captured by pw-stability.

• Positive issues in pw-stability: Existence.
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EXISTENCE AND PW-STABILITY (1/5) ➣➟ ➠ ➪

Trading networks

• Set of players N = {1, ..., n}, players are nodes of a network g.

• Endowments for player i stochastic: (xi, yi) ∈ {(1,0), (0,1)} equally

likely.

• Production function: f(x, y) = x · y.

• Trade is possible between agents i and j if they belong to the same

component.

• Let P = {i0, i1, ..., ip} ⊂ N , such that g|P is a component of g.

➟➠ ➪➲ ➪ ➟➠ ➣ ➥ 23
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EXISTENCE AND PW-STABILITY (2/5) ➢➣➟ ➠ ➪

• Trading outcome for a player i ∈ P is: ωi = 1
p+1

(∑p
k=0 xik,

∑p
k=0 yik

)
.

• That is, endowments are aggregated within connected component and

shared equally.

• Cost of every link is c.

• Network formation is done before endowments are realized (need to

use expected payoffs.)
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EXISTENCE AND PW-STABILITY (3/5) ➢➣➟ ➠ ➪

n = 4

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

(a) (b) (c) (d)

1.(a) Eui = 1
2f

(
1
2, 1

2

)
− c = 1

8 − c, for all i ∈ N.

(b) Eui = 1
2f

(
1
2, 1

2

)
− c for i ∈ {1,2} and Eui = 0 for i ∈ {3,4}.

(c) Eui = 6
8f

(
2
3, 1

3

)
− c = 1

6 − c for i ∈ {1,3}, Eui = 1
6 − 2c for i = 2, and

Eui = 0 for i = 4.

(d) Eui = 8
16f

(
3
4, 1

4

)
+ 6

16f
(
2
4, 2

4

)
− c = 3

16 − c for i ∈ {1,4}, and Eui =
3
16 − 2c for i ∈ {2,3}.
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EXISTENCE AND PW-STABILITY (4/5) ➢➟ ➠ ➪

2. (b) is not stable for c ≤ 1
8 since players 3 and 4 would like to create a

link.

3. (a) is not stable for c ≤ 3
16 −

1
8 = 1

16 since players 2 and 3 would like to
create a link.

4. (d) is not stable for c ≥ 3
16 −

1
6 = 1

48 since player 3 would like to delete
link 34.

5. (c) is not stable for c ≥ 1
6 −

1
8 = 1

24 since player 2 would like to delete
link 23.

6. All other configurations are unstable since links are redundant.

These observations together imply that for 1
24 ≤ c ≤ 1

8there is no stable
trading network.
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MULTIPLICITY AND PW-STABILITY (1/3) ➣➟ ➠ ➪

DYNAMIC STABILITY

• For many parameters/payoff functions (e.g. co-author) there are mul-

tiple pw-stable networks.

• In games one approach to decrease multiplicity is evolutionary dynam-

ics.

• In particular - stochastic stability

• Young, or, Kandori, Mailath and Rob, both 1993 Econometrica

➟➠ ➪➲ ➪ ➟➠ ➣ ➥ 27
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MULTIPLICITY AND PW-STABILITY (2/3) ➢➣➟ ➠ ➪

• Stochastic process:

• State variable - past actually played strategies (perhaps time-averaged.)

• Updating rule/transition probabilities:

• Best-response (or better-response) to state - with prob. 1− ε.

• Anything else - with probability ε.

• Stochastic process reaches all states with positive probability.

• Thus, it is ergodic and has a stationary distribution µε.

• Stochastically stable states are those with positive probability in µ =

limε→0 µε.

➟➠ ➪➲ ➪ ➟➠ ➥ ➢➣ ➥ 28
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MULTIPLICITY AND PW-STABILITY (3/3) ➢➟ ➠ ➪

• Stochastically stable networks

• State variable: network g.

• Updating rule: one-link deviation possibility.

• Example: co-author model - two pw-stable networks.

• More mistakes are needed to do one transition than the other.
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THE MYERSON GAME (1/9) ➣➟ ➠ ➪

• Set of players: N = {1, ..., n}.

• Strategy set: Si = {0,1}n−1.

• Let strategy si = (si1, si2, ..., sin) ∈ Si

• sij = 0 if i does not want to link to j,

• sij = 1 if i wants to link to j.

• s = (s1, ..., sn) ∈ S is a strategy profile.

• Let g(s) be the network that arises from s.

• For g(s), let gij(s) ∈ {0,1} denote the presence of absence of link ij.

➟➠ ➪➲ ➪ ➟➠ ➣ ➥ 30
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THE MYERSON GAME (2/9) ➢➣➟ ➠ ➪

• One-sided link formation (directed networks): gij(s) = sij

• Two-sided link formation (undirected): gij(s) = sij ∗ sji.

• Example of one- sided: Bala and Goyal (2000) Econometrica.

ui(g) =
∑
j /∈i

δdij(g) − c · ni(g),0 < δ < 1, c ≥ 0.
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THE MYERSON GAME (3/9) ➢➣➟ ➠ ➪

MULTIPLICITY IN MYERSON GAMES: REFINEMENTS

• Let:

s1\s2 s21 s22
s11 -2,-2 -2,-2
s12 -2,-2 0,0

• Trembling-hand perfect equilibrium (THPE):

• σε is a ε−constrained equilibrium if it is:

1. Completely mixed.

2. σε
i ∈ argmax{ui(σi, σ

ε
−i)|σi(si) ≥ ε(si)}.

• σ is a THPE iff σ = limε→0 σε where σε is some sequence of

ε−constrained eq.

➟➠ ➪➲ ➪ ➟➠ ➥ ➢➣ ➥ 32
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THE MYERSON GAME (4/9) ➢➣➟ ➠ ➪

• (s11, s21) in the example is NE but not THPE.

• Unfortunately that is not general.

➟➠ ➪➲ ➪ ➟➠ ➥ ➢➣ ➥ 33
36



THE MYERSON GAME (5/9) ➢➣➟ ➠ ➪

Claim 1 THPE does not eliminate all “unwanted” Nash equilibria in the

following Example.

o o

o

o o

o

o o

o

o o

o

o o

o

o o

o

o o

o

o o

o

0

0 0 0 0

01

-1

1

-1 11

1

-1-1

1

-1-1

2

-2

2

-2-2 -2

THPE PS

It is easy to see that the null graph is a Nash equilibrium, but not stable.

We will now show it is a THPE.

Represent a mixed strategy σ ∈ 4{0,1}2 as in:
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36



THE MYERSON GAME (6/9) ➢➣➟ ➠ ➪

σ1 =
s13 = 0 s13 = 1

s12 = 0 a b
s12 = 1 c 1− a− b− c

Then we will check that the following in an ε− constrained equilibrium (for

sufficiently small ε.)

σε
1 =

s13 = 0 s13 = 1
s12 = 0 ε ε
s12 = 1 ε 1− 3ε

, σε
2 =

s23 = 0 s23 = 1
s21 = 0 1− 2ε4 − ε ε4

s21 = 1 ε4 ε

,

σε
2 =

s32 = 0 s32 = 1
s31 = 0 1− 2ε4 − ε ε4

s31 = 1 ε4 ε

• Easy to check σε
1 is optimal. Player 1 has a dominant strategy to

create as many links as possible.
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THE MYERSON GAME (7/9) ➢➣➟ ➠ ➪

• Why is σε
2 optimal against σε

−2 = (σε
1, σε

3)?

o o

o

o o

o

o o

o

o o

o

o o

o

o o

o

o o

o

o o

o

o o

o

o o

o

o o

o

o o

o

o o

o

o o

o

o o

o

o o

o
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THE MYERSON GAME (8/9) ➢➣➟ ➠ ➪

Let u2((s31 = 0, s32 = 1), σε
−2) and disregard terms of order ε2 or

more. Then

u2((s31 = 0, s32 = 1), σε
−2) ≈ ((1− 3ε)ε + ε2) · (−1) + 2ε2 · 1 < 0

whereas

u2((s31 = 0, s32 = 0), σε
−2) = 0

• Notice that it is crucial that the “mistake” of sending links to both 1

and 2 by player 3 is ε, whereas the (less serious) of sending only to 3

is ε2.

• Thus proper equilibrium may be better.

• σε is a ε−proper equilibrium if it is:

1. Completely mixed.
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THE MYERSON GAME (9/9) ➢➟ ➠ ➪

2. ui(si, σ
ε
−i) < ui(s

′
i, σ

ε
−i) ⇒ σi(si) < ε · σi(s

′
i)}.

• σ is a proper equilibrium iff σ = limε→0 σε where σε is some sequence

of ε−proper eq.

• (s11, s21) in the example is NE but not THPE.

• Unfortunately that is not general.
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PAIRWISE NASH EQUILIBRIA (1/3) ➣ ➲ ➪

• Let again the (Myerson) network formation game.

• We say that g is pairwise Nash iff:

• g is a Nash equilibrium of the Myerson game.

• ui(g + ij) > ui(g) ⇒ uj(g + ij) > uj(g).

• This is a Nash equilibrium for which every mutually beneficial link is

created.

• A pairwise Nash network is robust to:

• Bilateral single link creation.

• Unilateral multi-link destruction.
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PAIRWISE NASH EQUILIBRIA (2/3) ➢➣ ➲ ➪

• For the latter reason, this is more demanding than pw-stability.

• Pairwise stability:

g ∈ PS ⇒ ui(g − ij)− ui(g) ≤ 0 ∀i ∈ N, ij ∈ g (∗).

• Pairwise Nash:

g ∈ PN ⇒ ui(g−ij1−ij2...−ijp)−ui(g) ≤ 0 ∀i ∈ N, ij1, ij2, ..., ijp ∈ g (∗∗).

• Obviously (∗∗) ⇒ (∗). If (∗) ⇒ (∗∗), then Pairwise stability and Pairwise

Nash are equivalent.

• A condition guaranteing this is ui(.) being α− convex.
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PAIRWISE NASH EQUILIBRIA (3/3) ➢ ➲ ➪

• ui(.) is α− convex iff

ui(g − ij1 − ij2...− ijl)− ui(g) ≥ α
p∑

k=1

(ui(g − ijk)− ui(g)) .

• To find α take the

min
g′⊂g

{ui(g − ij1 − ij2...− ijl)− ui(g)} /max
ijk

{ui(g − ijk)− ui(g)} .
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