Building socio-economic Networks:

How many conferences should you attend?

Antonio Cabrales, Antoni Calvó-Armengol, Yves Zenou

January 2006

《 $\hat{\rightharpoonup}$

- Introduction $" \Rightarrow$ |
- The game m
- Equilibrium (large economies) $\| \Rightarrow$
- Response to incentives $" \Rightarrow$ "
- Policies: how should you spend your first dollar? $\|=\|$
- A couple of extensions $\stackrel{m}{ } \Rightarrow$

- Cross-National Network of R\&D Projects Involving PROs and Commercial Entities, 1990-1999 (Owen Smith, Riccaboni, Pammolli, Powell 2002).

Introduction (2/6)

- Spillovers between different agents generate incentives for "linking."
- Research and development.
- Labor Market Information.
- Friendships and "Social Capital."
- If linking is done "non-cooperatively," inefficiencies arise (overlinking underwork), so role for policy.

Introduction (3/6)

- Prior work:
- Spillovers (theory): Marshall (1920), D'Aspremont and Jacquemin (1988), Bénabou (1993).
- Spillovers (empirics): Ciccone and Hall (1996), Cassimand and Veugelers (2002).
- Spillovers (policy): Motta (1996), Leahy and Neary (1997).
- Networks (theory): Jackson (2005), Goyal and Moraga (2001).
- Networks (empirics): Pammolli and Riccaboni (2001), Owen-Smith et al. (2004).

Introduction (4/6)

- They do not look very much at endogenous and costly network formation.
- When they do, they simplify away the game after forming the network.
- Reason: Analytical intractability.

Introduction (5/6)

- We analyze a network formation game in two stages:
- First - Socialization effort.
- Second - Productive effort.
- The key simplification is: undirected socialization.
- Each link created with probability equal to product of socialization efforts.
- Thus random network.
- Strategy space much simpler (one dimensional for each player - rather than n-1-dimensional), so equilibrium is a smaller-sized fixed point.

Introduction (6/6)

- Equilibrium: for "large" groups - unique and symmetric.
- An increase in the returns to "success" makes socialization effort relatively stronger.
- An explanation for the explotion of R\&D collaboration.
- Perhaps also for the decrease in social capital.
- Public policy: where should you put your first euro?

The game
Let $N=\{1, \ldots, n\}$ be a set of players.
We consider a two-stage game:
Stage one: Players select $k_{i}>0 . i$ and j interact with probability:

$$
g_{i j}(k)=g_{j i}(k)=\frac{k_{i} k_{j}}{\sum_{l \in N} k_{l}}=\frac{k_{i} k_{j}}{n\langle k\rangle} .
$$

Interim stage: Learn k and i.i.d. shocks on $[\underline{\varepsilon}, \bar{\varepsilon}]$, expected value ε, and variance σ_{ε}^{2}.

Stage two: Players select $s_{i}>0$. Let $p_{i j}=g_{i j}$ if $i \neq j$, and $p_{i i}=g_{i i} / 2$.
Player i 's utility:

$$
u_{i}(s, k)=\left[b+\varepsilon_{i}+\alpha \sum_{j} p_{i j} s_{j}\right] s_{i}-\frac{1}{2} s_{i}^{2}-\frac{1}{2} k_{i}^{2}
$$

where $b>0$ and $\alpha \geq 0$.

Equilibrium (large economies) (1/8)

Productive effort

Let $\mathbf{G}(k)=\left[g_{i j}(k)\right]_{i, j \in N}$ be matrix of random links. Define:

$$
\lambda(k)=\frac{\alpha\langle k\rangle}{\langle k\rangle-\alpha\left\langle k^{2}\right\rangle} .
$$

Lemma 1 When $p_{i i}<1 / 2 \alpha$, the unique interior Nash equilibrium in pure strategies of the second-stage game is:

$$
\begin{equation*}
\mathrm{s}^{*}(k)=b \beta(k)+\mathrm{M}(k) \cdot \varepsilon \tag{1}
\end{equation*}
$$

$$
\mathbf{M}(k)=[\mathbf{I}-\alpha \mathbf{G}(k)]^{-1}=\sum_{p=0}^{+\infty} \alpha^{p} \mathbf{G}^{p}(k)
$$

- $m_{i j}(\mathbf{k})$ counts the total number of direct and indirect paths in the expected network $\mathbf{G}(\mathbf{k})$, where paths of length p are weighted by the decaying factor α^{p}.
\bullet

$$
m_{i j}(k)=\left\{\begin{array}{l}
\lambda(k) g_{i j}(k), \text { if } i \neq j \\
1+\lambda(k) g_{i i}(k), \text { if } i=j
\end{array}\right.
$$

- Define $\beta_{i}(\mathbf{k})=m_{i 1}(\mathbf{k})+\ldots+m_{i n}(\mathbf{k})$. This is the sum of all paths stemming from i in the expected network where links are independently and randomly drawn with probability $\left(g_{i j}(\mathbf{k})\right)$.
- $\beta_{i}(k)=1+\lambda(k) k_{i}$ is a measure of centrality in the random graph $\mathbf{G}(\mathbf{k})$, reminiscent of the Bonacich centrality measure for fixed networks.

Equilibrium (large economies) (3/8)

Socialization effort

The expected payoffs are:

$$
\begin{aligned}
E u_{i}(k) & =(b+\varepsilon) E\left(s_{i}\right)+\alpha E\left(\sum_{j} p_{i j} s_{i} s_{j}\right)-\frac{1}{2} E\left(s_{i}^{2}\right)-\frac{1}{2} k_{i}^{2} \\
& =(b+\varepsilon)^{2} \beta_{i}+\alpha \sum_{j} p_{i j} \omega_{i j}-\frac{1}{2} \omega_{i i}-\frac{1}{2} k_{i}^{2}
\end{aligned}
$$

Obtaining the equilibrium profile k^{*} is messy. The first-order conditions are:

$$
\begin{equation*}
k_{i}=(b+\varepsilon)^{2} \frac{\partial \beta_{i}}{\partial k_{i}}+\alpha \sum_{j}\left[p_{i j} \frac{\partial \omega_{i j}}{\partial k_{i}}+\frac{\partial p_{i j}}{\partial k_{i}} \omega_{i j}\right]-\frac{1}{2} \frac{\partial \omega_{i i}}{\partial k_{i}} \tag{2}
\end{equation*}
$$

where:

$$
\begin{aligned}
\frac{\partial \lambda}{\partial k_{i}}= & \frac{\alpha^{2}}{n} \frac{2 k_{i}-\left\langle k^{2}\right\rangle}{\left(\langle k\rangle-\alpha\left\langle k^{2}\right\rangle\right)^{2}} \\
\frac{\partial \beta_{i}}{\partial k_{i}}= & \lambda(k)+k_{i} \frac{\partial \lambda}{\partial k_{i}} \\
\frac{\partial p_{i j}}{\partial k_{i}}= & \frac{\partial g_{i j}}{\partial k_{i}}=\frac{1}{n}\left[\frac{k_{j}}{\langle k\rangle}-\frac{k_{i} k_{j}}{n\langle k\rangle^{2}}\right], \text { if } i \neq j \\
\frac{\partial p_{i i}}{\partial k_{i}}= & \frac{1}{2} \frac{\partial g_{i i}}{\partial k_{i}}=\frac{1}{2 n}\left[\frac{k_{i}}{\langle k\rangle}-\frac{k_{i}^{2}}{n\langle k\rangle^{2}}\right] \\
\frac{1}{\sigma_{\varepsilon}^{2}} \frac{\partial \omega_{i j}}{\partial k_{i}}= & \left(2+\lambda \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}\right)\left[\frac{\partial \lambda}{\partial k_{i}} g_{i j}+\frac{\partial g_{i j}}{\partial k_{i}} \lambda\right] \\
& +\lambda g_{i j}\left[\frac{\partial \lambda}{\partial k_{i}} \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}+\frac{1}{n}\left[2 \lambda \frac{k_{i}}{\langle k\rangle}-\lambda \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle^{2}}\right]\right]
\end{aligned}
$$

Equilibrium (large economies) (5/8)

$$
\begin{aligned}
\frac{1}{\sigma_{\varepsilon}^{2}} \frac{\partial \omega_{i i}}{\partial k_{i}}= & \left(2+\lambda \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}\right)\left[\frac{\partial \lambda}{\partial k_{i}} g_{i i}+\frac{\partial g_{i i}}{\partial k_{i}} \lambda\right] \\
& +\lambda g_{i i}\left[\frac{\partial \lambda}{\partial k_{i}} \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}+\frac{1}{n}\left[2 \lambda \frac{k_{i}}{\langle k\rangle}-\lambda \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle^{2}}\right]\right]
\end{aligned}
$$

In a symmetric equilibrium:

$$
\begin{align*}
k= & (b+\varepsilon)^{2} \lambda+\frac{(b+\varepsilon)^{2}}{n}(2-k) \lambda^{2} \tag{3}\\
& +\frac{\lambda}{n} \sigma_{\varepsilon}^{2}\left[2 \frac{\lambda^{2}}{n^{2}}(2-k)(1+\lambda k)+\frac{\lambda^{2} k}{n}+\frac{2 \lambda}{n}\left(1-\frac{1}{n}\right)\right]\left[\alpha \frac{k}{n}\left(n-\frac{1}{2}\right)-\frac{1}{2}\right] \\
& +\alpha \sigma_{\varepsilon}^{2} \frac{1}{n}\left(1-\frac{1}{n}\right)\left[\frac{1}{2}+\left(n-\frac{1}{2}\right)\left[\lambda \frac{k}{n}(2+\lambda k)\right]\right]
\end{align*}
$$

Equilibrium (large economies) (6/8)

Lemma 2 For n large, k^{*} is $O\left(n^{0}\right)$.
Proof. When k^{*} is $O\left(n^{p}\right)$ for $p>0, \lim _{n \rightarrow+\infty} \lambda k=-1$, and $\lim _{n \rightarrow+\infty} \lambda=0$. Thus:

$$
\begin{aligned}
\lim _{n \rightarrow+\infty}\left((b+\varepsilon)^{2} \lambda+\frac{(b+\varepsilon)^{2}}{n}(2-k) \lambda^{2}\right) & =0 \\
\lim _{n \rightarrow+\infty} \frac{\lambda}{n} \sigma_{\varepsilon}^{2}\left[2 \frac{\lambda^{2}}{n^{2}}(2-k)(1+\lambda k)+\frac{\lambda^{2} k}{n}+\frac{2 \lambda}{n}\left(1-\frac{1}{n}\right)\right]\left[\alpha \frac{k}{n}\left(n-\frac{1}{2}\right)-\frac{1}{2}\right] & =0 \\
\lim _{n \rightarrow+\infty} \alpha \sigma_{\varepsilon}^{2} \frac{1}{n}\left(1-\frac{1}{n}\right)\left[\frac{1}{2}+\left(n-\frac{1}{2}\right)\left[\lambda \frac{k}{n}(2+\lambda k)\right]\right] & =0
\end{aligned}
$$

Right hand side tends to zero, but left hand side goes to infinity. ,
\qquad

Equilibrium (large economies) (7/8)

Proposition 3 For n large, there is a unique symmetric subgame perfect equilibrium. The actions $\mathrm{s}^{*}(k)$ at the second stage are given in Lemma 1 while the equilibrium value of k in the first stage tends to

$$
\lim _{n \rightarrow+\infty} k \equiv k^{*}=\frac{1}{2 \alpha}\left(1-\sqrt{\left(1-4(b+\varepsilon)^{2} \alpha^{2}\right)}\right)
$$

Proof. By the previous lemma, k^{*} is $O\left(n^{0}\right)$. This implies that in the limit we have to satisfy:

$$
k=(b+\varepsilon)^{2} \lambda
$$

So the equilibrium candidate must solve:

$$
k-\alpha k^{2}-(b+\varepsilon)^{2} \alpha=0
$$

I

Lemma 4 For n large, there are no asymmetric equilibria.

Equilibrium (large economies) (8/8)

The equilibrium approximation for $\left(\alpha, b+\varepsilon, \sigma_{\varepsilon}\right)=\left(1,0.1^{0.5}, 1\right)$

n	k^{*}
10	.294
20	.178
50	.136
100	.124
200	.116
1000	.114
∞	.113

Relative response of s and k to a change in $\left(\alpha, b+\varepsilon, \sigma_{\varepsilon}\right)$
Proposition 5 Let $\left(\alpha, b+\varepsilon, \sigma_{\varepsilon}\right)$ be scaled by factor $1 / \sqrt{2 \alpha(b+\varepsilon)}>\delta \geq 1$. Then, equilibrium k^{*} increases more than $s^{*}\left(k^{*}\right)$ in percentage terms.

- Number of Mergers and Acquisitions and R\&D Collaborations per Month in the pharmaceutical industry. One-Year Moving Averages (Pammolli and Riccaboni, 2001).

Response to incentives (2/2)

Reaching the giant component: phase transition.

Proposition 6 Let $\left(\alpha, b+\varepsilon, \sigma_{\varepsilon}\right)$ be scaled by $1 / \sqrt{2 \alpha(b+\varepsilon)}>\delta \geq 1$. There exists a threshold $\bar{\alpha}$ such that, for $\alpha<\bar{\alpha}$, when δ reaches a threshold value of δ^{*}, the equilibrium network jumps from a fragmented graph to a highly connected graph (single giant component).

Symmetric equilibrium is Erdös-Rényi random graph (each link is binomial parameter k^{*} / n. The transition happens when $k=1$, i.e. when the following holds:

1. $2 \alpha(b+\varepsilon)<1$. 2. $\alpha<\frac{1}{1+b+\varepsilon}$. 3. $1+4 \alpha^{2}+2 \alpha>8 \alpha(b+\varepsilon)$.

For example, when $b+\varepsilon<1$, this happens when $\alpha<(3-\sqrt{5}) / 4$.

Policies: how should you spend your first dollar?

(1/2)

Relative impact of k and s subsidy

The technology for producing k and s is: $L_{k}=\frac{1}{2} \sqrt{k}$ and $L_{s}=\frac{1}{2} \sqrt{s}$.
Subsidies are a fraction of the cost of the labor input $((1-\theta),(1-\tau))$:

$$
u_{i}=\left(b+\varepsilon_{i}+\alpha \sum_{j} p_{i j} s_{j}\right) s_{i}-\frac{1}{2} \theta s_{i}^{2}-\frac{1}{2} \tau k_{i}^{2}
$$

In second stage we have: $s_{i}^{*}\left(\frac{\alpha}{\theta}, \frac{\beta}{\theta}, \frac{\sigma^{2}}{\theta^{2}}\right)$.
In first stage: $\tau k=\frac{(b+\varepsilon)^{2}}{\theta^{2}} \lambda(\theta)$, which implies that $k^{*}=\frac{\theta}{2 \alpha}\left[1-\sqrt{1-4 \frac{(b+\varepsilon)^{2} \alpha^{2}}{\theta^{4} \tau}}\right]$ so that in particular

$$
E u_{i}(k)=\frac{(b+\varepsilon)^{2}}{\theta^{2}}-\frac{1}{2} \frac{\sigma^{2}}{\theta^{2}}+\frac{1}{2} \tau k^{2}
$$

Now we will show the effect of the first unit of subsidy, on k and on s.

Policies: how should you spend your first dollar?

That is, we compute $\frac{\partial E u_{i}(k)}{\partial T}$, where $T=(1-\theta) s^{2}+(1-\tau) k^{2}$ for $d \tau>0, d \theta=0$ and for $d \tau=0, d \theta>0$ and compare.

Theorem 7 When $\alpha^{2} \sigma^{2}>3 / 4$, the first unit of subsidy is always optimally allocated to socialization effort, k_{i}. When $\alpha^{2} \sigma^{2}<3 / 4$ the first unit of subsidy is optimally allocated to socialization effort k_{i} if and only if the expected marginal return to own investment, $b+\varepsilon$, is low enough.

A couple of extensions

1. Decisions taken simultaneously - No qualitative changes.
2. Heterogeneity $-\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$
(a) A mean-preserving spread of b leads to a mean-preserving spread of both \mathbf{s} and \mathbf{k}, and a shift upwards in the mean.
(b) k_{i} is i^{\prime} s expected connectivity. So, we ca map distribution of fundamentals into distribution of connectivity (beyond Erdös-Renyi).

Building socio-economic Networks:

How many conferences should you attend?

Antonio Cabrales, Antoni Calvó-Armengol, Yves Zenou

January 2006

《 $\hat{\rightharpoonup}$

