Microeconomics II - Winter 2005 Chapter 4

Games with Incomplete Information

Perfect Bayesian and Sequential equilibrium

Antonio Cabrales

January 20, 2005

Summary

- Examples → →
- (Weak) Perfect Bayesian and Sequential equilibrium
- WPBE and Sequential equilibria for examples

A Game B of chapter 2

B Beer-Quiche.

C Game with a WPBE equilibrium which is not sequential.

D Spence education model (Osborne-Rubinstein's version).

- \bullet A worker (sender) knows her ability θ . The firm (receiver) does not.
- The value of the worker to the firm is θ and the wage the worker receives is the firm expectation of θ (competition plus equal expectations).
- Let's say to make it a "real" game that payoff of employer is $-(w-\theta)^2$ (the expectation of this is maximized at $w=E(\theta)$.)
- The worker sends a signal e, the level of education. Her payoff is $w-e/\theta$. There are two types of workers θ^L and θ^H , with probabilities p^H and p^L .

(Weak) Perfect Bayesian and Sequential equilibrium (1/4)

Let a game

$$\Gamma = \left\{ N, \{K_1, ..., K_n\}, R, \{H_1, ..., H_n\}, \{A(x)\}_{x \in K \setminus Z}, \{(\pi_1(z), ..., \pi_n(z))\}_{z \in Z} \right\}$$

A (Weak) Perfect Bayesian equilibrium (WPBE) is a profile behavioral strategy such that there exist beliefs with:

a Strategies are *optimal* at *all* information sets, *given the beliefs* (for every node there is a belief $\mu(x) \ge 0$, with the requirement $\sum_{x \in h} \mu(x) = 1$).

b Beliefs are *consistent* with the strategies and Bayes rule, wherever possible.

Why wherever possible? Because some information sets may not be visited in equilibrium (remember example A).

(Weak) Perfect Bayesian and Sequential equi**librium** (2/4)

Formally:

Definition 1 A behavioral strategy profile $\gamma^* = (\gamma_1^*, ..., \gamma_n^*) \in \Psi$ is a weak perfect Bayesian equilibrium for game Γ if there exists a system of beliefs $\mu^* = \{(\mu^*(x))_{x \in h}\}_{h \in H}$ such that the assessment (γ^*, μ^*) satisfies the following conditions:

(a)
$$\forall i \in N, \forall h \in H_i, \forall \gamma_i \in \Psi_i,$$

$$\pi_i(\gamma^* | \mu^*, h) \ge \pi_i(\gamma_i, \gamma_{-i}^* | \mu^*, h)$$

(b) $\forall h \in H, \forall x \in h,$

$$\mu^*(x) = \frac{\Pr(x|\gamma^*)}{\Pr(h|\gamma^*)}, \text{ if } \Pr(h|\gamma^*) > 0.$$

(Weak) Perfect Bayesian and Sequential equi**librium** (3/4)

Definition 2 Let $\gamma \in \Psi$ be a completely mixed behavioral strategy profile for game Γ (that is, $\forall i \in N, \forall h \in H_i, \forall a \in A(h_i), \gamma_i(h)(a) > 0$).

A corresponding assessment (μ, γ) is consistent if $\forall h \in H, \forall x \in h$ we have $\mu(x) = \frac{\Pr(x|\gamma)}{\Pr(h|\gamma)}$.

Definition 3 Let $\gamma \in \Psi$ be any behavioral strategy profile for game Γ (not necessarily completely mixed).

A corresponding assessment (μ, γ) is consistent if it is the limit of a sequence of consistent assessments $\{(\mu_k, \gamma_k)\}_{k=1,2,...}$ where γ_k is completely mixed for all k = 1, 2, ...

(Weak) Perfect Bayesian and Sequential equi-

Definition 4 A strategy profile $\gamma^* = (\gamma_1^*, ..., \gamma_n^*) \in \Psi$ is a sequential equilibrium of Γ if there exists a system of beliefs μ^* such that:

a (γ^*, μ^*) is a consistent assessment

b $\forall i \in N, \forall h \in H_i, \forall \gamma_i \in \Psi_i$

librium (4/4)

$$\pi_i(\gamma^*|\mu^*,h) \ge \pi_i(\gamma_i,\gamma_{-i}^*|\mu^*,h)$$

This definition implies a sequential equilibrium is necessarily WPBE.

Game B of chapter 2.

(1/10)

$$\pi_2(a|\mu,h) = 2\mu(A) + \mu(B) > \pi_2(b|\mu,h) = \mu(A) - 2\mu(B)$$

Thus, by requirement (a) of WPBE, player 2 should play a (independently of μ , and the only best response of player 1 is to play A.

(A,a) is thus the only WPBE equilibrium, sustained by beliefs $\mu(A)=1$.

There is another Nash equilibrium, which is also subgame-perfect (F, b), but not WPBE.

The only WPBE is also sequential, for beliefs $\mu(A) = 1$.

To see this, take a sequence putting probability (1/k, 1-2/k, 1/k) respectively on (F, A, B) and (1-1/k, 1/k) on (a, b).

This sequence converges to (A,a) and the beliefs associated to it, $\mu^k(A)=\frac{1-2/k}{1-1/k}$. From this $\lim_{k\to\infty}\mu^k(A)=1$

Beer-Quiche.

(2/10)

There are no separating WPBE equilibria. That is, the Sender-player 1 cannot choose a different action in each information set.

To see this consider the situation where $\gamma_s^*(W) = B, \gamma_s^*(S) = Q$.

Then $\mu(W|B) = 1, \mu(W|Q) = 0.$

Thus, the best response of Receiver-player 2 is:

$$\gamma_r^*(B) = D \text{ (since } \pi_r(D, \gamma_s^* | \mu, B) = 1 > \pi_s(N, \gamma_s^* | \mu, Q) = 0)$$

$$\gamma_r^*(Q) = N \text{ (since } \pi_r(D, \gamma_s^* | \mu, Q) = 0 > \pi_s(N, \gamma_s^* | \mu, Q) = -1).$$

But then the Sender is not optimizing as

$$\pi_s(B, \gamma_r^*|W) = 0 < \pi_s(Q, \gamma_r^*|W) = 3.$$

Now consider the situation where $\gamma_s^*(W) = Q, \gamma_s^*(S) = B$.

Then $\mu(W|B) = 0, \mu(W|Q) = 1.$

Thus, the best response of Receiver-player 2 is:

$$\gamma_r^*(B) = N \text{ (since } \pi_r(D, \gamma_s^* | \mu, B) = -1 < \pi_s(N, \gamma_s^* | \mu, Q) = 0)$$

$$\gamma_r^*(Q) = D \text{ (since } \pi_r(D, \gamma_s^* | \mu, Q) = 1 > \pi_s(N, \gamma_s^* | \mu, Q) = 0).$$

But then the Sender is not optimizing as

$$\pi_s(Q, \gamma_r^*|W) = 1 < \pi_s(B, \gamma_r^*|W) = 2.$$

(3/10)

There is a pooling WPBE equilibrium with $\gamma_s^*(W) = B, \gamma_s^*(S) = B$.

Then $\mu(W|B) = 0.1$. Thus, the best response of Receiver is: $\gamma_r^*(B) = N \text{ (since } \pi_r(N, \gamma_s^* | \mu, B) = 0 > \pi_s(D, \gamma_s^* | \mu, B) = 1 * 0.1 - 1 * 0.9).$ The response after Q depends on beliefs (since $\pi_r(N, \gamma_s^* | \mu, Q) = 0$ and $\pi_s(D, \gamma_s^* | \mu, Q) = 1 * \mu(W|Q) - 1 * \mu(S|Q)$).

In order to show that a pooling equilibrium as above we need beliefs such that the best response (by Receiver) is such that Bis optimal for both types of Sender.

One such response is if $\gamma_r^*(Q) = D$, since then $\pi_s(Q, \gamma_r^*|W) = 1 < \pi_s(B, \gamma_r^*|W) = 2$ and $\pi_s(Q, \gamma_r^*|S) = 0 < \pi_s(B, \gamma_r^*|S) = 3.$

Some beliefs that would work are $\mu(W|Q) = 1$, as then $\pi_r(N, \gamma_s^* | \mu, Q) = 0 < \pi_s(D, \gamma_s^* | \mu, Q) = 1.$

(4/10)

There is a pooling equilibrium with $\gamma_s^*(W) = B, \gamma_s^*(S) = Q$.

Then $\mu(W|Q) = 0.1$. Thus, the best response of Receiver-player 2 is: $\gamma_r^*(Q) = N$ (since $\pi_r(N, \gamma_s^* | \mu, Q) = 0 > \pi_s(D, \gamma_s^* | \mu, Q) = 1 * 0.1 - 1 * 0.9$). The response after B depends on beliefs (since $\pi_r(N, \gamma_s^* | \mu, B) = 0$ and $\pi_s(D, \gamma_s^* | \mu, B) = 1 * \mu(W|B) - 1 * \mu(S|B)$).

In order to show that there is a pooling equilibrium as above we need beliefs such that the best response (by Receiver) is such that Qis optimal for both types of Sender.

One such response is if $\gamma_r^*(B) = D$, since then $\pi_s(B, \gamma_r^*|W) = 0 < \pi_s(Q, \gamma_r^*|W) = 3$ and $\pi_s(B, \gamma_r^*|S) = 1 < \pi_s(Q, \gamma_r^*|S) = 2.$

Some beliefs that would work are $\mu(W|B) = 1$, as then $\pi_r(N, \gamma_s^* | \mu, B) = 0 < \pi_s(D, \gamma_s^* | \mu, B) = 1.$

(5/10)

Game with WPBE not sequential

(A,b,U) is a WPBE equilibrium, as long as $\mu(a) \geq 2*\mu(b) = 2*(1-\mu(a))$.

Notice that under that condition, this equilibrium satisfies the requirement (a) of the definition,

since
$$\pi_1(A, \gamma_{-1}) = 1 > \pi_1(B, \gamma_{-1}) = 0$$
, $\pi_1(A, \gamma_{-1}) = 1 > \pi_1(C, \gamma_{-1}) = 0$, and $\pi_2(a, \gamma_{-2}|\mu) = \mu(B) * 0 + \mu(C) * 0 \le \pi_2(b, \gamma_{-2}|\mu) = \mu(B) * 0 + \mu(C) * 1$ and $\pi_3(U, \gamma_{-3}|\mu) = \mu(a) * 1 + \mu(b) * 0 \ge \pi_3(V, \gamma_{-3}|\mu) = \mu(a) * 0 + \mu(b) * 2$ (since $\mu(a) \ge 2 * \mu(b)$).

These beliefs also satisfy requirement (b) because given $\gamma_1(A) = 1$ any beliefs satisfy the definition.

(6/10)

(A,b,U) is **NOT** a sequential equilibrium. The reason is that beliefs with $\mu(a) \geq 2 * \mu(b) = 2 * (1 - \mu(a))$ cannot be part of a consistent assessment.

Let any beliefs $\mu(a), \mu(b)$ be part of a consistent assessment where $\gamma = (A, b, U)$.

Let also $(\gamma_1^k, \gamma_2^k, \gamma_3^k)$, be the sequence that converges to γ . Then, in a consistent assessment

$$\mu^{k}(a) = \frac{\gamma_{1}^{k}(B) * \gamma_{2}^{k}(a)}{\gamma_{1}^{k}(B) * \gamma_{2}^{k}(a) + \gamma_{1}^{k}(B) * \gamma_{2}^{k}(b)} = \frac{\gamma_{2}^{k}(a)}{\gamma_{2}^{k}(a) + \gamma_{2}^{k}(b)} = \gamma_{2}^{k}(a);$$

and $\mu^k(b)=\gamma_2^k(b)$. Thus, since we know that $\lim_{k\to\infty}\gamma_2^k(a)=0$ we must have in a consistent assessment that $\mu(a)=0<2(1-\mu(a))$.

(7/10)

Spence education model (Osborne and Rubinstein's version).

Pooling equilibrium. $e_L = e_H = e^*$.

In this case, necessarily, $\mu(\theta^H|e^*) = p^H$, thus $w(e^*) = p^H\theta^H + p^L\theta^L$. For this to be an equilibrium we need that for all alternative e, $w(e) - e/\theta^{i} \le w(e^{*}) - e^{*}/\theta^{i}$ for i = H, L.

The easiest way to achieve this is if the firm believes that all deviations come from θ^L . Thus $\mu(\theta^H|e) = 0$, and $w(e) = \theta^L$ if $e \neq e^*$. Thus, best possible deviation is if e=0

(the salary is equal for all $e \neq e^*$ and the cost is lowest at e = 0.)

Then $w(0) < w(e^*) - e^*/\theta^i$ or i = H, L if $\theta^L < p^H \theta^H + p^L \theta^L - e^*/\theta^L$, that is, if $e^* < \theta^L p^H (\theta^H - \theta^L)$.

(8/10)

Separating equilibrium. $e_L = 0 \neq e_H = e^*$.

In this case, we must have necessarily $e_L = 0$.

Suppose not. Then $e_L > 0$. In as separating equilibrium $w(e_L) = \theta^L$. Furthermore, the wage for $w(0) = \mu(\theta^H|0)\theta^H + \mu(\theta^L|0)\theta^L > \theta^L$. But the cost of education is 0, so that the payoff under e = 0 is θ^L , whereas under e_L it is $\theta^L - e_L < \theta^L$, a contradiction.

In order for neither worker wanting to choose a different e, it is easiest to assume $\mu(\theta^H|e) = 0$ if $e \neq e^*$.

Then, the best possible deviation for θ^H is e=0(same wage and more cost otherwise) and the best possible deviation for θ^L is e^* (same wage as with e = 0 and more cost otherwise).

(9/10)

To have that $e_L = 0 \neq e_H = e^*$ are optimal now only requires that:

$$\theta^L \ge \theta^H - e^*/\theta^L$$
 and $\theta^L \le \theta^H - e^*/\theta^H$

This is equivalent to

(10/10)

$$(\theta^H - \theta^L)\theta^H \ge e^* \ge (\theta^H - \theta^L)\theta^L$$

Microeconomics II - Winter 2005 Chapter 4

Games with Incomplete Information

Perfect Bayesian and Sequential equilibrium

Antonio Cabrales

January 20, 2005

