Microeconomics II - Winter 2005

Chapter 4

Games with Incomplete Information
Perfect Bayesian and Sequential equilibrium

Antonio Cabrales

January 20, 2005

Summary

- Examples $" \mathrm{~m} \rightarrow$
- (Weak) Perfect Bayesian and Sequential equilibrium $n \Rightarrow$
- WPBE and Sequential equilibria for examples $n \Rightarrow$

Examples (1/4)

A Game B of chapter 2

Examples (2/4)

B Beer-Quiche.

Examples (3/4)

C Game with a WPBE equilibrium which is not sequential.

Examples (4/4)

D Spence education model (Osborne-Rubinstein's version).

- A worker (sender) knows her ability θ. The firm (receiver) does not.
- The value of the worker to the firm is θ and the wage the worker receives is the firm expectation of θ (competition plus equal expectations).
- Let's say to make it a "real" game that payoff of employer is $-(w-\theta)^{2}$ (the expectation of this is maximized at $w=E(\theta)$.)
- The worker sends a signal e, the level of education. Her payoff is $w-e / \theta$. There are two types of workers θ^{L} and θ^{H}, with probabilities p^{H} and p^{L}.

(Weak) Perfect Bayesian and Sequential equilibrium (1/4)

Let a game

$$
\Gamma=\left\{N,\left\{K_{1}, \ldots, K_{n}\right\}, R,\left\{H_{1}, \ldots, H_{n}\right\},\{A(x)\}_{x \in K \backslash Z},\left\{\left(\pi_{1}(z), \ldots, \pi_{n}(z)\right\}_{z \in Z}\right\}\right.
$$

A (Weak) Perfect Bayesian equilibrium (WPBE) is a profile behavioral strategy such that there exist beliefs with:
a Strategies are optimal at all information sets, given the beliefs (for every node there is a belief $\mu(x) \geq 0$, with the requirement $\sum_{x \in h} \mu(x)=1$).
b Beliefs are consistent with the strategies and Bayes rule, wherever possible.

Why wherever possible? Because some information sets may not be visited in equilibrium (remember example A).

(Weak) Perfect Bayesian and Sequential equilibrium (2/4)

Formally:

Definition 1 A behavioral strategy profile $\gamma^{*}=\left(\gamma_{1}^{*}, \ldots, \gamma_{n}^{*}\right) \in \Psi$ is a weak perfect Bayesian equilibrium for game Γ if there exists a system of beliefs $\mu^{*}=\left\{\left(\mu^{*}(x)\right)_{x \in h}\right\}_{h \in H}$ such that the assessment $\left(\gamma^{*}, \mu^{*}\right)$ satisfies the following conditions:
(a) $\forall i \in N, \forall h \in H_{i}, \forall \gamma_{i} \in \Psi_{i}$,

$$
\pi_{i}\left(\gamma^{*} \mid \mu^{*}, h\right) \geq \pi_{i}\left(\gamma_{i}, \gamma_{-i}^{*} \mid \mu^{*}, h\right)
$$

(b) $\forall h \in H, \forall x \in h$,

$$
\mu^{*}(x)=\frac{\operatorname{Pr}\left(x \mid \gamma^{*}\right)}{\operatorname{Pr}\left(h \mid \gamma^{*}\right)}, \text { if } \operatorname{Pr}\left(h \mid \gamma^{*}\right)>0
$$

(Weak) Perfect Bayesian and Sequential equilibrium (3/4)

Definition 2 Let $\gamma \in \Psi$ be a completely mixed behavioral strategy profile for game Γ (that is, $\forall i \in N, \forall h \in H_{i}, \forall a \in A\left(h_{i}\right), \gamma_{i}(h)(a)>0$).

A corresponding assessment (μ, γ) is consistent if $\forall h \in H, \forall x \in h$ we have $\mu(x)=\frac{\operatorname{Pr}(x \mid \gamma)}{\operatorname{Pr}(h \mid \gamma)}$.

Definition 3 Let $\gamma \in \Psi$ be any behavioral strategy profile for game Γ (not necessarily completely mixed).

A corresponding assessment (μ, γ) is consistent if it is the limit of a sequence of consistent assessments $\left\{\left(\mu_{k}, \gamma_{k}\right)\right\}_{k=1,2, \ldots}$ where γ_{k} is completely mixed for all $k=1,2, \ldots$
(Weak) Perfect Bayesian and Sequential equilibrium (4/4)

Definition 4 A strategy profile $\gamma^{*}=\left(\gamma_{1}^{*}, \ldots, \gamma_{n}^{*}\right) \in \Psi$ is a sequential equilibrium of Γ if there exists a system of beliefs μ^{*} such that:
a $\left(\gamma^{*}, \mu^{*}\right)$ is a consistent assessment
b $\forall i \in N, \forall h \in H_{i}, \forall \gamma_{i} \in \Psi_{i}$

$$
\pi_{i}\left(\gamma^{*} \mid \mu^{*}, h\right) \geq \pi_{i}\left(\gamma_{i}, \gamma_{-i}^{*} \mid \mu^{*}, h\right)
$$

This definition implies a sequential equilibrium is necessarily WPBE.

WPBE and Sequential equilibria for examples

Game B of chapter 2.

$$
\pi_{2}(a \mid \mu, h)=2 \mu(A)+\mu(B)>\pi_{2}(b \mid \mu, h)=\mu(A)-2 \mu(B)
$$

Thus, by requirement (a) of WPBE, player 2 should play a (independently of μ, and the only best response of player 1 is to play A. (A, a) is thus the only WPBE equilibrium, sustained by beliefs $\mu(A)=1$. There is another Nash equilibrium, which is also subgame-perfect (F, b), but not WPBE.

The only WPBE is also sequential, for beliefs $\mu(A)=1$.
To see this, take a sequence putting probability ($1 / k, 1-2 / k, 1 / k$) respectively on (F, A, B) and ($1-1 / k, 1 / k$) on (a, b).
This sequence converges to (A, a) and the beliefs associated to it, $\mu^{k}(A)=$ $\frac{1-2 / k}{1-1 / k}$. From this $\lim _{k \rightarrow \infty} \mu^{k}(A)=1$

WPBE and Sequential equilibria for examples

(2/10)

Beer-Quiche.

There are no separating WPBE equilibria. That is, the Sender-player 1 cannot choose a different action in each information set.

To see this consider the situation where $\gamma_{s}^{*}(W)=B, \gamma_{s}^{*}(S)=Q$.

Then $\mu(W \mid B)=1, \mu(W \mid Q)=0$.
Thus, the best response of Receiver-player 2 is:
$\gamma_{r}^{*}(B)=D\left(\right.$ since $\left.\pi_{r}\left(D, \gamma_{s}^{*} \mid \mu, B\right)=1>\pi_{s}\left(N, \gamma_{s}^{*} \mid \mu, Q\right)=0\right)$
$\gamma_{r}^{*}(Q)=N\left(\right.$ since $\left.\pi_{r}\left(D, \gamma_{s}^{*} \mid \mu, Q\right)=0>\pi_{s}\left(N, \gamma_{s}^{*} \mid \mu, Q\right)=-1\right)$.
But then the Sender is not optimizing as
$\pi_{s}\left(B, \gamma_{r}^{*} \mid W\right)=0<\pi_{s}\left(Q, \gamma_{r}^{*} \mid W\right)=3$.

WPBE and Sequential equilibria for examples
\qquad (3/10)

Now consider the situation where $\gamma_{s}^{*}(W)=Q, \gamma_{s}^{*}(S)=B$.

Then $\mu(W \mid B)=0, \mu(W \mid Q)=1$.
Thus, the best response of Receiver-player 2 is:
$\gamma_{r}^{*}(B)=N\left(\right.$ since $\left.\pi_{r}\left(D, \gamma_{s}^{*} \mid \mu, B\right)=-1<\pi_{s}\left(N, \gamma_{s}^{*} \mid \mu, Q\right)=0\right)$
$\gamma_{r}^{*}(Q)=D\left(\right.$ since $\left.\pi_{r}\left(D, \gamma_{s}^{*} \mid \mu, Q\right)=1>\pi_{s}\left(N, \gamma_{s}^{*} \mid \mu, Q\right)=0\right)$.
But then the Sender is not optimizing as
$\pi_{s}\left(Q, \gamma_{r}^{*} \mid W\right)=1<\pi_{s}\left(B, \gamma_{r}^{*} \mid W\right)=2$.

WPBE and Sequential equilibria for examples

(4/10)

There is a pooling WPBE equilibrium with $\gamma_{s}^{*}(W)=B, \gamma_{s}^{*}(S)=B$.
Then $\mu(W \mid B)=0.1$. Thus, the best response of Receiver is:
$\gamma_{r}^{*}(B)=N\left(\right.$ since $\left.\pi_{r}\left(N, \gamma_{s}^{*} \mid \mu, B\right)=0>\pi_{s}\left(D, \gamma_{s}^{*} \mid \mu, B\right)=1 * 0.1-1 * 0.9\right)$.
The response after Q depends on beliefs
(since $\pi_{r}\left(N, \gamma_{s}^{*} \mid \mu, Q\right)=0$ and $\pi_{s}\left(D, \gamma_{s}^{*} \mid \mu, Q\right)=1 * \mu(W \mid Q)-1 * \mu(S \mid Q)$).
In order to show that a pooling equilibrium as above
we need beliefs such that the best response (by Receiver) is such that B is optimal for both types of Sender.
One such response is if $\gamma_{r}^{*}(Q)=D$, since then
$\pi_{s}\left(Q, \gamma_{r}^{*} \mid W\right)=1<\pi_{s}\left(B, \gamma_{r}^{*} \mid W\right)=2$
and $\pi_{s}\left(Q, \gamma_{r}^{*} \mid S\right)=0<\pi_{s}\left(B, \gamma_{r}^{*} \mid S\right)=3$.
Some beliefs that would work are $\mu(W \mid Q)=1$,
as then $\pi_{r}\left(N, \gamma_{s}^{*} \mid \mu, Q\right)=0<\pi_{s}\left(D, \gamma_{s}^{*} \mid \mu, Q\right)=1$.
\qquad

WPBE and Sequential equilibria for examples

(5/10)

There is a pooling equilibrium with $\gamma_{s}^{*}(W)=B, \gamma_{s}^{*}(S)=Q$.
Then $\mu(W \mid Q)=0.1$. Thus, the best response of Receiver-player 2 is:
$\gamma_{r}^{*}(Q)=N\left(\right.$ since $\left.\pi_{r}\left(N, \gamma_{s}^{*} \mid \mu, Q\right)=0>\pi_{s}\left(D, \gamma_{s}^{*} \mid \mu, Q\right)=1 * 0.1-1 * 0.9\right)$.
The response after B depends on beliefs
(since $\pi_{r}\left(N, \gamma_{s}^{*} \mid \mu, B\right)=0$ and $\pi_{s}\left(D, \gamma_{s}^{*} \mid \mu, B\right)=1 * \mu(W \mid B)-1 * \mu(S \mid B)$).
In order to show that there is a pooling equilibrium as above we need beliefs such that the best response (by Receiver) is such that Q is optimal for both types of Sender.
One such response is if $\gamma_{r}^{*}(B)=D$, since then $\pi_{s}\left(B, \gamma_{r}^{*} \mid W\right)=0<\pi_{s}\left(Q, \gamma_{r}^{*} \mid W\right)=3$ and $\pi_{s}\left(B, \gamma_{r}^{*} \mid S\right)=1<\pi_{s}\left(Q, \gamma_{r}^{*} \mid S\right)=2$.

Some beliefs that would work are $\mu(W \mid B)=1$, as then $\pi_{r}\left(N, \gamma_{s}^{*} \mid \mu, B\right)=0<\pi_{s}\left(D, \gamma_{s}^{*} \mid \mu, B\right)=1$.
\qquad

WPBE and Sequential equilibria for examples

(6/10)

Game with WPBE not sequential

(A, b, U) is a WPBE equilibrium, as long as $\mu(a) \geq 2 * \mu(b)=2 *(1-\mu(a))$.

Notice that under that condition, this equilibrium satisfies the requirement (a) of the definition, since $\pi_{1}\left(A, \gamma_{-1}\right)=1>\pi_{1}\left(B, \gamma_{-1}\right)=0, \pi_{1}\left(A, \gamma_{-1}\right)=1>\pi_{1}\left(C, \gamma_{-1}\right)=0$, and $\pi_{2}\left(a, \gamma_{-2} \mid \mu\right)=\mu(B) * 0+\mu(C) * 0 \leq \pi_{2}\left(b, \gamma_{-2} \mid \mu\right)=\mu(B) * 0+\mu(C) * 1$ and $\pi_{3}\left(U, \gamma_{-3} \mid \mu\right)=\mu(a) * 1+\mu(b) * 0 \geq \pi_{3}\left(V, \gamma_{-3} \mid \mu\right)=\mu(a) * 0+\mu(b) * 2$ (since $\mu(a) \geq 2 * \mu(b)$).

These beliefs also satisfy requirement (b) because given $\gamma_{1}(A)=1$ any beliefs satisfy the definition.

WPBE and Sequential equilibria for examples

(A, b, U) is NOT a sequential equilibrium. The reason is that beliefs with $\mu(a) \geq 2 * \mu(b)=2 *(1-\mu(a))$
cannot be part of a consistent assessment.

Let any beliefs $\mu(a), \mu(b)$ be part of a consistent assessment where $\gamma=(A, b, U)$.
Let also $\left(\gamma_{1}^{k}, \gamma_{2}^{k}, \gamma_{3}^{k}\right)$, be the sequence that converges to γ. Then, in a consistent assessment

$$
\mu^{k}(a)=\frac{\gamma_{1}^{k}(B) * \gamma_{2}^{k}(a)}{\gamma_{1}^{k}(B) * \gamma_{2}^{k}(a)+\gamma_{1}^{k}(B) * \gamma_{2}^{k}(b)}=\frac{\gamma_{2}^{k}(a)}{\gamma_{2}^{k}(a)+\gamma_{2}^{k}(b)}=\gamma_{2}^{k}(a) ;
$$

and $\mu^{k}(b)=\gamma_{2}^{k}(b)$.Thus, since we know that $\lim _{k \rightarrow \infty} \gamma_{2}^{k}(a)=0$ we must have in a consistent assessment that $\mu(a)=0<2(1-\mu(a))$.

WPBE and Sequential equilibria for examples

(8/10)
Spence education model (Osborne and Rubinstein's version).

Pooling equilibrium. $e_{L}=e_{H}=e^{*}$.
In this case, necessarily, $\mu\left(\theta^{H} \mid e^{*}\right)=p^{H}$, thus $w\left(e^{*}\right)=p^{H} \theta^{H}+p^{L} \theta^{L}$. For this to be an equilibrium we need that for all alternative e, $w(e)-e / \theta^{i} \leq w\left(e^{*}\right)-e^{*} / \theta^{i}$ for $i=H, L$.

The easiest way to achieve this is if the firm believes that all deviations come from θ^{L}. Thus $\mu\left(\theta^{H} \mid e\right)=0$, and $w(e)=\theta^{L}$ if $e \neq e^{*}$.
Thus, best possible deviation is if $e=0$
(the salary is equal for all $e \neq e^{*}$ and the cost is lowest at $e=0$.) Then $w(0) \leq w\left(e^{*}\right)-e^{*} / \theta^{i}$ or $i=H, L$ if $\theta^{L} \leq p^{H} \theta^{H}+p^{L} \theta^{L}-e^{*} / \theta^{L}$, that is, if $e^{*} \leq \theta^{L} p^{H}\left(\theta^{H}-\theta^{L}\right)$.

WPBE and Sequential equilibria for examples

\qquad
(9/10)
Separating equilibrium. $e_{L}=0 \neq e_{H}=e^{*}$.
In this case, we must have necessarily $e_{L}=0$.
Suppose not. Then $e_{L}>0$. In as separating equilibrium $w\left(e_{L}\right)=\theta^{L}$. Furthermore, the wage for $w(0)=\mu\left(\theta^{H} \mid 0\right) \theta^{H}+\mu\left(\theta^{L} \mid 0\right) \theta^{L} \geq \theta^{L}$. But the cost of education is 0 , so that the payoff under $e=0$ is θ^{L}, whereas under e_{L} it is $\theta^{L}-e_{L}<\theta^{L}$, a contradiction.

In order for neither worker wanting to choose a different e, it is easiest to assume $\mu\left(\theta^{H} \mid e\right)=0$ if $e \neq e^{*}$.

Then, the best possible deviation for θ^{H} is $e=0$
(same wage and more cost otherwise) and the best possible deviation for θ^{L} is e^{*} (same wage as with $e=0$ and more cost otherwise).

WPBE and Sequential equilibria for examples

To have that $e_{L}=0 \neq e_{H}=e^{*}$ are optimal now only requires that:

$$
\theta^{L} \geq \theta^{H}-e^{*} / \theta^{L} \text { and } \theta^{L} \leq \theta^{H}-e^{*} / \theta^{H}
$$

This is equivalent to

$$
\left(\theta^{H}-\theta^{L}\right) \theta^{H} \geq e^{*} \geq\left(\theta^{H}-\theta^{L}\right) \theta^{L}
$$

Microeconomics II - Winter 2005

Chapter 4

Games with Incomplete Information
Perfect Bayesian and Sequential equilibrium

Antonio Cabrales

January 20, 2005

