Microeconomics II - Winter 2005

Chapter 2

Games in Extensive Form - Subgame-perfect equilibrium

Antonio Cabrales

January 18, 2005
$\langle\hat{B} \Rightarrow$

Summary

- Extensive form $\stackrel{m}{ } \rightarrow$
- Subgame-perfect equilibrium $\xrightarrow{\prime \prime} \Rightarrow$
- SGP for Examples $\| \Rightarrow$

Examples (1/4)

A Stage game Chain-Store Paradox.

E, I	F	C
N	0,2	0,2
E	$-1,-1$	1,1

Examples (2/4)

B Game justifying Sequential Equilibrium.

Examples (3/4)

C Game played by Acromyrmex Versicolor.

Examples (4/4)

D Game 「 repeated once after observing the outcome of first stage.

1,2	A	B
X	4,4	1,5
Y	5,1	0,0

Extensive form (1/7)

1. Players
2. Order of events
3. Order of moves
4. Possible actions
5. Information sets
6. Payoffs

Extensive form (2/7)

1. Players: $N=\{0,1, \ldots, n\}$. Player 0 is Nature, to allow for randomness.
2. Order of events: Represented by a tree, that is:

A binary relation R (precedence) on a set of nodes K (events).

- R is irreflexive $-\forall x \in K$, it is not true that $x R x$
- R is transitive - $\forall x, x^{\prime}, x^{\prime \prime} \in K$, if $x R x^{\prime}$ and $x^{\prime} R x^{\prime \prime}$ then $x R x^{\prime \prime}$.

From R we can define an immediate precedence relation P by saying that
$x P x^{\prime}$ if $x R x^{\prime}$ and $\nexists x^{\prime \prime}$ with $x R x^{\prime \prime}$ and $x^{\prime \prime} R x^{\prime}$.
$P(x)=\left\{x^{\prime} \in K \mid x^{\prime} P x\right\}$. Set of immediate predecessors.
$P^{-1}(x)=\left\{x^{\prime} \in K \mid x P x^{\prime}\right\}$. Set of immediate successors.

Given (K, R), every $y \in K$ defines a unique "history" of the game if the following is true:
(a) There is a unique "root" $x_{0} \in K$, with the property $P\left(x_{0}\right)=\emptyset$ and $x_{0} R x \forall x \neq x_{0}$.
(b) $\forall \hat{x} \in K$ there is a unique "path" $\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ leading to it, that is, $x_{q} \in P\left(x_{q+1}\right)$ for $q=0, \ldots, r-1$ and $x_{r} \in P(\widehat{x})$.
Note, this implies that every $P(x)$ is a singleton.
Let also $Z=\left\{x \in K \mid P^{-1}(x)=\emptyset\right\}$ the set of "final" nodes.

3. Order of moves:

$K \backslash Z$ is partitioned into $n+1$ subsets $K_{0}, K_{1}, \ldots, K_{n}$ (being a partition means $K_{i} \cap K_{j}=\emptyset$, if $i \neq j$ and $\left.\cup_{i=0}^{n} K_{i}=K \backslash Z\right) . x \in K_{i}$ means player $i \in N$ makes a choice at that point.

Extensive form (4/7)

4. Possible actions:

$\forall x \in K$ there is a set $A(x)$ of actions. Each action leads to (uniquely) an immediate succesor (and vice versa), so $\# A(x)=\# P^{-1}(x)$.
5. Information sets: For every player, $i \in N K_{i}$ is partitioned in a collection H_{i} of sets. $K_{i}=\cup_{h \in H_{i}} h, h^{\prime} \cap h^{\prime \prime}=\emptyset$, if $h^{\prime} \neq h^{\prime \prime}$. A player does not "distinguish" x from x^{\prime} if $x, x^{\prime} \in h$. This implies:
(a) If $x \in h, x^{\prime} \in h$ and $x \in K_{i}$, then $x^{\prime} \in K_{i}$
(b) If $x \in h, x^{\prime} \in h$ then $A(x)=A\left(x^{\prime}\right)$, so we can define $A(h)$.
6. Payoffs:
$\forall z \in Z$ there is a vector $\pi(z)=\left(\pi_{1}(z), \ldots, \pi_{n}(z)\right)$ (Nature can have any payoffs).

Extensive form (5/7)

From extensive forms to games

A game in extensive form is then:

$$
\Gamma=\left\{N,\left\{K_{1}, \ldots, K_{n}\right\}, R,\left\{H_{1}, \ldots, H_{n}\right\},\{A(x)\}_{x \in K \backslash Z},\left\{\left(\pi_{1}(z), \ldots, \pi_{n}(z)\right\}_{z \in Z}\right\}\right.
$$

Now let $A_{i} \equiv \cup_{h \in H_{i}} A(h)$.
A strategy $s_{i} \in S_{i}$ is a function $s_{i}: H_{i} \rightarrow A_{i}$ with the condition that $\forall h \in H_{i}$, $s_{i}(h) \in A(h)$.

Strategies give complete plans of action, so with $s=\left(s_{1}, \ldots, s_{n}\right)$ given, a final nodes is determined, and thus a payoff vector $\pi(s)=\left(\pi_{1}(s), \ldots, \pi_{n}(s)\right)$

A strategic form game $G(\Gamma)=\{N, S, \pi\}$ and its mixed strategy extension is thus trivial to construct from them.

Extensive form (6/7)

Behavioral strategies

A new way to think about mixed strategies is through behavioral strategies.

A behavioral strategy $\gamma_{i} \in \Psi_{i}$ is a function $\gamma_{i}: H_{i} \rightarrow \Delta\left(A_{i}\right)$ such that for every $h \in H_{i}$ and every $a \in A(h)$ we have that $\gamma_{i}(h)(a)=\operatorname{Pr}(a$ is chosen $\mid h$ is reached).

Obviously we require that $\gamma_{i}(h)(\widehat{a})=0$ for $\widehat{a} \notin A(h)$.

Remarks:

1. One can construct behavioral strategies from mixed strategies. Let a mixed strategy $\sigma_{i} \in \Sigma_{i}, h \in H_{i}, a \in A(h)$, and $S_{i}(h)$ the set of pure strategies that allow h to be visited for some profile of the other players. Then:

Extensive form (7/7)

$$
\gamma_{i}(h)(a)=\left\{\begin{array}{c}
\frac{\sum_{\left\{s_{i} \in S_{i}(h) s_{i}(h)=a\right\}} \sigma_{i}\left(s_{i}\right)}{\sum_{\left\{s_{i} \in S_{i}(h)\right\}} \sigma_{i}\left(s_{i}\right)} \text { if } \sum_{\left\{s_{i} \in S_{i}(h)\right\}} \sigma_{i}\left(s_{i}\right)>0 \\
\sum_{\left\{s_{i} \in S_{i} \mid s_{i}(h)=a\right\}} \sigma_{i}\left(s_{i}\right) \text { otherwise }
\end{array}\right.
$$

More than one mixed strategy can generate the same behavioral strategy.
2. Theorem (Kuhn 1953): In a game of perfect recall, mixed and behavioral strategies generate the same probability distributions over the paths of play (thus are strategically equivalent).

Subgame-perfect equilibrium (1/3)

Let

$$
\Gamma=\left\{N,\left\{K_{1}, \ldots, K_{n}\right\}, R,\left\{H_{1}, \ldots, H_{n}\right\},\{A(x)\}_{x \in K \backslash Z},\left\{\left(\pi_{1}(z), \ldots, \pi_{n}(z)\right\}_{z \in Z}\right\}\right.
$$

Let $\widehat{K} \subset K$ satisfying
(S.1.) There exists and information set \hat{h} satisfying

$$
\widehat{K}=\left\{x \in K \mid \exists x^{\prime} \in h \text { such that } x^{\prime} R x\right\}
$$

(S.2.) $\forall h \in H$, either $h \subset \widehat{K}$ or $h \subset K \backslash \widehat{K}$

Thus, one can define a subgame

$$
\widehat{\Gamma}=\left\{N,\left\{\widehat{K}_{1}, \ldots, \widehat{K}_{n}\right\}, \widehat{R},\left\{\widehat{H}_{1}, \ldots, \widehat{H}_{n}\right\},\{\widehat{A}(x)\}_{x \in \widehat{K} \backslash \widehat{Z}},\left\{\left(\widehat{\pi}_{1}(z), \ldots, \widehat{\pi}_{n}(z)\right\}_{z \in \widehat{Z}}\right\}\right.
$$

Subgame-perfect equilibrium (2/3)

with

- $\widehat{K}_{i} \equiv K_{i} \cap \widehat{K}, \forall i \in N, \widehat{Z} \equiv Z \cap \widehat{K}$
- $\forall x, x^{\prime} \in \widehat{K}, x \widehat{R} x^{\prime} \Leftrightarrow x R x^{\prime}$
- $\widehat{H}_{i} \equiv\left\{h \in H_{i} \mid h \subset \widehat{K}\right\} \forall i \in N$
- $\forall x \in \widehat{K} \backslash \widehat{Z}, \widehat{A}(x)=A(x)$
- $\forall z \in Z, \widehat{\pi}_{i}(z)=\pi_{i}(z) \forall i \in N$

A proper subgame is one where the information set initiating the subgame consists of a single node.

Given strategy profile $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ in a game Γ, and a subgame $\hat{\Gamma}$ we can define a corresponding strategy profile in the subgame $\left.\gamma\right|_{\hat{\Gamma}}=\left(\left.\gamma_{1}\right|_{\hat{\Gamma}}, \ldots,\left.\gamma_{n}\right|_{\hat{\digamma}}\right)$ as :

$$
\left.\gamma_{i}\right|_{\hat{\Gamma}}(h)=\gamma_{i}(h), \forall h \subset \widehat{H}_{i}, \forall i \in N
$$

Subgame-perfect equilibrium $\gamma^{*} \in \Psi$ is a subgame-perfect equilibrium of Γ if for every proper subgame $\hat{\Gamma} \subset \Gamma,\left.\gamma^{*}\right|_{\hat{\Gamma}}$ is a Nash equilibrium of $\hat{\Gamma}$.

SGP for Examples (1/7)

Game A

The last proper subgame

E, I	F	C
E	$-1,-1$	1,1

has only one equilibrium where I chooses C. Thus, as we fold back the game looks like

E, I	C
N	0,2
E	1,1

whose Nash equilibrium is E choosing E. Thus the only SGP equilibrium in the full game is: $E_{1}=((0,1),(0,1))$.

SGP for Examples (2/7)

Game B

1,2	a	b
F	1,1	1,1
A	2,1	0,0
B	1,0	$-2,1$

This game has only one proper subgame thus all Nash equilibria are SGP. The pure strategy equilibria are, (A, a) and (F, b).

Check for yourself that the only mixed equilibria involve 1 playing F for sure and 2 playing a with probability smaller than 0.5.

SGP for Examples (3/7)

Game C

Take the final subgame

R_{1}, R_{2}	S	N
S	66,69	60,90
N	72,48	0,0

It is easy to check that this game has three equilibria:
$F_{1}=((1,0),(0,1)), F_{2}=((0,1),(1,0)), F_{3} \simeq((0.606,0.304),(0.909,0.091))$ with respective payoffs
$\Pi_{1}=(60,90), \Pi_{2}=(72,48), \Pi_{3} \simeq(65.45,62.6)$. In this way we can have three folded-back games:

R_{1}, R_{2}	S	N
S	110,115	100,150
N	120,80	60,90

This game has only one Nash equilibrium $E_{1 F_{1}}=((1,0),(0,1))$

R_{1}, R_{2}	S	N
S	110,115	100,150
N	120,80	72,48

This game has three Nash equilibria $E_{1 F_{2}}=((1,0),(0,1))$,
$E_{2 F_{2}}=((0,1),(1,0)), E_{3 F_{2}} \simeq((0.478,0.522),(0.737,0.263))$

R_{1}, R_{2}	S	N
S	110,115	100,150
N	120,80	$65.45,62.46$

This game has three Nash equilibria $E_{1 F 3}=((1,0),(0,1))$,
$E_{2 F_{3}}=((0,1),(1,0)), E_{3 F_{3}} \simeq((0.334,0.666),(0.776,0.224))$.

Thus, the full game has seven equilibria:
$\Omega_{1 F_{1}}=(((1,0),(1,0)),((0,1),(0,1)))$, corresponding to the first final subgame solution F_{1}
$\Omega_{1 F_{2}}=(((1,0),(0,1)),((0,1),(1,0)))$,
$\Omega_{2 F_{2}}=(((0,1),(0,1)),((1,0),(1,0)))$,
$\Omega_{3 F_{2}}=(((0.478,0.522),(0,1)),((0.737,0.263),(1,0)))$, corresponding to the first final subgame solution F_{2}

$$
\begin{aligned}
& \left.\Omega_{1 F_{3}}=(((1,0),(0.606,0.304)),(0,1),(0.909,0.091))\right), \\
& \Omega_{2 F_{3}}=(((0,1),(0.606,0.304)),((1,0),(0.909,0.091))), \\
& \Omega_{3 F_{3}}=(((0.334,0.666),(0.606,0.304)),((0.776,0.224),(0.909,0.091))), \\
& \text { corresponding to the first final subgame solution } F_{3}
\end{aligned}
$$

SGP for Examples (6/7)

Game D

Check that there is one SGP equilibrium where in the first stage the outcome is $(4,4)$.

Call first information set for each player, h_{0}, and the others $h_{X A}, h_{X B}, h_{Y A}, h_{Y B}$.

Then $\gamma_{1}\left(h_{0}\right)=X$,
$\gamma_{1}\left(h_{X A}\right)=(0.5,0.5), \gamma_{1}\left(h_{X B}\right)=Y, \gamma_{1}\left(h_{Y A}\right)=X, \gamma_{1}\left(h_{Y B}\right)=(0.5,0.5)$
and $\gamma_{2}\left(h_{0}\right)=A$,
$\gamma_{2}\left(h_{X A}\right)=(0.5,0.5), \gamma_{2}\left(h_{X B}\right)=A, \gamma_{1}\left(h_{Y A}\right)=B, \gamma_{1}\left(h_{Y B}\right)=(0.5,0.5)$.

Now let us check that the induced profiles in all second stage subgames are equilibria:

In $X A$ it is $((0.5,0.5),(0.5,0.5))$, in $X B$ it is (Y, A), in $Y A$ it is (X, B), in $Y B$ it is $((0.5,0.5),(0.5,0.5))$.

Finally, the folded back game is:

1,2	A	B
X	$4+2.5,4+2.5$	$1+5,5+1$
Y	$5+1,1+5$	$0+2.5,0+2.5$

So, (A, X) is an equilibrium (the unique one) in this fold-back.

Microeconomics II - Winter 2005

Chapter 2

Games in Extensive Form - Subgame-perfect equilibrium

Antonio Cabrales

January 18, 2005
$\langle\hat{B} \Rightarrow$

