Microeconomics II - Winter 2005 Chapter 1

Games in Strategic Form - Nash equilibrium

Antonio Cabrales

January 13, 2005

Summary

- Preliminaries
- Dominated Strategies
- Nash equilibrium: definition --> -->
- Nash equilibrium: examples --> -->
- Nash equilibrium: existence --> -->

Definition of a game:

• A set of players: $P = \{1, 2, ..., I\}$. A generic player $i \in P$, (all others -i).

• A set of strategies: S_i . A generic strategy $s_i \in S_i$. $S = \prod_{i=1}^I S_i$

• Payoff functions for each player: $u_i: S \to \Re$. We write $u_i(s) = u_i(s_1,...,s_I) = u_i(s_i,s_{-i})$.

Examples:

A
$$P = \{1, ..., 18\}, S_i = \Re^+, u_i(s) = 2\sum_{j=1}^{18} \frac{s_j}{18} - s_i$$

B
$$P = \{1, ..., 18\}, S_i = \Re^+, u_i(s) = 2 \min_{j \in P} s_j - s_i$$

C

sp,bp	P	$\mid N \mid$
\overline{P}	1, 3	-1, 6
N	4, 1	0, 0

Size of resource: 6, cost of P:1.

Mixed strategies:

A mixed strategy for agent i is a probability distribution over S_i . That is:

$$\Sigma_i = \left\{ \sigma_i \in \Re^{\#S_i} | \sigma_i(s_j) \ge 0, \sum_{i \in S_i} \sigma_i(s_i) = 1 \right\}$$

Payoffs with mixed strategies:

$$u_{i}(\sigma) = \sum_{s_{1} \in S_{1}} \dots \sum_{s_{I} \in S_{I}} \left(\prod_{j=1}^{I} \sigma_{j}(s_{j}) \right) u_{i}(s)$$

$$= \sum_{s_{i} \in S_{i}} \sigma_{i}(s_{i}) \left(\sum_{s_{-i} \in S_{-i}} \left(\prod_{j=1}^{I} \sigma_{j}(s_{j}) \right) u_{i}(s_{i}, s_{-i}) \right)$$

$$= \sum_{s_{i} \in S_{i}} \sigma_{i}(s_{i}) u_{i}(s_{i}, \sigma_{-i})$$

So payoffs are linear in own strategy and continuous in all strategies.

Example:
$$\sigma_{sp} = \left(\frac{1}{3}, \frac{2}{3}\right), \sigma_{bp} = \left(\frac{3}{4}, \frac{1}{4}\right)$$

$$u_{sp}(\sigma_{sp}, \sigma_{bp}) = \frac{1}{3} \cdot \frac{3}{4} \cdot 1 + \frac{1}{3} \cdot \frac{1}{4} \cdot (-1) + \frac{2}{3} \cdot \frac{3}{4} \cdot 4 + \frac{2}{3} \cdot \frac{1}{4} \cdot 0$$

$$= \frac{1}{3} \left(\frac{3}{4} \cdot 1 + \frac{1}{4} (-1) \right) + \frac{2}{3} \left(\frac{3}{4} \cdot 4 + \frac{1}{4} \cdot 0 \right)$$

$$= \frac{1}{3} \cdot \frac{2}{4} + \frac{2}{3} \cdot 3$$

A $s_i \in S_i$ is **strictly dominated** if $\exists \sigma_i \in \Sigma_i$ such that

$$u_i(\sigma_i, s_{-i}) > u_i(s_i, s_{-i}) \ \forall s_{-i} \in S_{-i}$$

This definition is equivalent if we substitute s_{-i} by σ_{-i} , why?

B $s_i \in S_i$ is weakly dominated if $\exists \sigma_i \in \Sigma_i$ such that

$$u_i(\sigma_i, s_{-i}) \ge u_i(s_i, s_{-i}) \ \forall s_{-i} \in S_{-i}$$

 $u_i(\sigma_i, s_{-i}) > u_i(s_i, s_{-i}) \text{ for some } s_{-i} \in S_{-i}$

Example: All strategies except 0 are strictly dominated in game A, and $\,P\,$ is strictly dominated for sp.

Iterative domination:

Let $S_i^0 = S_i$ and $\Sigma_i^0 = \Sigma_i$. Then, for $q \ge 1$ $S_i^q = \left\{ s_i \in S_i^{q-1} | \nexists \sigma_i \in \Sigma_i^{q-1} \text{ such that } u_i(\sigma_i, s_{-i}) > u_i(s_i, s_{-i}), \forall s_{-i} \in S_{-i}^{q-1}, \right\}$ $\Sigma_i^q = \left\{ \sigma_i \in \Sigma_i^{q-1} | \sigma_i(s_i) > 0 \Rightarrow s_i \in S_i^q \right\}$

A strategy profile s^* is a Nash equilibrium if:

$$u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*) \forall s_i \in S_i$$

A strategy profile σ^* is a *Nash equilibrium in mixed strategies* if:

$$u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i, \sigma_{-i}^*) \forall \sigma_i \in \Sigma_i$$

Notice here that the definition above is equivalent to:

$$u_i(\sigma_i^*, \sigma_{-i}^*) \ge \sum_{s_i \in S_i} \sigma_i(s_i) u_i(s_i, \sigma_{-i}^*) \forall \sigma_i \in \Sigma_i$$

thus to:

$$u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(s_i, \sigma_{-i}^*) \forall s_i \in S_i$$

Proposition 1 All strategies in the support of σ_i^* give the same payoff.

Proof. Suppose not. Then there are $\sigma_i^*(s_i')$ and $\sigma_i^*(s_i'')$ with

$$u_i(s_i', \sigma_{-i}^*) > u_i(s_i'', \sigma_{-i}^*)$$

Then let σ_i^{**} such that $\sigma_i^{**}(s_i') = \sigma_i^*(s_i') + \sigma_i^*(s_i'')$, $\sigma_i^{**}(s_i'') = 0$ and $\sigma_i^{**}(s_i) = \sigma_i^*(s_i)$ for $s_i \neq s_i'$, $s_i \neq s_i''$. Then we must have $u_i(\sigma_i^{**}, \sigma_{-i}^*) > u_i(\sigma_i^*, \sigma_{-i}^*)$, thus a contradiction.

Example 1: Game B. For all $r \in \Re$, s = (r, r, ..., r) is a Nash equilibrium.

Example 2:

1,2	L	М	R
T	7,2	2,7	3,6
В	2,7	7,2	4,5

- 1.(a) No pure strategy equilibrium.
 - (b) No mixed strategy equilibrium where player 1 uses only pure strategies.
 - (c) No mixed strategy equilibrium where player 2 uses only pure strategies.

(d) No mixed strategy equilibrium where 1 uses T and B and 2 uses L,M and R.

For this we would need:

$$7\sigma_2(L) + 2\sigma_2(M) + 3(1 - \sigma_2(L) - \sigma_2(M)) = 2\sigma_2(L) + 7\sigma_2(M) + 4(1 - \sigma_2(L) - \sigma_2(M))$$

and

$$2\sigma_1(T) + 7(1 - \sigma_1(T)) = 7\sigma_1(T) + 2(1 - \sigma_1(T)) = 6\sigma_1(T) + 5(1 - \sigma_1(T))$$

But the first of these two equalities implies $\sigma_1(T) = \frac{1}{2}$ and then the second equality is not satisfied.

(e) No mixed strategy equilibrium where 1 uses T and B and 2 uses M and R.

For this we would need:

$$2\sigma_2(M) + 3(1 - \sigma_2(M)) = 7\sigma_2(M) + 4(1 - \sigma_2(M))$$

and

$$7\sigma_1(T) + 2(1 - \sigma_1(T)) = 6\sigma_1(T) + 5(1 - \sigma_1(T))$$

But these equalities imply $\sigma_1(T) = \frac{3}{4}$ and $\sigma_2(M) = -\frac{1}{4} < 0$, which is a contradiction.

(f) No mixed strategy equilibrium where 1 uses T and B and 2 uses L and M.

For this we would need:

$$7\sigma_2(L) + 2(1 - \sigma_2(L)) = 2\sigma_2(L) + 7(1 - \sigma_2(L))$$

and

$$2\sigma_1(T) + 7(1 - \sigma_1(T)) = 7\sigma_1(T) + 2(1 - \sigma_1(T))$$

But these equalities imply $\sigma_1(T) = \frac{1}{2}$ and $\sigma_2(L) = \frac{1}{2}$. But then the payoff to strategy R is bigger than that for L and M, as

$$6\sigma_1(T) + 5(1 - \sigma_1(T)) = \frac{11}{2} > 7\sigma_1(T) + 2(1 - \sigma_1(T)) = \frac{9}{2},$$

which is a contradiction.

(g) There is a mixed strategy equilibrium where 1 uses T and B and 2 uses L and R.

For this we need:

$$7\sigma_2(L) + 3(1 - \sigma_2(L)) = 2\sigma_2(L) + 4(1 - \sigma_2(L))$$

and

$$2\sigma_1(T) + 7(1 - \sigma_1(T)) = 6\sigma_1(T) + 5(1 - \sigma_1(T))$$

These equalities imply $\sigma_1(T) = \frac{1}{3}$ and $\sigma_2(L) = \frac{1}{6}$. In this case the payoff to strategy M is lower than that for L and R, as

$$6\sigma_1(T) + 5(1 - \sigma_1(T)) = \frac{16}{3} > 7\sigma_1(T) + 2(1 - \sigma_1(T)) = \frac{11}{3}.$$

Alternative definition of Nash equilibrium

Let

$$B_i(\sigma_{-i}) = \left\{ \sigma_i \in \Sigma_i | u_i(\sigma_i, \sigma_{-i}) \ge u_i(\sigma_i', \sigma_{-i}) \ \forall \sigma_i' \in \Sigma_i \right\}$$

Then, it is easy to see σ^* is a Nash equilibrium if

$$\sigma_i^* \in B_i(\sigma_{-i}^*) \ \forall i \in P$$

Also, define $B(\sigma) = (B_1(\sigma_{-i}), ..., B_I(\sigma_{-I}))$. Then σ^* is a Nash equilibrium if

$$\sigma^* \in B(\sigma^*)$$

That is, a Nash equilibrium is a fixed point of B(.).

Theorem 2 (Kakutani) $B: \Sigma \to \Sigma$ has a fixed point if:

- 1. Σ is a compact, convex, nonempty subset of a Euclidean space.
- 2. $B(\sigma)$ is nonempty for all σ .
- 3. $B(\sigma)$ is convex for all σ .
- 4. B(.) is upper hemi-continuous (alternatively, let any sequence in the domain $\sigma^n \to \sigma$, and any sequence in the range $\hat{\sigma}^n \to \hat{\sigma}$ with $\hat{\sigma}^n \in B(\sigma^n)$, then if $\hat{\sigma} \in B(\sigma), B(.)$ is upper-hemicontinous).

Corollary 3 All finite games have a Nash equilibrium.

Proof. All we have to show is that conditions 1,2,3 and 4 of previous theorem hold.

- 1. Σ obviously nonempty, and is closed and bounded, thus compact.
- 2. $u_i(., \sigma_{-i})$ is a continuous function (linear). By Weierstrass theorem a continuous function in a compact set always has a maximum.
- 3. Suppose $\sigma' \in B(\sigma)$ and $\sigma'' \in B(\sigma)$. Then we must have that

$$u_i(\sigma'_i, \sigma_{-i}) \geq u_i(\sigma_i, \sigma_{-i}) \ \forall \sigma_i \in \Sigma_i$$

 $u_i(\sigma''_i, \sigma_{-i}) > u_i(\sigma_i, \sigma_{-i}) \ \forall \sigma_i \in \Sigma_i$

thus

$$\lambda u_i(\sigma_i', \sigma_{-i}) + (1 - \lambda) u_i(\sigma_i'', \sigma_{-i}) = u_i(\lambda \sigma_i' + (1 - \lambda) \sigma_i'', \sigma_{-i}) \ge u_i(\sigma_i, \sigma_{-i}) \ \forall \sigma_i \in \Sigma_i$$

4. Suppose not, then $\exists (\hat{\sigma}^n, \sigma^n) \to (\hat{\sigma}, \sigma)$ with $\hat{\sigma}^n \in B(\sigma^n)$ but $\hat{\sigma} \notin B(\sigma)$. Thus there must be some $i \in P$ with $\hat{\sigma}_i \notin B_i(\sigma_{-i})$. Thus, there is some $\varepsilon > 0$ and some σ'_i with $u_i(\sigma'_i, \sigma_{-i}) \geq u_i(\hat{\sigma}_i, \sigma_{-i}) + 3\varepsilon$ (a). Also, by continuity of $u_i(.)$ and since $(\hat{\sigma}^n, \sigma^n) \to (\hat{\sigma}, \sigma)$ we must have that there is n large enough that:

$$u_i(\sigma_i', \sigma_{-i}^n) > u_i(\sigma_i', \sigma_{-i}) - \varepsilon$$

Now by (a) we must have

$$u_i(\sigma'_i, \sigma_{-i}) - \varepsilon > u_i(\widehat{\sigma}_i, \sigma_{-i}) + 2\varepsilon$$

and continuity again

$$u_i(\hat{\sigma}_i, \sigma_{-i}) + 2\varepsilon > u_i(\hat{\sigma}_i^n, \sigma_{-i}^n) + \varepsilon$$

which contradicts $\hat{\sigma}_i^n \in B(\sigma_{-i}^n)$

Corollary 4 All infinite games have a Nash equilibrium provided that.

- (a) S_i are nonempty compact, convex subsets of a Euclidean space.
- (b) $u_i(.)$ is continous in S and quasi-concave in s_i

Theorem 5 Proof. 1. True by (a).

- 2. $u_i(.)$, S is compact by (a). By Weierstrass theorem a continuous function in a compact set always has a maximum.
- 3. By definition of quasi-convavity of B(.) we have that for any s_i' and s_i'' with:

$$u_i(s_i', s_{-i}) \geq u_i(s_i, s_{-i}) \forall s_i \in S_i$$

$$u_i(s_i'', \sigma_{-i}) \geq u_i(s_i, s_{-i}) \forall s_i \in S_i$$

we must have that:

$$u_i(\lambda s_i' + (1-\lambda)s_i'', s_{-i}) \ge u_i(s_i, s_{-i}) \ \forall s_i \in \Sigma_i$$

so B(s) is convex for all s.

4. $u_i(.)$ is continuous by (b).

Remark 6 When u_i is continuous but not quasi-concave, mixed strategies can give an equilibrium.

The proof needs more machinery but is very similar.

 S_i need not be convex now, as mixed strategies convexify strategy set.

Also mixed strategies make payoff linear and continuous, and best responses convex-valued.

Microeconomics II - Winter 2005 Chapter 1

Games in Strategic Form - Nash equilibrium

Antonio Cabrales

January 13, 2005

