Analysis of supergames: factors which facilitate collusion

By specifying the game, richer implications as to the factors which make collusion more or less likely in a given industry.

Repeated games with infinite horizon and trigger strategies

- A1 There exist n identical firms;
- A2 Homogeneous good and same cost c;
- A3 In each period t, firms set prices simultaneously and independently;
- A4 The game is played an infinite number of times [or firms have a discount factor d and the probability that the market still exists next period is $\phi \in (0, 1)$, then by setting $\delta = d \cdot \phi$ the analysis holds];
- A5 There are no capacity constraints;
- A6 Demand is such that
 - (i) if $p_i = p_j = p \quad \forall j \neq i, \forall i$ $\Rightarrow D_i = \frac{D(p)}{n} \text{ and } \pi_i = \frac{\pi(p)}{n}$ (ii) if $p_i < p_j \quad \forall j \neq i$ $\Rightarrow D_i = D(p_i) \text{ and } \pi_i = \pi(p_i)$ (iii) if $p_i > p_K \quad (K \in 1, ..., n)$ $\Rightarrow D_i = 0 \text{ and } \pi_i = 0;$
- A7 Each firm wants to maximise its present discounted value of profits;
- A8 No physical link between periods, but strategies depend on the history of past prices.

Consider now the following "TRIGGER STRATEGIES"

- Each firm sets p_m at t = 0.
- It sets p_m at time t if all firms have set p_m in every period before t.
- Otherwise, each firm sets p = c forever (NASH REVERSAL).

This set of strategies represents an equilibrium (which gives a collusive outcome through purely non–cooperative behaviour) if δ is large enough.

To see this result, rewrite (1) as:

$$\underbrace{\frac{\pi(p_m)}{n}(1+\delta+\delta^2+\ldots)}_{\text{"choosing the collusive strategies"}} \geq \underbrace{\pi(p_m)}_{\text{deviation profit"}} + \underbrace{\frac{\delta 0 + \delta^2 0 + \delta^3 0 + \ldots}_{\text{profits"}}}_{\text{profits"}}$$

Since
$$1 + \delta + \delta^2 + \ldots = \sum_{t=0}^{\infty} \delta^t = \frac{1}{1-\delta}$$
,

$$\delta \ge 1 - \frac{1}{n}.$$

Note that if $n \nearrow$ the ICC is tighter \Rightarrow collusion is less likely.

$$egin{array}{ll} n=2 & \Rightarrow \delta \geq rac{1}{2} \ (ext{textbook case}) \ n o \infty & \Rightarrow \delta \geq 1 \ & ext{but } \delta \in [0,1] \ !] \end{array}$$

THE LARGER THE NUMBER OF FIRMS IN THE INDUSTRY, THE MORE DIFFICULT TO REACH COLLUSION! Other variables which affect collusion

- Small, regular orders facilitate collusion: an unusually large order would increase the temptation to deviate, as π(D) becomes larger, other payoffs being unchanged.
- High frequency of market contacts also facilitate <u>collusion</u>. Consider a market which meets every two periods. The ICC becomes: $\frac{\pi(p_m)}{n} + \frac{\delta^2 \pi(p_m)}{n} + \frac{\delta^4 \pi(p_m)}{n} + \cdots \ge \pi(p_m),$ write $\delta^2 = d$. Then it is (as before): $d \ge 1 - \frac{1}{n}$, whence: $\delta \ge \sqrt{1 - \frac{1}{n}}$. Since $\sqrt{x} \ge x$ for $x \in [0, 1]$, and since $(1 - \frac{1}{n}) \in [0, 1]$, then $\sqrt{1 - \frac{1}{n}} \ge 1 - \frac{1}{n}$: the ICC is tighter and collusion more difficult.

 Immediate identification of deviation also helps <u>collusion</u>. If a deviation can be observed and punished with a delay of two periods, then ICC becomes:

$$rac{\pi(p_m)}{n}\left(rac{1}{1-\delta}
ight)\geq \pi(p_m)+\delta\pi(p_m)$$
,

while, when the deviation is detected in the following period, one has:

$$rac{\pi(p_m)}{n}\left(rac{1}{1-\delta}
ight) \geq \pi(p_m).$$

In the latter case collusion is easier to sustain (as the ICC is laxer).

 \Rightarrow Improved observability helps collusion.

• <u>Collusion and demand evolution</u> Consider the following situation:

- At
$$t = 0$$
: $D(p)$; $\pi(p)$

- At time
$$t$$
, $\theta^t D(p)$;
 $\theta^t \pi(p)$ $t = 1, 2, ...$
The ICC can be rewritten:
 $\frac{\pi(p_m)}{n} + \delta \theta \frac{\pi(p_m)}{n} + \frac{\delta^2 \theta^2 \pi(p_m)}{n} + \cdots$
 $\geq \pi(p_m)$

$$\delta heta \ge 1 - rac{1}{n}$$
 .

- If $\underline{\theta} > \underline{1}$ (demand growth). This relaxes the IC and makes collusion easier (the expected rise in future demand increases the future cost of a deviation).
- If $\underline{\theta} < \underline{1}$ (demand decline). This makes collusion less sustainable, as the temptation to deviate is stronger (the future cost of deviation is lower).

- However, in <u>Rotemberg-Saloner</u>, "price wars" occur during booms. This is because in each period demand has a probability ¹/₂ to be low and probability ¹/₂ to be high, and a high demand today doesn't increase the probability of high demand tomorrow. In this situation, a high demand (boom) today is like a one-off large order, and raises the incentive to deviate ⇒ collusion more difficult during "booms".
- Also, contrast with Green–Porter (see below), where <u>unexpected</u> low demand would trigger the punishment phase (but in Green–Porter notice that we talk of unexpected change in demand).

Symmetry helps collusion

- Market A: Firm 1 (resp. 2) has share $s_1^A = \lambda$ (resp. $s_2^A = 1 \lambda$).
- $\lambda > \frac{1}{2}$: firm 1 "large"; firm 2 is "small".
- Firms are otherwise identical.
- Usual infinitely repeated Bertrand game.
- ICs for firm i = 1, 2:

$$\frac{s_i^A \left(p_m - c\right) Q(p_m)}{1 - \delta} - \left(p_m - c\right) Q(p_m) \ge \mathbf{0},$$

• Therefore: $IC_1^A : \frac{\lambda}{1-\delta} - 1 \ge 0$, or: $\delta \ge 1 - \lambda$

- $IC_2^A : \frac{1-\lambda}{1-\delta} 1 \ge 0$, or: $\delta \ge \lambda$ (binding IC of small firm).
- Higher incentive to deviate for a small firm: higher additional share by decreasing prices.
- The higher asymmetry the more stringent the IC of the smallest firm.

Multimarket contacts

- Market B: Firm 2 (resp. 1) with share $s_2^B = \lambda$ (resp. $s_1^B = 1 - \lambda$): reversed market positions
- ICs in market j = A, B considered in isolation:

$$\frac{s_i^j \left(p_m - c\right) Q(p_m)}{1 - \delta} - \left(p_m - c\right) Q(p_m) \ge \mathbf{0},$$

- $IC_2^B: \frac{\lambda}{1-\delta} 1 \ge 0$, or: $\delta \ge 1 \lambda$
- $IC_1^B: \frac{1-\lambda}{1-\delta} 1 \ge 0$, or: $\delta \ge \lambda$.
- By considering markets in isolation (or assuming that firms 1 and 2 in the two markets are different) collusion arises if δ ≥ λ > 1/2.

Multimarket, cont'd

• If firm sells in two markets, IC considers both of them:

$$\frac{s_i^A(p_m - c)Q(p_m)}{1 - \delta} + \frac{s_i^B(p_m - c)Q(p_m)}{1 - \delta} -2(p_m - c)Q(p_m) \ge 0,$$

or:

$$\frac{(1-\lambda)(p_m-c)Q(p_m)}{1-\delta} + \frac{\lambda(p_m-c)Q(p_m)}{1-\delta} \\ -2(p_m-c)Q(p_m) \ge 0.$$

- Each IC simplifies to: $\delta \geq \frac{1}{2}$.
- Multimarket contacts help collusion, as critical discount factor is lower: ¹/₂ < λ.
- Firms pool their ICs and use slackness of IC in one market to enforce more collusion in the other.
- In this example, multi-market contacts restore symmetry in markets which are asymmetric.

A problem with supergames: multiple equilibria

Supergames admit a continuum of equilibrium solutions.

Consider the same game as above, but with the following trigger strategy:

- (1) Each firm sets $p \in [c, p_m]$ at t = 0;
- (2) It sets p at period t if all the firms have set p in every period before t;
- (3) Otherwise, it sets p = c forever.

It is easy to check that this set of strategies is an equilibrium at exactly the same condition as before, that is: $\delta \ge 1 - \frac{1}{n}$.

The ICC can be written as: $\frac{\pi(p)}{n}(1+\delta+\delta^2+\cdots) \ge \pi(p)+0+0+\cdots.$

From which one obtains this condition: $\delta \ge 1 - \frac{1}{n}$.

 \Rightarrow Any price between the competition and the monopoly price can be sustained at equilibrium.

- By acting non-cooperatively, firms <u>might</u> arrive at a collusive outcome. But this is just one of the many possible outcomes. This raises at least two questions:
- 1. What is the prediction power of supergames?
- 2. How is the equilibrium price "chosen"?

A technical note: optimal punishments

In many situations, setting Nash strategies forever is not the optimal punishment. Harsher punishments might increase the future loss of a deviation, and thus sustain the collusive price for a wider range of discount factor values.

<u>Abreu</u>: A very strong punishment for just one period, followed by a reversal to collusion ("stick and carrot" strategy).

Essential for the optimal punishment equilibria to exist is that two ICCs are respected.

- 1. A firm does not want to deviate from the collusive path.
- 2. A firm does not want to deviate from the punishment path.

Stigler's Critique: Secret Price Cuts

For the effectiveness of any punishment strategies (explicit cartels or 'tacit collusion'), it is essential that deviation is <u>detected</u>.

Stigler: Collusive agreements would break down because of secret price cuts.

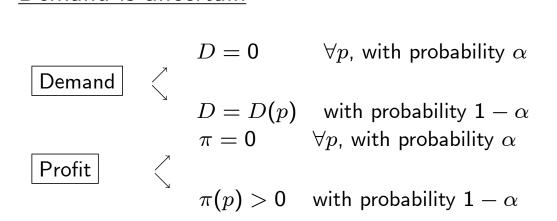
 \rightarrow Importance of information available to firms.

The supergame models we have seen so far do not address the Stigler's Critique: Whenever a deviant firm undercuts, other firms get zero demand, and know this is due to the deviation.

<u>Green and Porter</u> (1983): <u>There exist secret price cuts.</u> Yet, some collusion still exists .

Green–Porter

- Rival prices are not observable
- Demand is uncertain



When a firm faces <u>zero demand</u>, it <u>does not know if this</u>. is due to a rival's deviation or to an unexpected negative <u>shock in demand</u>.

 \Rightarrow <u>Punishment</u> phases which last forever lose their meaning.

 Firms' strategies involve a "punishment" phase of <u>T periods</u> whenever a decline in (zero) demand is observed.

STRATEGIES

- 1. Game starts in a collusive phase.
- 2. Both firms charge p^m until one firm observes zero demand.
- 3. The following T periods, both firms charge p = c.
- 4. After T periods of punishing, both firms revert to monopoly pricing p^m .

Necessary and sufficient condition for this strategy profile to be an equilibrium:

To show the optimal T, define:

- V^+ = P.D.V. of a firm's profit at t, when there is collusive phase,
- V^- = P.D.V. of a firm's profit at t, when in punishment phase.

$$V^{+} = \frac{(1-\alpha)\left(\frac{\pi^{m}}{2} + \delta V^{+}\right)}{\text{profits when } D > 0} + \frac{\alpha(\delta V^{-})}{\text{profits when } D = 0}$$
$$V^{-} = \delta^{T} V^{+}$$

By solving this system one obtains:

$$V^+ = \frac{(1-\alpha)\pi^m/2}{1-\delta(1-\alpha)-\alpha\delta^{T+1}}; \quad V^- = \frac{(1-\alpha)\delta^T\pi^m/2}{1-\delta(1-\alpha)-\alpha\delta^{T+1}}.$$

Write the INCENTIVE CONSTRAINT as:

$$V^+ \geq \frac{(1-\alpha)(\pi^m + \delta V^-)}{\text{profits when } D > 0} + \frac{\alpha(\delta V^-)}{\text{profits when } D = 0}$$

and, by substitution, IC becomes:

$$1 \le 2(1-\alpha)\delta + (2\alpha - 1)\delta^{T+1}$$
 (IC)

The problem now is:

$$T^{\max} V^+$$
 subject to (IC)

There is a trade-off in the choice of T:

 $\begin{array}{cccc} & \delta^{T+1} \downarrow & \Rightarrow & \mathsf{RHS} \text{ of (IC)} \uparrow & \mathsf{for} & \alpha < \frac{1}{2} \\ & & & \\ & & \delta^{T+1} \downarrow & \Rightarrow & V^+ \downarrow \end{array}$

(an increase in T makes it easier to satisfy the lower profits).

 \Rightarrow The program is satisfied by the smallest T which satisfies the incentive constraint.

<u>Note 1</u>: The punishment period cannot be of negligible duration. Indeed:

$$egin{aligned} T = 0 & \Rightarrow (\mathsf{IC}) & 1 \leq 2(1-lpha)\delta + (2lpha-1)\delta \ & \iff & \delta \geq 1 & ext{ impossible!} \end{aligned}$$

<u>Note 2</u>: We find the trigger strategies with the case of certainty as a limiting case: For $T \to \infty \Rightarrow (IC^{"}) \qquad 1 \le 2(1 - \alpha)\delta$

$$\iff \delta \ge \frac{1}{2(1-\alpha)}.$$
 For $\alpha = 0 \implies \delta \ge \frac{1}{2}$.

<u>Note 3</u>: When α is too high, the opportunity cost of cheating is too low \Rightarrow deviation is optimal (given that one enters punishment phase, better to cheat!)