
Analysis of supergames: factors which facilitate collusion

By specifying the game, richer implications as to the
factors which make collusion more or less likely in a
given industry.
Repeated games with in�nite horizon and trigger strategies

A1 There exist n identical �rms;

A2 Homogeneous good and same cost c;

A3 In each period t, �rms set prices
simultaneously and independently;

A4 The game is played an in�nite number
of times [or �rms have a discount factor
d and the probability that the market
still exists next period is � 2 (0; 1), then
by setting � = d � � the analysis holds];

A5 There are no capacity constraints;

A6 Demand is such that
(i) if pi = pj = p 8j 6= i;8i

) Di =
D(p)
n
and �i =

�(p)
n

(ii) if pi < pj 8j 6= i
) Di = D(pi) and �i = �(pi)

(iii) if pi > pK (K 2 1; : : : ; n)
) Di = 0 and �i = 0;

A7 Each �rm wants to maximise its present
discounted value of pro�ts;

A8 No physical link between periods, but
strategies depend on the history of
past prices.



Consider now the following "TRIGGER STRATEGIES"

� Each �rm sets pm at t = 0.

� It sets pm at time t if all �rms have set pm in
every period before t.

� Otherwise, each �rm sets p = c forever (NASH
REVERSAL).

This set of strategies represents an equilibrium (which
gives a collusive outcome through purely non�cooperative
behaviour) if � is large enough.



To see this result, rewrite (1) as:

�(pm)

n
(1 + � + �2 + : : :)| {z } � �(pm)| {z }+ �0 + �20 + �30 + : : :| {z }

"choosing the collusive
strategies"

"deviation
pro�t"

"punishment
pro�ts"

Since 1 + � + �2 + : : : =
P1
t=0 �

t = 1
1�� ,

� � 1� 1
n .

Note that if n% the ICC is tighter) collusion is less
likely.

n = 2 ) � � 1
2 (textbook case)

n!1 ) � � 1 but � 2 [0; 1] !]

THE LARGER THE NUMBER OF FIRMS IN
THE INDUSTRY, THE MORE DIFFICULT TO
REACH COLLUSION!



Other variables which a¤ect collusion

� Small, regular orders facilitate collusion: an unusu-
ally large order would increase the temptation to
deviate, as �(D) becomes larger, other payo¤s be-
ing unchanged.

� High frequency of market contacts also facilitate
collusion. Consider a market which meets every
two periods. The ICC becomes:
�(pm)
n +

�2�(pm)
n +

�4�(pm)
n + � � � � �(pm),

write �2 = d. Then it is (as before): d � 1� 1
n,

whence: � �
q
1� 1

n .

Since
p
x � x for x 2 [0; 1], and since (1� 1

n) 2
[0; 1],
then

q
1� 1

n � 1 � 1
n: the ICC is tighter and

collusion more di¢ cult.



� Immediate identi�cation of deviation also helps
collusion. If a deviation can be observed and pun-
ished with a delay of two periods, then ICC be-
comes:

�(pm)
n

�
1
1��

�
� �(pm) + ��(pm),

while, when the deviation is detected in the fol-
lowing period, one has:

�(pm)
n

�
1
1��

�
� �(pm).

In the latter case collusion is easier to sustain (as
the ICC is laxer).

) Improved observability helps collusion.



� Collusion and demand evolution
Consider the following situation:

� At t = 0: D(p); �(p)

� At time t, �tD(p);
�t�(p) t = 1; 2; : : :.
The ICC can be rewritten:
�(pm)
n + ��

�(pm)
n +

�2�2�(pm)
n + � � �

� �(pm)

�� � 1� 1
n .

� If � > 1 (demand growth). This relaxes the IC
and makes collusion easier (the expected rise
in future demand increases the future cost of a
deviation).

� If � < 1 (demand decline). This makes collu-
sion less sustainable, as the temptation to de-
viate is stronger (the future cost of deviation
is lower).



� However, in Rotemberg�Saloner, �price wars" oc-
cur during booms. This is because in each period
demand has a probability 12 to be low and probabil-
ity 12 to be high, and a high demand today doesn�t
increase the probability of high demand tomorrow.
In this situation, a high demand (boom) today is
like a one�o¤ large order, and raises the incen-
tive to deviate ) collusion more di¢ cult during
�booms".

� Also, contrast with Green�Porter (see below), where
unexpected low demand would trigger the punish-
ment phase (but in Green�Porter notice that we
talk of unexpected change in demand).



Symmetry helps collusion

� Market A: Firm 1 (resp. 2) has share sA1 = �

(resp. sA2 = 1� �).

� � > 1
2: �rm 1 �large�; �rm 2 is �small�.

� Firms are otherwise identical.

� Usual in�nitely repeated Bertrand game.

� ICs for �rm i = 1; 2:

sAi (pm � c)Q(pm)
1� �

� (pm � c)Q(pm) � 0;

� Therefore: ICA1 :
�
1�� � 1 � 0, or: � � 1� �



� ICA2 : 1��1�� � 1 � 0, or: � � � (binding IC of
small �rm).

� Higher incentive to deviate for a small �rm: higher
additional share by decreasing prices.

� The higher asymmetry the more stringent the IC
of the smallest �rm.



Multimarket contacts

� Market B: Firm 2 (resp. 1) with share sB2 = �

(resp. sB1 = 1� �): reversed market positions

� ICs in market j = A;B considered in isolation:

s
j
i (pm � c)Q(pm)

1� �
� (pm � c)Q(pm) � 0;

� ICB2 : �
1�� � 1 � 0, or: � � 1� �

� ICB1 : 1��1�� � 1 � 0, or: � � �.

� By considering markets in isolation (or assuming
that �rms 1 and 2 in the two markets are di¤erent)
collusion arises if � � � > 1=2.



Multimarket, cont�d

� If �rm sells in two markets, IC considers both of
them:

sAi (pm�c)Q(pm)
1�� +

sBi (pm�c)Q(pm)
1��

�2 (pm � c)Q(pm) � 0;

or:

(1��)(pm�c)Q(pm)
1�� +

�(pm�c)Q(pm)
1��

�2 (pm � c)Q(pm) � 0:

� Each IC simpli�es to: � � 1
2.

� Multimarket contacts help collusion, as critical dis-
count factor is lower: 12 < �.

� Firms pool their ICs and use slackness of IC in one
market to enforce more collusion in the other.

� In this example, multi-market contacts restore sym-
metry in markets which are asymmetric.



A problem with supergames: multiple equilibria

Supergames admit a continuum of equilibrium solu-
tions.

Consider the same game as above, but with the follow-
ing trigger strategy:

(1) Each �rm sets p 2 [c; pm] at t = 0;
(2) It sets p at period t if all the �rms

have set p in every period before t;
(3) Otherwise, it sets p = c forever.

It is easy to check that this set of strategies is an equi-
librium at exactly the same condition as before, that is:
� � 1� 1

n.

The ICC can be written as:
�(p)
n (1 + � + �2 + � � � ) � �(p) + 0 + 0 + � � � .

From which one obtains this condition: � � 1� 1
n.

) Any price between the competition and the monopoly
price can be sustained at equilibrium.



� By acting non�cooperatively, �rms might arrive at
a collusive outcome. But this is just one of the
many possible outcomes. This raises at least two
questions:

1. What is the prediction power of supergames?

2. How is the equilibrium price �chosen"?



A technical note: optimal punishments

In many situations, setting Nash strategies forever is
not the optimal punishment. Harsher punishments might
increase the future loss of a deviation, and thus sustain
the collusive price for a wider range of discount factor
values.

Abreu: A very strong punishment for just one period,
followed by a reversal to collusion (�stick and carrot"
strategy).

Essential for the optimal punishment equilibria to exist
is that two ICCs are respected.

1. A �rm does not want to deviate
from the collusive path.

2. A �rm does not want to deviate
from the punishment path.



Stigler�s Critique:
Secret Price Cuts
For the e¤ectiveness of any punishment strategies (ex-
plicit cartels or �tacit collusion�), it is essential that de-
viation is detected.

Stigler: Collusive agreements would break down because
of secret price cuts.

! Importance of information available to �rms.

The supergame models we have seen so far do not
address the Stigler�s Critique: Whenever a deviant �rm
undercuts, other �rms get zero demand, and know this
is due to the deviation.

Green and Porter (1983): There exist secret price cuts.
Yet, some collusion still exists .



Green�Porter

� Rival prices are not observable

� Demand is uncertain

D = 0 8p, with probability �
Demand %

&
D = D(p) with probability 1� �
� = 0 8p, with probability �

Pro�t %
&

�(p) > 0 with probability 1� �

When a �rm faces zero demand, it does not know if this.
is due to a rival�s deviation or to an unexpected negative
shock in demand.

) Punishment phases which last forever lose their mean-
ing.



� Firms�strategies involve a �punishment" phase of
T periods whenever a decline in (zero) demand is
observed.

STRATEGIES

1. Game starts in a collusive phase.

2. Both �rms charge pm until one �rm
observes zero demand.

3. The following T periods, both �rms
charge p = c.

4. After T periods of punishing, both
�rms revert to monopoly pricing pm.



Necessary and su¢ cient condition for this strategy pro-
�le to be an equilibrium:

To show the optimal T , de�ne:

V + = P.D.V. of a �rm�s pro�t at t,
when there is collusive phase,

V � = P.D.V. of a �rm�s pro�t at t,
when in punishment phase.

V + =
(1� �)

�
�m

2
+ �V +

�
pro�ts when D > 0

+
�(�V �)

pro�ts when D = 0

V � = �TV +

By solving this system one obtains:

V + =
(1��)�m=2

1��(1��)���T+1 ; V � = (1��)�T�m=2
1��(1��)���T+1 .



Write the INCENTIVE CONSTRAINT as:

V + � (1� �)(�m + �V �)
pro�ts when D > 0

+
�(�V �)

pro�ts when D = 0

and, by substitution, IC becomes:

1 � 2(1� �)� + (2�� 1)�T+1 (IC)

The problem now is:

max
T V + subject to (IC)

There is a trade�o¤ in the choice of T :

�T+1 # ) RHS of (IC) " for � < 1
2

T " %
&

�T+1 # ) V + #

(an increase in T makes it easier to satisfy the lower
pro�ts).

) The program is satis�ed by the smallest T which
satis�es the incentive constraint.



Note 1: The punishment period cannot be of negligi-
ble duration. Indeed:
T = 0 ) (IC) 1 � 2(1� �)� + (2�� 1)�

() � � 1 impossible!

Note 2: We �nd the trigger strategies with the case
of certainty as a limiting case:
For T !1 ) (IC") 1 � 2(1� �)�

() � � 1
2(1��). For � = 0 ) � � 1

2
.

Note 3: When � is too high, the opportunity cost of
cheating is too low ) deviation is optimal (given
that one enters punishment phase, better to cheat!)


