Vertical restraints (cont'd)

- 1. Types of vertical restraints
- 2. Intra-brand competition
 - Double marginalisation
 - Horizontal externalities (free-riding among retailers)
 - Other efficiency reasons for VR
 - The commitment problem

3. Inter-brand competition

Strategic use of vertical restraints

• Two upstream firms U1,U2 sell differentiated goods. Demand is given by: $q_i = (1/2)|v - p_i(1 + \gamma/2) + (\gamma/2)p_i|$

• Each upstream firm needs retailer (resp. R1,R2) to sell the good

- Zero production and retail cost, for simplicity
- It can be showed that vertical restraints (delegation) can be used to increase profits

Integration v. delegation

<u>Vertical integration</u>. If R1, R2 are owned by U1, U2, one can find equilibrium by solving:

$$\max_{p_i} \pi_i = p_i q_i (p_i, p_j)$$

From FOCs one obtains:

$$p_{_{VI}} = \frac{2v}{4+\gamma}; \quad \pi_{_{VI}} = \frac{(2+\gamma)v^2}{(4+\gamma)^2}.$$

VR: Two-part tariffs

1st stage: U_i sets $F_i+w_iq_i$ for R_i . Contracts are observable. 2nd stage: R_i chooses p_i . Last stage: each $R_i \max_{pi} \pi_i^{R}=(p_i-w_i)q_i (p_i,p_i)$. Whence, $p_i^*(w_i,w_j)$, $q_i^*(w_i,w_j)$. First stage: each U_i earns $F_i+w_iq_i$. Therefore, U_i wants to $\max_{wi}\pi_i^{U}=(p_i^*-w_i)q_i^*+w_iq_i^*$. At equilibrium: $w_i^*>0$ and:

$$p^{FF} = \frac{4(2+\gamma)\nu}{16+12\gamma+\gamma^{2}} > p^{VI}; \quad \pi^{FF} = \frac{2(2+\gamma)(8+8\gamma+\gamma^{2})\nu^{2}}{(16+12\gamma+\gamma^{2})^{2}} > \pi^{VI}$$

Strategic effects of VR: intuitions

Exclusive territories

- Rey and Stiglitz (1988): exclusive territories allow manufacturers to relax competition.
- Suppose each (differentiated) Ui has two or more retailers perceived as homogenous by consumers. Intra-brand competition: $p_i=w_i$, and solution as if Ui are vertically integrated.
- Suppose now each retailer is given an ET. Then in each territory, the game is as the one above, and prices will be higher.

Inter-brand competition, cont'd

Vertical restraints might also facilitate collusion

Resale price maintenance

Common agency

4. Exclusionary effects

• Exclusive contracts and tying can be used as a way to deter entry

- These will be analysed in the next lectures.
- Main concern is that such practices may be used by a dominant firm for exclusionary purposes.

5. Policy implications

- Strong presumption VR enhance efficiency
- Possible anti-competitive effects only when enough market power exists
- Market power, not the type of agreement adopted, matters
- (=> change in the EC approach to VR)
- Large enough market power: rule of reason, balancing efficiency with (possible) adverse effects

Exclusive dealing: contracts that require to purchase products or services for a period of time exclusively from one supplier.

Efficiency gains

- stimulate investments into retailers' services (*free riding problem*).

- stimulate specific investments (*opportunistic behaviour*)

CASES: Langnese-Iglo GMBH v. Commission (1992). United States v. Microsoft (1995).

Anti-competitive effects

- allow a dominant firm to deter efficient entry.

Traditional argument

- Foreclosure of a crucial input
 - (ex. distribution network)
 - I: incumbent
 - B: unique buyer
 - E: potential entrant

"<u>Chicago school" critique</u>

(Posner 1976, Bork 1978)

The incumbent cannot profitably use exclusive contracts to deter entry.

Efficiency considerations explain the use of exclusive contracts.

Challenge to the previous view

(Aghion-Bolton, 1987, AER; Rasmusen et al., 1991, AER; Segal-Whinston, 2000, AER; Bernheim-Whinston 1998, JPE)

> when an exclusive deal is signed, <u>externalities</u> are exerted on third parties (ex. other buyers).

their exploitation allows the incumbent to profitably use exclusive dealings to deter entry.

Market 1

Market 2

If entrant needs both markets, foreclosure may be profitable

(Bernheim and Whinston; Segal and Whinston; also: Carlton and Waldmann; Choi and Stefanadis)

Naked exclusion (Rasmusen et al., Segal-Whinston)

- uncoordinated buyers.
- demand of a single buyer not enough to trigger entry.
- if a buyer accepts ____> negative externality on the other.
- N.B.: Buyers do not compete

Simultaneous/non-discriminatory offers

Proposition 1: if downstream firms are independent monopolists, there exist both:

EXCLUSION EQUILIBRIA: both buyers sign Why? Individual deviation is not profitable

ENTRY EQUILIBRIA: no buyer signs Why? I cannot prevent these equilibria from arising (offering *x** to <u>both</u> buyers is not profitable)

Incumbent exploits coordination failures to exclude

Simultaneous and discriminatory offers

Proposition 2: if downstream firms are independent monopolists:

Only EXCLUSION EQUILIBRIA exist

Why? If both buyers reject, I deviates and offers x* to one buyer only.(Note: there exists multiplicity of exclusion equilibria)

Discriminatory offers facilitate exclusion

Discriminatory offers facilitate exclusion

If 2 $\pi^m > \Delta CS$ (i.e., B+C), then the incumbent can persuade *one* buyer, and therefore exclude the entrant from *both* markets.

Sequential offers

Proposition 3: if downstream firms are independent monopolists:

there exists a unique EXCLUSION EQUILIBRIUM where I excludes at no cost x=0 and both buyers sign.

If B_1 signed, B_2 cannot do better than signing (even for free). If B_1 rejected, I offers x^* to $B_2 \implies B_2$ signs. B_1 anticipates that B_2 will always sign \implies signs for free.

When buyers compete downstream

<u>close substitutes</u>: cheaper input
 strong competitive advantage
 demand of a single buyer triggers entry
 the incumbent cannot profitably

the incumbent cannot profitably compensate the buyer

 <u>differentiated products:</u> cheaper input > negligible competitive advantage > same as S&W

Fierce downstream competition eliminates the anticompetitive effect of exclusive dealing

Conclusions

- Exclusive deals might be used to deter entry
- Externalities story convincing
- The intensity of downstream competition is crucial to assess potential anti-competitive effects of exclusive dealing
- Discriminatory offers help exclude (selective discounts by dominant firms dangerous)
- Fidelity rebates may have same effect as exclusive contracts

"<u>**Rents extraction</u>**" (Aghion and Bolton – nonstochastic version)</u>

• An incumbent can use exclusive deals to extract rents from entrants.

- <u>A simple example:</u> Inelastic demand, *q* =1.
- Example without uncertainty to show rents extraction.

Game:

1. I offers an exclusive deal with (x, d, w_I) , where:

x = compensation; d = penalty (liquidated damages") if deal terminated $w_I =$ price commitment.

- 2. Buyer *B* accepts or rejects.
- 3. *E* decides on entry.
- 4. If entry, *E* decides p_E (and if no deal, *I* chooses p_I .
- 5. *B* decides on termination (if had signed), or on supplier (if "free").

Note. Here the buyer is final consumer with willingness to pay ν and unit demand.

• If buyer rejects, *E* enters and buyer buys at $p_E = c_I - \varepsilon$. Any contract should leave buyer with at least:

$$CS_{B} = V - C_{I}$$

•If buyer accepts (x, d, w_I) , it switches to E only if: $p_E + d \le W_I$ (or: $p_E \le W_I - d$).

•Entry occurs only if $p_E \ge c_E$.

Incumbent maximises its profits, by offering:

$$\underline{X^{*}=0}, \ \underline{d^{*}=c_{\underline{I}}-c_{\underline{E}}}, \ \underline{W_{\underline{I}}^{*}=c_{\underline{I}}}$$

Buyer makes $cs_B = v = c_I$;

 \implies entrant makes zero profit; incumbent makes $\Pi_I = C_I - C_F (= d^*)$.

The incumbent finds it optimal to allow entry and use the exclusive contract and the penalty to extract the efficiency rent associated with entry.

In this model, entry is pre-empted only if E's cost is stochastic and I makes mistakes in predicting E's costs.

Contracts as a barrier to entry (Aghion and Bolton, AER 1986)

- Incumbent I has cost $c_I = 1/2$
- B's valuation: v=1 (unit demand)
- Potential entrant E: c_E unif. distr. in [0,1].
- Exclusive deal (p,p_o): B will buy from I at price p, but: it can buy from E if pays "liquidated damages" p_o.

The game

- t₁ : firm I offers (p,p_o) to B, who accepts or rejects
- t_2 : firm E decides on entry and sets price p_E . (If no contract, I chooses its price p)
- t₃ : payoff realisation.

No exclusive contract

- If $c_E < 1/2$, E enters, sets $p_E = 1/2$ and gets all – Prob. of entry: $\phi = Pr(c_E \le 1/2) = 1/2$ – Buyer's surplus: $v - p_E = 1 - 1/2 = 1/2$.
- If $c_E \ge 1/2$, no entry, I sets p=1- With probability (1- ϕ), B has surplus v- $p_I=0$.

B's expected surplus: $(1/2)\phi+(1-\phi)0=1/4$. I's expected payoff: $(0)\phi+(1-\phi)(1-1/2)=1/4$.

Exclusive contract

- B buys from E if: $p_E + p_o \le p$: if it enters, E sets $p_E = p - p_o$. \Rightarrow Prob. of entry with contract: $\phi' = Pr(c_E \le p - p_o) = p - p_o$.
- Incumbent's problem:

 $\max_{p,po} \pi = \phi' p_o + (1-\phi')(p-1/2) \quad \text{s.to:} 1-p \ge 1/4.$ [B accepts only if \ge than no contract (=1/4)] $\Leftrightarrow \max_{po} \pi \text{ s.to } p \le 3/4, \quad \Rightarrow (p^*, p_o^*) = (3/4, 1/2).$ Hence, firm E enters with prob. $\phi' = p^* - p_o^* = 1/4.$

Effects of exclusivity

- Entry efficient if c_E≤1/2, but occurs under the contract only if c_E≤1/4
 ⇒welfare loss for 1/4<c_E≤1/2
- Does I offer this contract at equilibrium? Yes: π=(1/4)(1/2)+(3/4)(1/4)=5/16>1/4.
 When E very efficient, I prefers not to deter entry (it extracts some of E's rent via t).