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Abstract
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under which full integration or maximal segmentation is optimal. We also show that under
different conditions the optimal network features varying strength of linkages to other firms or
intermediate degrees of segmentation. In the latter case, the individual and social incentives to
establish linkages are not necessarily aligned. When firms are heterogeneous in the distribution
of risks they face, they should optimally form linkages only with firms facing risks of the same
kind.

JEL Classification: D85, C72, G21.

Keywords: Financial networks, Contagion, Risk Sharing.

∗We wish to thank Elena Carletti, Rama Cont, Maryam Farboodi, Sanjeev Goyal, Matt Jackson, Lasse Loepfe,

Anxo Sánchez and Branko Urosevic for helpful comments and discussions. We are also grateful to the Co-Editor, Itay

Goldstein, and two anonymous referees for very useful suggestions. An earlier version of this paper was presented at

the Cambridge Workshop on Financial Networks, 2010, the SAET Conference in Faro, 2011, the Networks Conference

at Ankara, 2012, the 2014 Wharton Conference on Liquidity and Financial Crises and various seminars; we are grateful

to participants for their comments. We acknowledge financial support from the EUI Research Council, MIUR Prin

prot. 2010NE9L9Z-004 and the Spanish Ministry of the Economy and Competitiveness under grants ECO2012-34581

and RESINEE. Send correspondence to Piero Gottardi, European University Institute, Department of Economics,

Via delle Fontanelle 18, I-50014 San Domenico di Fiesole (FI); telephone: 055 4685919. E-mail: piero.gottardi@eui.eu.



Recent economic events have made it clear that looking at financial entities in isolation, ab-

stracting from their linkages, gives an incomplete and possibly very misleading impression of the

potential impact of shocks to the financial system. In the words of Acharya et al. (2017) “current

financial regulations, such as Basel I and Basel II, are designed to limit each institution’s risk seen

in isolation; they are not sufficiently focused on systemic risk even though systemic risk is often the

rationale provided for such regulation.” The aim of this paper is precisely to investigate how the

capacity of the system to absorb shocks depends on the pattern of connections established among

firms.

More specifically, we study the trade-off between the risk-sharing benefits to firms of higher

interconnection and the costs resulting from an exposure to a larger set of sources of risk. Clearly,

this trade-off must be at the center of any regulatory effort that takes a truly systemic view of the

financial world. By formulating the problem in a stylized and analytically tractable framework, we

can examine how the pattern of linkages among firms should optimally be tailored to the underlying

shock structure. We can also shed light on the key issue of whether these normative prescriptions

are consistent with the incentives of individual firms to establish linkages.

We analyze a finite environment with N financial firms. In most of the paper we shall consider

the case where all firms are identical ex ante, with the same level of assets and liabilities, and

endowed with a risky project displaying the same probabilistic pattern of returns. Ex post, however,

they will often be different since, with some probability, a shock hits one randomly selected project,

decreasing the income it generates. We allow each firm to hold claims to the yield of the projects

of other firms, in addition to claims on its own project. This generates financial linkages among

the firms in the system. It implies that a shock hitting the project of a firm also affects all other

firms linked with it, in proportion to their exposure to this firm.

When the revenue of the assets of a firm falls below its liabilities a firm defaults. The presence

of linkages to other firms allows a firm to reduce the exposure to the shocks that may hit its own

project, and hence to lower the probability of default in such event, thus providing risk sharing.

At the same time, these linkages expose the firm to shocks hitting other firms. The precise effects

of the shock depend then on the pattern of financial linkages among all the firms, that is, on the

system’s financial structure.
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Clearly, the maximum extent of risk sharing obtains when all firms belong to a fully connected

network. This configuration, however, also exhibits the widest exposure of firms to shocks: any

shock hitting a firm’s project affects all firms in the system and, if the shock is large, could lead

to extensive default. There are two alternative (possibly complementary) ways of reducing the

possibility of contagion. One is ‘segmentation,’ which has firms connected only to a subset of other

firms, thereby dividing the system of firms into disjoint components.1 Naturally, this isolates the

firms lying in any given component from the shocks hitting any other component. A second way is

to operate on the ‘dispersion of connections’, that is, to modulate the exposure that any given firm

has to the various firms in its component. For example, a firm could have a high level of exposure

to some firms, while keeping a significantly lower exposure to the remaining ones.

One of the primary objectives of this paper is to identify the financial structure that maximizes

social surplus for various properties of the shock distribution, thus solving optimally the trade-off

between risk sharing and contagion. Social surplus is maximized when the expected number of

defaults in the system is minimal. A very important concept in our analysis of this trade-off is

the risk exposure function, which describes the probability of default of a firm as a function of the

size of its exposure to another firm. We will show that the optimal pattern of firms’ exposures is

closely related to the curvature properties of the risk exposure function. In turn, these properties

are linked to those of the probability distribution of the shocks, and in particular they depend on

how the probability mass on shocks varies with their size.

We show first that, when the risk exposure function is globally convex the optimal structure

exhibits full integration, with the exposure of a firm to shocks other than its own evenly divided

among all other firms. Conversely, the optimum features maximal segmentation when the risk

exposure is everywhere concave. To better understand this result, note that the convexity property

is satisfied, for example, for shocks whose probability distribution is Pareto with relatively little

mass on the tail, so that large shocks are not very likely. It is natural that in this context the

optimum is primarily driven by the concern for risk sharing, with uniform exposure to all other

firms. On the other hand, a Pareto distribution with a large probability mass on the tail yields a

concave risk exposure function. In this case, the concern for limiting contagion prevails and the

1A component is defined to be a maximal set of firms that are all mutually connected/exposed at some positive
level. See Subsection 1.3 for details.

2



optimal structure exhibits maximal segmentation into components of the smallest size.

When instead the risk exposure function is convex for some range of exposures and concave for

others (that is, neither globally concave, nor globally convex), the optimal pattern of exposures

involves a compromise. To ensure some risk sharing as well as the presence of circuit-breakers

that limit contagion, the optimum resorts to either intermediate degrees of segmentation or the

modulation of the levels of exposure to other firms. The particular alternative chosen depends on

the specific way in which changes in curvature occur (in particular on whether the risk exposure

is concave2 or convex for levels of exposure close to zero). The first route introduces in fact more

rigid circuit breaks in the system (yielding either full or no connection between any two firms),

while the second one exhibits more flexibility in the response to shocks.

Next we examine whether the incentives of individual firms to establish linkages with other

firms (so as to minimize individual default probabilities) are aligned with social optimality. To

this end, we consider a simple network-formation game where each firm proposes the set of other

firms to which it wants to connect. Then, for all such proposals that are jointly accepted by all

those involved, the corresponding links are established and a connected component of the system is

formed. We show that for those scenarios where social optimality requires polar segmentation (i.e.

components of maximum or minimum size), equilibrium and socially optimal outcomes coincide.

This is not so, however, when optimality prescribes intermediate segmentation. For, in this case,

a conflict typically arises: in the equilibrium configuration some components are inefficiently large

and one of them is inefficiently small. In the end, therefore, the default probabilities are inefficiently

high.

The final part of the paper extends the analysis to the case where firms are ex-ante heteroge-

neous, in particular with regard to the risk characteristics of the shocks hitting the projects of the

various firms. In this context, our main conclusion is that optimality requires perfect assortativity,

i.e. segmentation along firms’ types, with components formed by homogeneous firms with the same

risk profiles of shocks.

Our model, although stylized, allows for the guidance of concrete policy advice. Because of

the increase in financial firms’ interconnections (see Diebold and Yilmaz 2009), it is now widely

2This property is satisfied, for example, when the shock follows a mixture of Pareto distributions with finite and
infinite first moments.
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judged to be insufficient to rely primarily on the regulation of capital requirements.3 Some authors,

like Stiglitz (2010), have argued that a policy tool consisting effectively of modulating exposures

within a network can be effective, and Degryse and Nguyen (2007) provide evidence about this in

a concrete empirical example.4 Our paper provides some general results about how the optimal

structure of the network depends on the distribution of shocks. We believe this is an important

contribution since, as DTTC (2015) points out: “one of the challenges of designing direct measures

is the uncertainty surrounding the level of interconnectedness that is deemed undesirable,” and our

model can give reasonably precise answers to that challenge.

Our approach is in marked contrast with the one currently pursued by the literature on, and

the practice of, macroprudential regulation. For example, one customary way of addressing the

problem is to rely on stress tests. This, essentially, amounts to simulation exercises examining

the consequences for a system of interconnected institutions of being subject to a large shock

(see e.g. ESMA 2016 or Kara, Tian and Yellen 2015). This does not take into account that,

as we show here, a very connected network will collapse with a sufficiently large shock, while at

the same time such connectedness also provides the benefit of forestalling problems with smaller,

perhaps much more frequent, shocks. Thus, it is not possible to get a sense of the optimality of

a particular connection structure without understanding the impact of the whole distribution of

shocks.5 Another approach for assessing risks for banking systems is to simulate the impact of

draws from the empirical distribution of past observed returns under the connectedness observed

in the actual network (Elsinger, Lehar and Summer 2006). This is closer to what we do in this

paper but, rather than looking at a specific network and distribution of shocks, we provide results

that apply for general networks and shock distributions.

An additional normative aspect we have highlighted is that, when different institutions are hit by

3The Basel III agreements require higher overall equity requirements than previous rounds plus and additional
capital conservation buffer of 2.5% during expansions to combat the pro-cyclicality of credit.

4In their own words, “a change from a complete structure (where all banks have symmetric links) towards a
‘multiple money centre’ structure (where the money centres are symmetrically linked to some banks, which are
themselves not linked together) as well as a more concentrated banking market have decreased the risk and impact
of contagion.”

5The weight attributed to shocks of different sizes clearly depends on how social surplus is affected by the number
of defaults in the system. We consider the case where social surplus only depends on the expected number of banks
failing. But if the social cost of, say, ten firms defaulting were much larger than ten times the cost of one firm
defaulting, the impact of very large shocks would be more important, and stress tests would be more valuable. We
further discuss the effects of the consideration of alternative welfare criteria in footnotes 21 and 32.
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shocks coming from different distributions, they should belong to separate components (although,

as we explain in more detail later, there may not be a conflict with equilibrium behavior in this

case). The intuition for this result can be grasped easily by contrasting the following two polar

cases: a firm facing a distribution with little mass on the tail benefits by belonging to a very large

component, whereas a firm facing a distribution with large mass on the tail benefits by being part

of a minimal component. If both types of firm happen to be in the same component, at least one of

them is bound to be part of a component of suboptimal size. This conclusion leads to an important

policy implication, and adds a novel justification for the separation of investment and commercial

banking which was enforced by the Glass-Steagall act from 1933 to 1999.6 In our model, this

separation may prove beneficial as a way to cope with a plurality of institutions that are subject to

shocks with different risk profiles. For example, it is conceivable that, for this reason, commercial

banks should have a much larger component size than investment banks. In fact, several current

policy initiatives aim precisely at limiting risk exposures by separating banking activities that have

intrinsically different risk levels – e.g. the Volcker rule in the U.S., or the Vickers and the Liikanen

proposals (see DTCC (2015)).

This normative implication does not necessarily imply the need for a regulatory intervention,

as the equilibrium might already display the required separation between institutions with quite

different risk profiles. But we observe that in reality those institutions are often part of the same

corporation. This could of course be due to some additional factors we have ignored here, and

could then be still efficient. And, yet again, it could be the unintended result of other government

interventions. For example, commercial banks benefit from a lower cost of capital due to an implicit

or explicit government guarantee, and investment banks want to benefit from that regulation as

well. At a minimum, our result suggests that this kind of “merged risk profiles” should be studied

carefully by regulators.

6The traditional view was that the separation is necessary to protect consumers from conflict of interest between
these institutions, but Kroszner and Rajan (1994), for example, find little evidence for this argument.
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Related literature

The research on financial contagion and systemic risk7 is quite diverse and also fast-growing. Hence

we shall provide here only a brief summary of some of the more closely related papers.8

Allen and Gale (2000) pioneered the study of the stability of interconnected financial systems.

They analyze a model in the Diamond and Dybvig (1983) tradition, where a network structure with

a single, completely connected component is always optimal, i.e. the one that minimizes the extent

of default. Our model, in contrast, shows that a richer shock structure can generate a genuine

trade-off between risk-sharing and contagion, and that both segmentation and lower dispersion of

connections may be optimal.9

Three more recent related papers are Elliott et al. (2014), Acemoglu et al. (2015), and Glasser-

man and Young (2015). The nature and form of the financial linkages among firms considered in

these papers are partly different, as they concern not only the asset side but also the liability side of

the firms’ balance sheet. This, in turn, entails the presence of some amplification mechanism of the

shocks hitting a firm.10 Another difference with our paper concerns the main focus of the analysis.

While the aim of Elliott et al. (2014) is to characterize conditions on the structure of the network

under which default cascades occur, the primary objective of ours is to characterize the optimal

financial structures in diverse scenarios and their relationship with individual incentives. Acemoglu

et al. (2015) shares with us the focus on the optimality of financial networks, but restricts its

analysis to shock distributions that are degenerate Dirac measures concentrated on a given shock

magnitude.11 Our characterization results, on the other hand, are mostly stated in terms of prop-

erties of the curvature of the risk exposure function, and hence of the cumulative distribution of

7There is also a large body of literature that studies the general problem of risk sharing in non financial contexts,
largely motivated by its application to consumption sharing in poor economies that lack formal insurance mechanisms.
Paradigmatic examples are the papers by Bramoullé and Kranton (2007), Bloch et al. (2008), and Ambrus et al.
(2014).

8The reader is referred to Allen and Babus (2009) and to Cabrales et al. (2016) for recent surveys of the literature
on financial contagion in networks.

9Babus (2016) uses a similar model but allows for the endogenous formation of links between banks, and shows
that banks manage to form networks that are usually resilient to the propagation of shocks.

10See Cabrales et al. (2016) for a more general discussion of the effects of these differences in the specification of
linkages. In particular, it is argued that the qualitative features of optimal financial structures are not affected.

11The papers by Glasserman and Young (2015) and Acemoglu et al. (2015) display some common features, but the
former allows for continuous distributions of the shocks (as we also do). The main result of Glasserman and Young is
a characterization of the parameter values and networks for which the probability of default of a firm is lower when
a shock hits some its neighbors than when the firm is directly hit.
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shocks. These properties allow to consider a rich set of possible distributions and to show the

different ways in which the optimal financial structure varies in response to the characteristics of

those distributions. This richness sets us apart from all the other papers in the area.12

Another branch of the literature focuses on how financial contagion is affected by imperfect

information on the shocks hitting the system. For instance, Allen et al. (2011) explore the effects

on segmented and unsegmented structures of the arrival of a signal indicating that some firm in

the system will have to default.13

Finally, we should also mention the large empirical and policy-oriented literature whose main

objective has been to produce summary measures derived from the network of relationships among

firms (mostly banks) with the aim of predicting the likelihood of systemic failures – see, for example,

Battiston et al. (2012) or Denbee et al . (2011), which propose different measures of centrality in

networks. Of particular interest in this respect is the paper by Elsinger, Lehar and Summer (2011)

who, using Austrian data, show that correlation in banks’ asset portfolios is the main source of

systemic risk.14

The rest of the paper is organized as follows. Section 1 describes the economic environment

and the possible patterns of linkages among firms. Section 2 characterizes the optimal financial

structures for various properties of the shock distribution. Section 3 addresses the issue of network

formation and the relationship between individual incentives to form linkages and social optimality.

Section 4 extends the analysis to allow for heterogeneity in the distribution of the shocks that may

hit different firms. Section 5 concludes. For convenience, the proofs of our results are relegated to

the Appendix.

12There is also a complementary line of literature that, in contrast with the papers just mentioned, studies the
issue of contagion and systemic risk in the context of large networks. While most papers follow a numerical approach,
based on large scale simulations (see Leitner (2005) and Gai et al. (2011)), Blume et al. (2011) use the mathematical
theory of random networks to study the optimal average degree of the network and its consistency with individual
incentives to create or destroy links.

13On a similar line, Caballero and Simsek (2013) and Alvarez and Barlevy (2014) study how informational contagion
can amplify the contagion resulting from mutual exposure between firms.

14A related emphasis on cross-ownership and investment has been pursued as well by the literature on “balance
sheet effects” to understand the Asian financial turmoil in the late 90’s (Krugman 1999) as well as the current crisis
(Ahrend and Goujard 2011). These latter approaches are very much in line with our model, which precisely highlights
portfolio correlation as the key driver of default risk.
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1 The Model

1.1 The Environment

Our benchmark scenario considers an environment with N ex ante identical financial firms (say,

banks). We assume N is even. Each firm i has one project which yields a gross return given by a

random variable R̃i as follows. With probability 1− q the return equals its ‘normal’ value R, while

with probability q the firm’s investment is hit by a shock and its return equals R− L̃i, where L̃i is

a positive valued random variable with the same distribution for all i. On the liability side, every

firm faces claims by outside investors (e.g. deposit or bond holders) equal to M , a parameter of

the model.15

We model financial linkages by allowing each firm to hold claims to the returns obtained from

the projects of other firms, together with a fraction of the claims on its own project. More precisely,

for any i, j ∈ N = {1, .., N}, let us denote by aij ≥ 0 the fraction held by firm i of the outstanding

amount of claims to the yield of the project of firm j. Hence the pattern of asset holdings across

the N firms in the economy can be described by a matrix A of the following form:

A =


a11 a12 · · · a1N

a21 a22 · · · a2N

...
...

. . .
...

aN1 aN2 · · · aNN

 . (1)

The return on the assets owned by any given firm i is then a weighted average of the yield of

the firm’s own project and the yields of the projects of the other firms. Subtracting from this the

value of the firm’s liabilities, given by M , we obtain the following expression for the net financial

position of firm i:
N∑
j=1

aijR̃j −M. (2)

Hence inter-firm linkages arise through the asset side of the firms’ balance sheet, since the value

15We can think of these liabilities as issued to raise external funds to finance the firm’s project. See Cabrales et al.
(2014) for the analysis of the case where M is endogenously determined and depends on investors’ preferences and
firms’ default probabilities.
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of the assets of firm i may be related in general to the value of the assets of other firms j 6= i. In

contrast, note that no linkage is present on the liability side.

When the realization of the return on the assets held by firm i falls short of M , that is the

expression in (2) has a negative sign, the firm defaults. Default is assumed costly: in addition to

liquidation costs, there are opportunity costs deriving from the fact that a defaulting firm stops

operating, and hence it loses any future earnings possibility.

1.2 Shock structure

We specify now some properties of the probability distribution of the shock L̃i that may hit the

yield of the project of firm i. Conditionally on such shock hitting firm i, with probability π the

shock is ‘small’ (labeled s) and the project experiences a loss of size L. With probability 1 − π

the shock is ‘big’ (labeled b), and is described by a random variable l̃, with support16 [L,∞) and

cumulative distribution function Φ(l). Summarizing, the gross return on the project of an arbitrary

firm i is:

R̃i =


R with prob. 1− q

R− L with prob. q π

R− l̃ with prob. q(1− π)

(3)

For the risk of default to be an issue, we assume:

A1. (i) R (1− q) > M,

(ii) R− L < M .

The first inequality ensures that a firm’s project is viable, that is, its expected return exceeds

what must be paid to lenders. On the other hand, the second inequality implies that if a firm can

only draw on the revenue generated by its project, it is surely unable to pay depositors (and hence

must default) whenever a shock, whether small or large (since l̃ ≥ L), hits its return.

16The assumption that the support of l̃ is unbounded implies that there is positive probability of a sufficiently
large shock that would lead to all the firms defaulting, if they were all connected to each other. The analysis could
have been equivalently carried out if we had truncated the distribution at any upper bound L̄ > 2 (N − 1) (R −M)
(with L̄ ≤ R in order to be consistent with limited liability) and all the mass beyond L̄ were shifted to this value.
All our results would still hold, with only a qualification that we explain in Footnote 27. We adopted the current
specification purely for simplicity of the analysis.
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We assume that shocks are rare and thus at most one project is hit by a shock. This can be

motivated by postulating that, even if shocks hit projects in a stochastically independent manner,

the probability q that a shock hits any given one is so low that the probability that two or more

shocks arrive in a single period is of an order of magnitude that can be ignored.17

On the nature of those shocks, we make the following key assumption:

A2. (i) π > N(1− π),

(ii) 1
2(R− L) + 1

2R > M.

Part (i) of the above assumption says that s (small) shocks are significantly more likely than

b (big) ones. In particular, it is more likely that a given firm is hit directly by an s shock than

a b shock hits any firm in the system. On the other hand, part (ii) ensures, for reasons that will

become clear in the next section, that the presence of sufficiently strong linkages to other firms

allows a firm to fully insure against the s shocks, i.e. guarantees that the firm never defaults when

an s shock hits any of the firms.

1.3 Interfirm Linkages and Financial Structures

The matrix A describes the pattern of financial linkages among the N firms. As we see from (2),

when aij > 0, firm i is exposed to the shocks hitting the return on firm j’s project. The elements

of A specify not only which firms have a financial linkage to any given firm i, but also the strength

of all these linkages. Formally, we can think of A as the adjacency matrix of a weighted directed

network, with aij representing the intensity of the link, or the exposure, of i to firm j. To fix ideas

it may help to conceive the reciprocal exposure between two firms as the result of exchanges of

assets between the firms.18

17As an extreme formalization of this idea, we could model time continuously and assume that the arrivals of small
and big shocks to each firm are governed by independent Poisson processes with fixed rates π and 1−π, respectively.
Then, the probability that two shocks arrive simultaneously is zero.

18We can also interpret the linkages with higher intensity as describing direct linkages and those with lower intensity
as describing indirect linkages. See Cabrales et al. (2014) for a formal derivation of possible patterns of linkages
arising from the iteration of exchanges of assets among firms located in a network. In such setup, if we let B be a
matrix describing the pattern of exchanges of assets among firms that are directly connected, we obtain A = BT for
some T > 1 that describes the number of iterations of asset exchanges conducted by neighboring firms. In a stylized
manner, the matrix A can so be viewed as the outcome of a process of securitization implemented through multiple
rounds of asset trade.
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The elements of A can take any value between 0 and 1. To ensure a balance among the positions

of different firms, it is natural to require that not only the columns but also the rows19 of A sum

to 1:
N∑
j=1

aij =
N∑
i=1

aij = 1 i, j = 1, 2...., N. (4)

The presence of financial linkages allows a firm to reduce its exposure to the shocks that may hit

the return on its own project and hence lower the probability that a firm defaults when its project

is hit by a shock. At the same time, these linkages imply that the firm is also exposed to the shocks

hitting firms with which the firm is thus connected. This may generate a sort of contagion in the

following sense: a shock hitting the project of any firm can affect many other firms by decreasing

the value of the assets they hold and hence, possibly, induce widespread default.

More precisely, when a shock of size L hits the return on the project of firm i, this firm defaults

if

aii(R− L) +
N∑
j 6=i

aijR < M. (5)

When such a shock hits the return on the project of some other firm k 6= i, firm i defaults if

aik(R− L) +

aii +
N∑

j 6=i,k
aij

R < M. (6)

Hence the lower aii, the less likely expression (5) is satisfied. At the same time, given (4), this also

means that it is more likely that (6) holds. Therefore, in the environment considered, there is a

trade-off between risk-sharing and contagion.

Remark 1 In our model the linkages among firms capture the fact that they are exposed to common

shocks through the shared ownership of claims on the yields of the different projects. An important

consequence of this feature is that the default of no firm has, per se, an effect on the solvency of

other firms. Therefore, the possibility of contagion from a large shock hitting one firm comes only

from the correlation in returns induced by the assets commonly held in firms’ portfolios.20

19A condition of this kind would be needed if we think of the firms’ cross-holdings as resulting from exchanges of
assets among them and, due to symmetry, the projects of all firms display the same ex ante pattern of returns.

20Lazear (2011), in a widely discussed Wall Street Journal article, refers to this mechanism as the ‘popcorn’ effect.
He contrasts it to the ‘domino’ effect, where it is the default of one firm that triggers the contagion to other firms.
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In the environment described, the financial structure, as described by the matrix A determines

how shocks hitting any firm are distributed over the whole set of firms. As long as no firm defaults,

this only entails a redistribution of resources across firms and between the owners of the different

firms. When defaults occur there is again a redistribution of resources, now between creditors and

owners of the firms as well. But since defaults are costly, the amount of available resources is also

negatively affected, the more so the larger the number of firms defaulting. When all investors are

risk neutral we can assess the performance of a financial structure in terms of social surplus, given

by the sum of the expected revenue generated by the firms’ assets, less the costs of default. Since

these costs are the same for all firms, we can then say that welfare, as measured by total surplus,

is maximal when the expected number of firms defaulting is minimal.21 Also, any firm maximizes

its value, in the presence of risk neutral investors, when it minimizes its probability of default.

One of the primary objectives of this paper is to characterize the optimal financial structures

in the face of various properties of the probability distribution Φ(.) of the big shocks that may

hit the system. The set of possible financial structures is quite large. In order to emphasize the

key dimensions in which they can differ, it is useful to introduce the following three notions: (1)

externalization, (2) segmentation, and (3) dispersion of linkages.

Externalization refers to the exposure to the project of other firms, relative to the exposure to

the firm’s own project. For an arbitrary firm i, this is measured by 1−aii. Assumptions A1(ii) and

A2(i) imply that a firm with no linkages always defaults when hit by an s shock, and that s shocks

are much more likely than b shocks. It then follows from A2(ii) that any firm i can completely

avoid default when s shocks occur by establishing some linkages to other firms, provided 1 − aii

is sufficiently close to 1/2.22 Given our aim of characterizing optimal financial structures, in what

follows we will focus our attention on the set of structures that satisfy this condition, and display

21In our specification welfare is only affected by the expected number of defaults in the system. One could argue
however that the variability of the number of defaults also matters, as the occurrence of multiple contemporaneous
defaults is problematic (e.g. because of unmodeled resales externalities). See, e.g. Beale et al. (2011) for the proposal
of a criterion to evaluate financial systems based on the minimization of a “systemic cost function” defined as the
expectation of a convex function of the number of defaults in the system. This would have the effect of making
contagion, and hence the formation of linkages among firms, costlier but we expect most of our qualitative findings
on optimal financial structures to extend to such a specification, with one exception, to which we refer in footnote
32.

22More specifically, this statement always holds if, for any given i, aij(R − L) + (1 − aij)R ≥ M for all j. When
aii = 1/2, it follows from (4) that aij ≤ 0.5 for all j and hence aij(R − L) + (1 − aij)R ≥ 0.5(R − L) + 0.5R.
Assumption A2(ii) then implies that the term on the right hand side of the last inequality is strictly greater than M .
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a common externalization of risk:23

1− aii = 1− α for all i, for some given α close to
1

2
. (7)

Even though all the financial structures we consider have the same diagonal terms, they can nev-

ertheless differ widely in their off-diagonal terms. Hence they may differ widely in the ability firms

have to withstand the indirect effects of b shocks, that is, when such shocks hit the project of some

other firm in the system. Thus, while the term on the left hand side of (5) – which specifies the

consequences on the value of the firm’s assets of being hit directly by a shock – depends only on

the main-diagonal entries and has the same value under all the network structures considered, the

term on the left hand side of (6) – which pertains to indirect effects – depends on the off-diagonal

terms (aik)i 6=j and its value will vary across alternative network structures.

Segmentation describes how the system is divided into independent components. In the network

literature a component is identified with a maximal set of nodes that are mutually connected,

directly or indirectly. In our context, for i to be connected to j there has to be a sequence of firms

starting at i and ending at j with the property that any firm k in the sequence has positive exposure

to its immediate successor l in the sequence, so that akl > 0. A set D ⊂ N is then connected if, for

every ordered pair i, j ∈ D, i is connected to j; more formally:

∀i, j ∈ D, ∃{k1, k2, ..., kr} s.t. akq ,kq+1 > 0 for all kq (q = 1, 2, ..., r − 1), with k1 = i and kr = j.

A component is a subset C ⊂ N that is maximally connected, i.e. it is itself connected and there

exists no C′ % C that is also connected.

In what follows we shall also require that every component in the system is such that every two

firms lying in it are directly connected with an intensity that is bounded below by some given ε,

which can be arbitrarily small (albeit positive). That is, they are in a situation of mutual exposure:

∃ ε > 0 s.t. ∀i, j ∈ C, aij ≥ ε. (8)

The motivation for this requirement derives from our interpretation of the nature of the relationship

23A further optimization with respect to the level of α (subject to the constraint in footnote 22) would not yield
extra insights with respect to the issue we are mainly concerned with here, namely, the effect of contagion on default.
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between firms i and j, when firm i is exposed to the return of the project of firm j. In that case

aij > 0, and this means that firm i gains access to information and the possibility to monitor the

activities of j. This naturally would generate an interest in j to understand the motivations and

the running of firm i. To achieve this, firm j could acquire some claims to the project of i so that

aji ≥ ε. These informational and incentive issues arise in the real world, and are indeed often dealt

with through the joint participation in ventures of shared interest. This is precisely the point made

by Berglöf and Perotti (1994), who assert that, in business networks, firms resort to such schemes

because “[t]he reciprocal allocation of control rights supports cooperation and mutual monitoring

among managers.” Similar considerations apply when firm i is exposed to j, and j is exposed to

k. Then firm i would also like to monitor and gain information about k, which can be attained if

aik ≥ ε.

Condition (8) ensures that, given the pattern of exposures of an individual firm i, as described by

the corresponding row of the matrix A, the component where that firm lies is of the smallest possible

size.24 This condition, together with the balance condition (4), implies there is an interdependence

between the pattern of exposures of the different firms. This creates a need for coordination both

within and across components since the exposures of any individual firm cannot be considered in

isolation from those of other firms.

Let us denote by Ki the number of firms to which any given firm i is directly connected.

Condition (8) implies that Ki takes the same value for each firm i lying in a given component. The

size of the component is then given by Ki+ 1. Therefore the pattern of segmentation in the system

is determined by the number C of components and the size of each of them. In the extreme cases

of no segmentation we have K = N − 1. In the case of maximal segmentation we have Ki = 1 for

all i, because by condition (7) every firm must have a connection to at least another firm, and thus

the minimal component size is 2. Rows and columns of A can always be rearranged so that this

matrix has a block diagonal structure, with the blocks corresponding to the network components.

The dispersion of exposure within any component (say, of size K + 1) describes the pattern

24A very simple example may be used to illustrate the point. Suppose that the pattern of exposures of a firm is
characterized by positive exposure to only one other firm. This can be achieved by having a component with two
firms mutually exposed to each other and not connected to the rest. Alternatively we could have each firm i ∈ N
exposed to, say, firm i + 1, with the highest-index firm N exposed to firm 1. This would be a component of size N
but would contradict condition (8).
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of connection that each individual firm establishes with the rest of firms lying in its component.

Formally this is captured by the entries off the main diagonal of the submatrix AK , that is the

K+1-dimensional adjacency matrix that includes only the entries corresponding to the K+1 firms

in the component. In the case of uniform exposure (that is, maximal dispersion) the off-diagonal

entries are all equal to (1 − α)/K. Alternative configurations display lower levels of dispersion,

and exhibit some inter-firm asymmetries with the exposure to some of the firms in the component

being higher than the exposure to others.

With no segmentation and maximal dispersion we have aij = (1 − α)/(N − 1) for all i, j, so

that every firm is equally exposed to every other firm in the system. In this situation we have

maximal risk sharing, but also maximal possibility of contagion. A first way in which the spread of

contagion can be limited is via segmentation, so that aij = 0 for some j. But this also means that,

whenever aij > 0 its average value is generally greater than (1−α)/(N−1), the more so the greater

is segmentation. Hence the exposure of a firm is concentrated on a subset of firms, which in turn

entails a lower extent of risk sharing. A lower dispersion of the connections provides another way in

which contagion can be limited: in that case the exposure of a firm is also unevenly distributed, but

this happens by modulating the intensity of linkages within a component rather than by dividing

the system into disjoint components. Note also that our specification allows for asymmetries in the

patterns of exposure of different firms, as different components may be of different sizes and exhibit

different dispersions of connections.

2 Optimal Financial Structures

In this section we will determine the optimal financial structure, and hence the degree of segmen-

tation and the intensity of linkages within each component that allows to minimize the expected

number of defaults in the system, for different properties of the cumulative distribution function

Φ(.) of the b shocks that may hit firms. To find the optimal financial structure we proceed as

follows.

From (6) we see that, when a shock hits some firm k, firm i 6= k defaults if the (random)
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magnitude L of this shock is sufficiently large relative to the size of the exposure of i to k, that is

L >
R−M
aik

.

Hence the probability that i defaults, conditionally on the event that firm k is hit by a b shock, is:

1− Φ((R−M)/aik) =: F (aik). (9)

In the analysis that follows we will conveniently state the optimization problem yielding optimal

financial structures in terms of the function F (.) , which describes the risk of default for firm

i induced by its exposure to the shocks hitting other firms. For short, we will refer to F (.) as

the risk-exposure function. Note that the function F (·) is always weakly increasing and satisfies

F (0) = 0.

We proceed in two steps. First, we find the optimal pattern of connections in a component of

size K + 1, for any K = 1, .., N − 1, that is the one minimizing expected defaults in a component.

Using the fact that a b shock can hit any of the firms with equal probability, this is obtained as a

solution of the following problem:

[P(K)] V (K) = min
[(aij)j 6=i]

K+1

i=1

1

K + 1

K+1∑
i=1

∑
j 6=i

F (aij) s. t.

K+1∑
j 6=i

aij =

K+1∑
i 6=j

aij = 1− α, ∀i 6= j(10)

aij ≥ ε ∀i 6= j (11)

The expression appearing in the objective function specifies the expected fraction of firms defaulting

in a component of size K+1 when indirectly hit by a b shock, conditionally on such a shock hitting

a firm in the system. To minimize this expression amounts to minimizing the expected number of

defaults in the component since, as we noticed, the probability that a firm defaults when directly hit

by a b shock is the same across all admissible financial structures. Constraint (10) of problem [P(K)]

restates the balance condition (4) while condition (11) requires that, within the component, every

pair of firms are mutually and positively exposed to one another as per condition (8). We denote
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then by V (K) the value of the objective function at a solution of problem [P(K)], constituting the

‘optimal value of a component of size K + 1’.

In the second step we find the optimal segmentation, that is, the optimal partition of the N

firms into connected components:

[SP] min
Kc∈{1,..,N−1},c=1,..,C;C∈{1,..,N/2}

C∑
c=1

V (Kc)(Kc + 1) s. t.

C∑
c=1

(Kc + 1) = N

where the expression appearing in the objective function gives the expected number of firms in the

system that default when indirectly hit by a b shock (again, conditionally on such a shock hitting

a firm in the system).

To derive the solution of problem [SP], it will often be convenient to consider the following

individual optimization problem:

[IP] min
(aij)j 6=i

∑
j 6=i

F (aij) s. t.

N∑
j 6=i

aij = 1− α (12)

aij ≥ 0, ∀j 6= i (13)

This problem consists in the choice of the pattern of exposures of firm i to other firms in the system

- that is, of the off diagonal elements of the i-th row of matrix A - that minimizes the probability

of default of firm i when indirectly hit by a b shock. As argued in Section 1.3, the value of firm i

is maximal when the firm’s probability of default is minimal. Problem [IP] will then also play a

role in the next section when we investigate the incentives of individual firms to establish linkages

at an equilibrium of a network-formation game.

Note that both the objectives of the individual [IP] and the social optimum problem [SP] are

the minimization of expected defaults, and minimizing the probability of default of any single firm

ensures that the expected number of defaults in the system is also minimized.25 The key difference

25Formally, if aij for i 6= j is such that
∑
j 6=i F (aij) is minimal for all i clearly ensures that

∑N
i=1

∑
j 6=i F (aij) is

also minimal.
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between [SP] and [IP] lies in the fact that in the second optimization problem the pattern of

exposures of each individual firm is chosen so as to minimize the default probability of this firm,

abstracting from the constraints that relate such values to those of other firms. These are the

constraints that appear in the second condition of (10) and in (11) of subproblem [P(K)], that is,

the balance condition (capturing the fact that linkages are formed via trades among firms and, in

order to carry out any desired asset exchange, the two parties must agree to it) and the condition

that connected firms must be in a situation of mutual exposure. These constraints are ignored here,

hence the values obtained by solving [IP] for each firm i may not be feasible. In addition, problem

[SP] requires that the N firms in the system are allocated to components so as to minimize expected

defaults in the system and this objective may be in conflict with that of minimizing defaults of

individual components.

Thus if (i) the values of aij solving [IP] for each i satisfy the missing constraints of subproblem

[P(K)] and (ii) the firms in the system can be arranged into components so as to implement the

solution of [IP] for every i, then the solution of problem [SP] is obtained from the solution of the

simpler problem [IP]. As we will see in what follows, (i) and (ii) are satisfied in several cases, but

not always. When (i) and/or (ii) do not hold, a solution of [SP] cannot be obtained in this simpler

way.

Having stated formally the social optimization problem, we proceed to characterize optimal

financial structures for a variety of shock scenarios. Firms’ exposures are determined so as to

optimally address the trade-off between achieving a high level of risk sharing and reducing the

risk of contagion. We will show that, for classes of shock distributions satisfying appropriate

regularity properties the optimum exhibits very clear-cut and polarized features, where a firm

is either minimally exposed to others or has a uniform exposure to all other firms. However, for

shock distributions with richer patterns the optimum features intermediate degrees of segmentation

and/or some varying modulation of the intensity of connections. The conditions will be stated in

terms of properties of the curvature of the risk-exposure function F (·) and, as discussed below in

Remark 2, are closely related to the properties of the curvature of the distribution Φ (.) .

In order to understand the determinants of these different optimal outcomes, it is useful to start

by singling out some specific conditions on the shock distribution that are required for different
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patterns of exposures to arise at an optimum. This is the objective of the following:

Proposition 1 Suppose F (·) is twice continuously differentiable and let (a∗ij)j 6=i be the individually

optimal pattern of exposures (i.e., (a∗ij)j 6=i is a solution of [IP ]).

[1] If (a∗ij)j 6=i features a zero level of exposure to some firms (that is, a∗ij = 0 for some j ∈ N ),

then F ′ (0) ≥ F ′ (a∗ik) for all a∗ik > 0.

[2] If (a∗ij)j 6=i has p ≥ 2 distinct, positive levels of exposure to other firms (that is, there are

p elements a∗ijl, jl ∈ N , l = 1, .., p such that a∗ijl > 0 for all l and a∗ijl 6= a∗ijm for all

l,m ∈ {1, ..., p}), then the concavity of F (.) must change at least p− 1 times.

[3] Suppose (a∗ij)j 6=i features the same level of exposure āt towards nt > 0 other firms26, and

k ≥ 2 distinct levels of exposure overall. If āv = 0 for some v ∈ {1, ..., k} and āt < 1 − α,

we must have F ′(āt) = F (āt)/āt for all t 6= v. If instead āt > 0 for all t = 1, .., k, then

F ′(āt) = F ′(āv) = (F (āt)− F (āv)) / (āt − āv) for all t, v ∈ {1, ..., k}.

The above result highlights some necessary conditions that must be satisfied to obtain certain

properties of the individually optimal pattern of exposures. First, [1] asserts that if it is optimal to

have zero exposure to some firm, then the marginal effect on the probability of default of increasing

exposure to this firm must be higher than that of increasing exposure to any other firm (for which

there is positive exposure). Next [2] indicates that multiple distinct levels of positive exposure can

only arise if the risk-exposure function F (·) does not have a uniform curvature. For, only if there is

a change in such curvature, the necessary and sufficient conditions for optimality can be satisfied at

different exposure levels. Finally, [3] addresses the case where the optimum features the same level

of exposure towards different firms. For this what is needed is that the effect on risk of adjustments

in the intensive margin (as captured by the derivative of the function F (·)) is the same as that of

changes along the extensive margin (expressed by the average change of risk per unit of exposure

(F (āt)− F (āv)) / (āt − āv) between two distinct levels āt, āv).

In Proposition 1, as well as in all other results that follow, the conditions are stated in terms

of properties of the risk-exposure function F (·). This function operates as a useful reduced-form

26Here, and throughout the paper, we shall ignore for simplicity the constraint that nt and, more generally the size
K + 1 of a component, should be an integer. In the mathematical derivations we allow then nt to be real positive
numbers.
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summary of all the properties of the cumulative distribution function Φ(.) of the b shocks (or its

density φ(.), when it exists) that matter for optimal financial structures. The definition of F (·) in

equation (9) clearly shows how it is related to the function Φ(.), and so are its curvature properties

that, in the end, shape the optimal exposure pattern of a firm. For the sake of completeness,

such a relationship is spelled out in the following remark, under the convenient assumption of

differentiability (see the Appendix for the details).

Remark 2 The risk exposure function F (aij) is convex for all aij > 0 if, and only if, for all x > 0,

we have:

Φ′′ (x) ≤ −2
Φ′(x)

x
.

That is, the cumulative distribution function Φ(·) is sufficiently concave. Also, the convexity of F (·)

implies the log-concavity of Φ(·) and, conversely, the log-convexity of Φ(.) implies the concavity of

F (·).

We now proceed to establish some sufficient conditions for alternative exposure configurations

to be optimal, as a solution of the individual problem [IP] and/or of the social problem [SP]. The

analysis is organized in five different results, Propositions 2-6. As anticipated, we will determine to

what extent, depending on the properties of the probability distribution of the shocks, it is optimal

to reduce risk-sharing so as to limit contagion. We will also find whether this is best achieved by

increasing segmentation, or rather by lowering dispersion.

We begin in Proposition 2 by considering the case where the function F (aij) is either uniformly

convex or uniformly concave. As explained in Remark 3 below, the contrast between such (uniform)

convexity/concavity represents a straightforward generalization of a dichotomy that often arises in

the context of Pareto (or power-law) distributions between those with finite or infinite first-order

moments.

Proposition 2 If the risk exposure function F (·) is strictly convex, the individually and socially

optimal pattern of exposures (a∗ij)j 6=i of any firm i is given by

a∗ij =
1− α
N − 1

for all j 6= i; (14)
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so there is a unique component with each firm having uniform exposure to all other firms.

If instead F (·) is strictly concave, (a∗ij)j 6=i is characterized by

a∗ij = 1− α for some for some j 6= i, and a∗ik = 0 for all k 6= i (15)

and at the social optimum there are N/2 components of minimal size 2.

The proposition establishes that, when F (·) displays a uniform curvature, the optimal pattern of

exposures for any firm is given by one of the two following extreme configurations: all the exposure

concentrated on a single other firm, or evenly divided among all other firms. Hence in this case,

whether the consideration of the benefits of risk sharing or that of the risks of contagion prevails

at an optimum simply depends on the curvature of the risk-exposure function. The intuition for

this result is straightforward. If the function F (·) is convex, the minimization of the probability

of default requires that each firm be equally exposed to all other firms, since otherwise any re-

arrangement bringing the levels of exposure closer to each other would be preferred. When instead

F (·) is concave, the opposite considerations apply: spreading the exposure levels, thus increasing

the asymmetry in the pattern of exposure to other firms, always yields a lower value of the default

probability. Hence at the optimum the external exposure of each firm is fully concentrated on a

single other firm.

It is instructive to compare the sufficient conditions stated in Proposition 2 with the necessary

ones highlighted by Proposition 1. First, note that both uniformly convex and uniformly concave

functions do not satisfy the condition stated in part [2] of Proposition 1, and hence multiple distinct

levels of positive exposure can be ruled out for either case. The condition in part [3] of Proposition

1 is also inconsistent with both kinds of uniform curvature, which implies that the same level

of positive exposure towards a subset of other firms cannot be optimal, thus (external) exposure

must be either concentrated on a single firm, or equally divided among all other firms. Finally,

the condition appearing in part [1] of Proposition 1 is incompatible with the function F (·) being

uniformly concave, hence in this case we cannot have a zero level of exposure to other firms. These

observations, albeit simple, fulfill a twin role. First, they help us to put in a more general perspective

the conditions underlying the dichotomous conclusion of Proposition 2. Moreover, perhaps more

importantly, they tell us how departures from the uniform curvature of the risk-exposure function
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may lead to intermediate levels of segmentation and/or of dispersion of exposures being the optimal

way to achieve risk sharing while limiting contagion.

Proposition 2 also claims that, in the environment considered, the socially optimal pattern of

exposures implements for each firm the one obtained as a solution of problem [IP] for all i and

hence the socially and individually optimal patterns of financial linkages coincide. We show in fact

that we can always arrange the firms in the system into components of minimal size 2 or maximal

size N , as the solution of [IP] prescribes, and so as to satisfy the additional feasibility constraints

of problem [SP].

To illustrate the relationship between the properties of the curvature of the risk-exposure func-

tion F (.) and the distribution of the probability mass over large and small realizations of the shocks,

it is useful to consider the particular case in which the shocks are Pareto distributed.

Remark 3 Suppose the b shock l̃ is Pareto distributed on [L,∞) with continuous density

φ(l) = γ
Lγ

lγ+1
. (16)

Straightforward computations then show that, for any aij ∈ (0, 1], we have:

F (aij) = 1−
∫ (R−M)/aij

L
φ(l)dl

= 1 + Lγ
((

aij
R−M

)γ
− 1

Lγ

)
= aγij

(
L

R−M

)γ
Therefore if γ < 1, and hence the Pareto distribution has a sufficiently high mass on large real-

izations that its first-order moments are unbounded, the function F (·) is uniformly concave. Al-

ternatively if γ > 1, and thus the Pareto distribution has less mass on the tail and the first-order

moments are bounded, the function F (·) is convex.

In view of the previous remark, Proposition 2 readily leads to the following corollary for the

case where b-shocks are Pareto-distributed.

Corollary 1 Suppose the b-shocks are Pareto distributed with density given by (16). Then, the

individually optimal pattern of exposures is given by (15) if γ < 1, and by (14) if γ > 1.
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The preceding corollary allows us to interpret the clear-cut conclusion of Proposition 2 in a

particularly transparent manner if we restrict attention to a context with Pareto-distributed b-

shocks. In this case, the key consideration is whether the decay parameter γ is higher or lower

than 1, which simply translates into whether the expected shock is finite or infinite. In the first

case, which can be heuristically described as one with little mass on the tail, the risk exposure to

other firms can be regarded as comparatively safe since the probability mass associated to smaller

shocks is relatively high. This leads to the conclusion that at the optimum there should be no

segmentation, with a single risk-sharing component including all firms and uniform exposure to all

of them. Instead, if the decay parameter is below 1 (large mass on the tail), the larger shocks are

relatively more likely and the opposite desire to protect against external risk becomes preeminent.

Therefore, segmentation should be maximal, to limit exposure to other firms and so contagion.

We show next that when the risk exposure function exhibits changes in its curvature, the optimal

tradeoff between risk-sharing and contagion may not always result in extreme segmentation and

dispersion outcomes.

First, the following result shows that an intermediate level of segmentation, where a firm is

exposed to a subgroup of other firms of intermediate size (more than one but less than N − 1), is

individually optimal when firms face simple mixtures of Pareto distributions with finite and with

infinite expected values.

Proposition 3 Suppose the distribution of l̃ is given by a mixture of Pareto distributions on

[L,∞), with continuous density φ(l) = pγ1
Lγ1

lγ1+1 + (1− p)γ2
Lγ2

lγ2+1 , 0 < p < 1. γ1 > 1 > γ2 and:

K̂ ≡ 1− α[
(1−p)(1−γ2)
p(γ1−1)

] 1
γ1−γ2

(
R−M
L

) ∈ (1, N − 1) .

Then the individually optimal pattern of exposures (a∗ij)j 6=i of any firm i has K̂ nonzero entries, all

equal to

â ≡
(

(1−p)(1−γ2)
p(γ1−1)

) 1
γ1−γ2

(
R−M
L

)
, while the remaining N − 1− K̂ entries are all equal to 0.

The basic intuition for the former result is as follows. If Pareto distributions with finite and
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infinite first moments are mixed, the exposure function is given by

F (aij) = paγ1ij

(
L

R−M

)γ1
+ (1− p) aγ2ij

(
L

R−M

)γ2
. (17)

This function is neither uniformly convex nor concave, but it changes curvature exactly once. More

specifically, it turns from being concave for low levels of exposure to being convex for high levels.

Naturally, the point where such change of curvature arises depends on the weights in the mixture,

getting larger the smaller is the weight p associated to the distribution with little mass on the

tail. Under these conditions, if p is low enough, the level of exposure associated to maximal risk

sharing (positive and uniform exposure to all other firms) falls in the concave region of F (.), hence

bringing in the polarizing forces discussed above that make spreading exposure levels and eventually

eliminating the exposure to some firms beneficial. This yields the optimality of a positive exposure

level to only a subset of the firms in the system. On the other hand, when components are close

to their minimal size individual exposures are larger and, provided p is not too high, fall into the

convex region of the function F (·). There, as also explained, the benefits of risk sharing prevail

and push in the direction of uniform exposure towards a larger number of other firms.

The condition K̂ ∈ (1, N − 1) indeed ensures that p is neither too low nor too high, that

is both components of the distribution, one with low and the other with high mass on the tail,

are attributed enough weight. Hence neither of these two polar forces at work dominates. As

shown in Proposition 3, the individually optimal pattern of exposures strives to limit contagion,

since positive exposure is limited to a subset of other firms, while attempting to achieve some risk

sharing, with the formation of linkages to more than a single other firm. Also, the route chosen to

limit contagion is only segmentation: the individually optimal component size varies continuously

with the weight p attributed to the two risk components, but exposure is always uniform to all

firms with whom a linkage exists. It is again interesting to relate these findings to the necessary

conditions stated in Proposition 1: the value of the positive exposure â is pinned down by the

requirement F ′(â) = F (â)/â stated in condition [3] for the same level of exposure towards a subset

of other firms to be optimal and F ′(0) > F ′(â), in line with condition [1]

An important feature of the environment considered in Proposition 3 is that in this case the

individually optimal pattern of exposures for each firm cannot be generally implemented as a

24



solution of problem [SP]. While a component of size K̂ + 1 allows to implement the individual

optimum for all the firms lying in it and to satisfy the additional constraints present in subproblem

[P(K̂)], the firms in the system cannot be all arranged into components that are all of that

size. This would in fact require that N be divisible by K̂ + 1, a condition that is typically not

satisfied. Hence in this situation, in order to identify the socially optimal financial structure, we

must take explicitly into account the feasibility constraints that relate the exposure levels of one

firm to those of other firms. How should the division of the system into components and their

corresponding internal structure be adjusted so as to take such constraints into account? Is the

social optimum asymmetric, with all but one components exhibiting the same size and pattern

of connections as in the solution of problem [IP] and the last component taking the slack? Or

is it rather a more symmetric configuration where all components adjust their sizes to satisfy the

feasibility constraints? We provide the answer and characterize the optimum in the following result.

Proposition 4 Under the assumptions of Proposition 3, if in addition N < 2(K̂ + 1), a socially

optimal matrix of exposures [(a∗ij)j 6=i]
N
i=1 is given by one of the two following cases: either (i) two

identical components of size N/2 such that, in each row i = 1, 2, ..., N , there are (N − 2) /2 < K̂

off-diagonal elements equal to a∗ = (1− α)2/ (N − 2) and the remaining ones equal to 0, or (ii) a

single component such that in each row there are multiple levels of exposure.

To gain some intuition for the result note that, if the optimum exhibited one component with

the individually optimal size K̂+1, the remaining firms should lie in one (or more) component with

a smaller size, since N < 2(K̂ + 1). It can then be shown that the optimal exposure levels within

these two components is uniform and given respectively by â in the first one and by a value larger

than â in the other, and that both values fall in the convex part of F (.). Also, when K ≤ K̂ the

convexity of F (.) is inherited by the optimal value of a component V (K), obtained as a solution

of [P(K)]. Hence rebalancing the two components bringing their sizes closer together will reduce

expected defaults in the system. A slightly modified argument yields the same result if we had one

component of size bigger than K̂ + 1 and one (or more) other components smaller than K̂ + 1:

reducing the size of the bigger one to equal the optimal size K̂ + 1 is clearly beneficial and this

allows to increase the size of the smaller components which also reduces expected defaults.

Hence at the social optimum there cannot be any component of the individually optimal size
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K̂+1, which tells us that the costs of satisfying the feasibility constraints must be spread across all

firms. The optimal financial structure is either perfectly symmetric, with two identical components

of size smaller than the individually optimal one and the same level of exposure within them, or is

given by a single component, with firms featuring different levels of exposure to other firms. Hence

it also exhibits, like the individual optimum, a combination of risk sharing and circuit-breaks to

limit contagion, even if it differs in its specific form.

Next we identify a different class of environments, again in terms of probability distributions of

the shocks, where the individually optimal way to limit contagion no longer entails segmentation but

rather a modulation of the internal connectivity within components. To illustrate this possibility

in a simpler and more transparent scenario, we consider first the case where the shock distribution

is a mixture of a distribution inducing a convex risk exposure function F̄ (.) (as e.g. in the Pareto

case with low probability in the tail) and a degenerate distribution whose mass is concentrated on

a single point.

Proposition 5 Suppose the distribution of l̃ yields a risk exposure function of the form:

F (aij) = pF̄ (aij) + (1− p) I (aij > (R−M) /L1) , (18)

where I(·) is the indicator function and F̄ (·) is strictly convex and F̄ ′(0) = 0. Assume

L1 >
(R−M)(N − 1)

1− α
, (19)

and

1− p+ p

(
F̄

(
1− α
N − 1

)
− F̄

(
R−M
L1

))
− p F̄ ′

(
1− α
N − 1

)(
1− α
N − 1

− R−M
L1

)
> 0. (20)

Then the individually optimal pattern of exposures (a∗ij)j 6=i for any firm i is such that {a∗ij}j 6=i =

{a′ , a′′}, for some a′ > a′′ = (R−M)/L1.

The intuition for this result can be explained as follows. The convexity of F̄ (.) and the property

that F̄ ′ (0) = 0 implies the optimality of a positive level of exposure to all other firms in the system,

that is, no segmentation. Condition (19) then states that the size L1 of the shock occurring with
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strictly positive probability is large enough that, when a firm displays a positive and uniform level

of exposure to every other firm, it always defaults when such shock hits a firm in the system. As

a consequence, the only possible way to avert sure default when shock L1 occurs is to lower the

exposure to some firms below a certain threshold while increasing that to the remaining firms. In

that way the firm would not default when shock L1 hits one of the firms in the first group.27 Even

though this modulation of the firm’s exposure levels does less well than a uniform level when a

shock comes from the distribution yielding F̄ (.), it is still preferable provided the probability (1−p)

of such a large shock is high enough, as stated in condition (20).

Next we build upon Proposition 1 and 5 to gain some more general insight regarding the

conditions under which the trade-off between risk sharing and contagion is optimally resolved by

lowering the dispersion of exposures within components rather than by segmentation. That is,

individually optimal configurations involve a unique component and multiple levels of exposure.

Proposition 6 Let F (·) be twice continuously differentiable and assume that F ′ (0) = 0, F ′ (a) > 0

for all a > 0. Then an individually optimal pattern of exposures (a∗ij)j 6=i of any firm i has the

following properties: (i) a∗ij > 0 for every j, (ii) there are generically at most two distinct values

a′ 6= a′′ such that a∗ij ∈ {a′, a′′} for all j. Moreover, (iii) if F ′′
(

1−α
N−1

)
< 0, then (a∗ij)j 6=i involves

at least two distinct, strictly positive, levels of exposure.

Note that from claims (ii) and (iii) it follows that when F ′′
(

1−α
N−1

)
< 0 we have exactly two

distinct strictly positive levels of exposure. Under the assumptions of Proposition 6 the function

F (·) is convex for values of a close to zero and, under the additional assumption in claim (iii), it

changes curvature at least twice. Note that this change of curvature occurs in the reverse order

than that contemplated in Proposition 3 and this explains the different outcome in the two cases:

now the change is from convex to concave. The properties of the function F (·) around zero imply,

as we already saw in Proposition 5 and in line with condition [1] of Proposition 1, that it is always

beneficial to increase marginally the level of exposure to any other firm above zero, as stated in

claim (i). From part [2] of the same proposition we know that the presence of changes in curvature

27If the distribution were truncated at L, as discussed in Footnote 16 to ensure that limited liability holds, then
the lowest level of exposure obtained at the solution of problem [IP] could alternatively be at (R−M) /L instead of
at (R−M) /L1. Such value in fact ensures the firm never defaults when any shock, not only the shocks of size L1

or smaller, hits one of the firms towards which exposure is lower.
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of F (·) implies that the optimal solution may feature distinct but positive levels of exposure. Claims

(ii) and (iii) then show that generically the optimum exhibits exactly two distinct levels.

It is then immediate to verify that in the environments considered in Propositions 5 and 6 the

socially and individually optimal patterns of financial linkages coincide (provided ε is not too large).

The argument is the same as the one given below Proposition 2 and relies on the fact that, when

the individually optimal component size is maximal, it is always possible to arrange firms in the

system to generate this level of segmentation.

To sum up, we have seen that, in the presence of changes in the curvature of the risk exposure

function, the optimal level of exposure among firms tends to be non-extreme and entails a combi-

nation of risk sharing and circuit-breaks to limit contagion. Depending then on the specific way

in which changes in concavity occur, segmentation or the modulation of the intensity of linkages

within components prove more effective in achieving that optimum. In the first case a conflict

between individual and social optimum arises.

3 Equilibrium and optimality

The analysis undertaken in the previous section has characterized the patterns of financial exposures

among firms which are optimal from a social welfare viewpoint. An important issue is whether these

configurations are consistent with the choices made by individual firms – in other words, whether

social and individual incentives are aligned.

To address this issue, we need to model the process of network formation among firms, specifying

how individual firms decide to create or destroy links and choose their intensity, thus shaping

their pattern of exposures. Such a network formation analysis can be carried out at different

levels of detail, and under different assumptions on firms’ behavior. Here our choice in these

respects is motivated by the following two-fold objective. First, mutual exposures should require

the consensus of those involved. We want then to allow firms sufficient discretion and flexibility

to establish linkages with any other firm in the system. Second, we want to model the decision

process regarding the intensity of linkages among firms in any connected component in a simple

enough manner that the theoretical framework is rendered tractable. This suggests describing such
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internal process in a reduced form, so that only the formation of the groups of firms constituting

the connected components of the system is studied from an explicitly strategic viewpoint.

To define matters formally, we first specify the network formation game and then the equilibrium

concept to be applied to it. The proposed game is a variation of the classical “announcement game”

used in the network literature (see Myerson (1991)) and consists of two stages:

(1) Each firm independently submits its proposals concerning the set of other firms to which it

wants to connect. Formally, a strategy of each firm i is then a subset Si ⊂ N , with the

convention that i ∈ Si.

(2) Given a profile of strategies S ≡ (Si)i∈N , a connected component (can also think of it as a

coalition) C ⊂ N is formed if, and only if, Si = C for all i ∈ C. For any component Ĉ that

is actually formed, the pattern of linkages among the firms in Ĉ is implemented that allows

to minimize the probability of default of any individual firm present in the component. Note

that this pattern is the same as the one obtained as the solution of problem [P(K)], when

the number of firms in Ĉ is K + 1, and hence the probability of default of any firm in Ĉ is

just V (K).

On the other hand if, for any firm i, Si is such that Sj 6= Si for some j ∈ Si, i’s proposal is

taken to be rejected and hence firm i forms no linkages (i.e. remains in isolation).

It is clear that in the network formation game described in (1)-(2) the emphasis lies on the

individual decisions concerning the formation of the connected components in the system, that

determine the pattern of segmentation of the system. The dispersion of the connections within

each component is then chosen optimally, so as to minimize the probability of default of any firm

in the component.

To study the network formation game given by (1)-(2) above, one possibility is to resort to

the standard notion of Nash Equilibrium. However, an undesirable feature of such concept in

this context is that it leads to a vast multiplicity of equilibrium networks. This is a consequence

of the fact that the formation of any particular component requires the mutual agreement of all

firms involved, which induces a coordination problem between the firms.28 To address the entailed

28As an extreme illustration, note that the empty network, where each firm stays in isolation, can always be
supported by a Nash equilibrium in which no firm makes a proposal to link to others.
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multiplicity issue, it is common in the network literature to consider a strengthening of the Nash

equilibrium notion that reduces miscoordination by allowing sets of firms to deviate jointly.29 In the

context of our model we shall introduce this possibility by means of the concept we label Coalition-

Proof Equilibrium (CPE), where any group (i.e. coalition) of firms can coordinate their deviations.

To state it formally, for any given strategy profile S = (Si)i∈N we let Cj(S) denote the component

(induced by S) to which firm j belongs and, with a slight abuse of the previous notation, we write

Vj(S) ≡ V (|Cj(S)|) to denote the probability of default of firm j in this situation, when indirectly

hit by a b shock (where |·| stands for the cardinality of the set in question).

Definition 1 A strategy profile S ≡ (Si)i∈N of the network-formation game described in (1)-(2)

defines a Coalition-Proof Equilibrium (CPE) if there is no subset of firms W ⊆ N and a strategy

profile for these firms, (S ′j)j∈W , such that

∀i ∈ W, Vi

(
(S ′j)j∈W , (Sk)k∈N\W

)
< Vi(S).

As motivated by our previous discussion, the CPE concept allows not just single firms but also

arbitrary collections of them to implement jointly profitable deviations (that allow to reduce the

probability of defaults of the firms deviating). This remedies the coordination problems that, as

explained, render Nash equilibria an ineffective theoretical concept in this case. In essence, CPE

can be seen as a refinement of Nash Equilibrium that addresses the latter’s vast multiplicity by

postulating that it must be immune to a wider set of deviations.

The relationship between equilibria and social optima is quite straightforward for the scenarios

considered in Propositions 2, 5 and 6. For, as we have already explained, in those cases any socially

optimal configuration that solves [SP] is consistent with the solutions of the individual optimization

problems [IP] for each firm i. Thus the optimum can be supported as a CPE because there are no

profitable deviation. Similarly, any CPE outcome is a solution of [SP], as otherwise a profitable

deviation would exist.

The above discussion suggests that, in our model, any tension between social optimality and

individual incentives may only arise because of the additional constraints present in problem [SP],

29See e.g. Goyal and Vega Redondo (2007) or Calvó-Armengol and Ikiliç (2009).
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that relate among them the intensity of the linkages of the various firms so as to ensure the feasibility

of the overall financial structure. Whenever these constraints bind, the pattern of linkages must be

adjusted so that feasibility holds. Proposition 4. considers indeed a scenario where this situation

arises and characterizes the socially optimal way to proceed in that case. We show in the following

result that the individual response of firms, at a CPE, is markedly different:

Proposition 7 Under the assumptions of Proposition 4, the equilibrium matrix of exposures [(ãij)j 6=i]
N
i=1

differs from the socially optimal matrix [(a∗ij)j 6=i]
N
i=1. Specifically, [(ãij)j 6=i]

N
i=1 exhibits one compo-

nent of size K̂ + 1,with exposures equal to â, and a second component, of lower size N − K̂ − 1,

with exposures equal to a′ = (1− α) /(N −K − 1) > â.

The core idea underlying the preceding result was already largely illustrated in the discussion

following Proposition 4. There we argued that the individually optimal pattern of exposure was not

a feasible outcome for all the firms in the system. While the individual aim of each firm would be to

belong to a component of size K̂ + 1, this objective cannot be reconciled with the inter-component

symmetry required by social optimality. In a CPE, however, a coalition of K̂ + 1 firms can form a

separate component, thus leaving the residual group of firms no other choice but forming a smaller

(individually suboptimal) component. This configuration, in other words, is coalitionally stable.

But, as we discussed, the induced asymmetry is socially suboptimal, in the sense of producing

an expected number of defaults in the whole economy that is inefficiently high. As usual, the

source of the inefficiency lies in the fact that some agents do not internalize an externality. In

the present case, the externality is simply that the feasibility of the financial structure imposes a

precise relationship among the linkages of all individual firms both within and across components.

The existence of a conflict between efficiency and equilibrium is of course hardly novel nor sur-

prising in the field of social networks (see e.g. Jackson and Wolinsky (1996) for an early exploration

of this conflict). For, typically, the creation or destruction of any link between two agents impose

externalities on others that are not internalized by the two agents involved in the linking decision.30

In our case, the nature of the externality we want to highlight is not directly related to specific

links per se but rather to the size of the risk-sharing components induced by the whole array of

links established by firms. To underscore this different perspective, we focus on the formation of

30In the context of risk-sharing, this tension has been studied in a recent paper by Bramoullé and Kranton (2007).
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components within the network. This allows us to conceive each of them as a conglomerate (or

coalition) akin to, for example, a Japanese keiretsu, whose main role has been shown to be precisely

that of sharing risk (Osano 1996, Dewenter 2003). Business groups in other countries have also

been shown to arise for this reason (see Khanna and Yafeh 2005).

Such a coalitional perspective has also been pursued in studying the crucial problem of risk-

sharing in the context of poor countries where formal and market-based approaches are hardly

implementable. The large literature, both theoretical and empirical, that has tackled the issue has

aimed to shed light on the factors that might explain why, in general, risk-sharing generally falls

short of what would be (first-best) efficient – see e.g. Townsend (1994) or Fafchamps and Lund

(2003). The main culprits often suggested for that state of affairs are the ones typically stressed

in the economic literature: information asymmetries or/and transaction costs. The consequences,

in the end, are analogous to those our analysis suggests, i.e. a distortion on the effective size of

risk-sharing coalitions (see e.g. Murgai et al. (2002) for a paper that makes this point in a simple

model and then tests it in a water-sharing irrigation context in Pakistan.) Our model indicates

that one need not rely on these “market imperfections” to rationalize second-best arrangements

of the sort described. The individual incentives underlying the coalition-formation process (which

reflect only the basic trade-off between risk sharing and contagion) may be sufficient to explain the

induced inefficiencies.

It is thus possible that the externality we have uncovered could be used to explain in part the size

inefficiencies detected in risk sharing in developing countries, as well as the ones potentially arising

from the arrangements through which business groups (and, in particular, financial institutions) in

advanced economies attempt to mitigate risk. The latter inefficiencies have not been explored and

the former have been attributed to other causes. A reason for this lack of empirical findings for the

kind of externality we have detected might be its novel nature. Thus, we believe our paper opens

a fruitful avenue for empirical research.
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4 Heterogeneous firms

So far we have concentrated the discussion on a situation where all firms in the system are ex ante

identical. Although this allows us to obtain clear-cut analytic results and gain some understanding

of the forces at play, it is important to extend our analysis to situations where, as it often happens

in the real world, firms are heterogeneous, in their size or in the distribution of their shocks. This

raises the novel issue for any firm of determining the type of firms with whom to establish linkages,

in addition of how many linkages to form.

In this section we focus our attention on the case where the asymmetry between firms pertains

to the risk properties of the shocks they face. We assume the N firms are partitioned into T

subsets N1, ...NT , so that N = ∪Tt=1Nt, and for every firm i ∈ Nt the b shock follows a cumulative

distribution function Φt, for all t ∈ {1, ..., T}. The distributions Φt have the same expected value

but may otherwise differ in their risk characteristics. We maintain then the assumptions that the

return on all firms’ projects is equal to R in the absence of shocks and to R−L if a small shock hits

and that the b shocks hit any firm with probability q(1− π).

Consider first the value of the expected fraction of firms who default, if indirectly hit by a shock

b, in a homogenous component C with Kc + 1 firms all of the same type t, when the intensity of

linkages within the component is optimally chosen. This is simply given by the optimal value of the

component obtained at a solution of problem [P(Kc)] with F (.) = 1 − Φt((R −M)/.), which we

denote by V (Kc,Φt) for t = 1, .., T . On this basis we can find a lower bound for the corresponding

expression V
(
Kc, (|N c

t | ,Φt)
T
t=1

)
for a heterogeneous component, of the same size Kc + 1, but now

with a subset N c
t of firms of type t = 1, .., T :

V
(
Kc, (|N c

t | ,Φt)
T
t=1

)
≥

T∑
t=1

|N c
t |

Kc + 1
V (Kc,Φt) . (21)

To understand the expression on the right hand side of (21), note that |N c
t | / (Kc + 1) is the

probability that, if a b shock hits the component, it hits a firm of type t. When this happens

V (Kc,Φt) is the expected fraction of firms indirectly hit who default, if the intensity of the linkages

is optimally chosen (as in problem [P(Kc)]) for a shock with distribution Φt. This observation uses

the fact that, since firms of all types have the same size, they have the same capacity for absorbing
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shocks and this implies that the expected fraction of firms defaulting only depends on the size of

the component and the type t of the firm hit by a b shock. Hence the specific type of a firm that is

only indirectly hit by a shock does not matter for its default probability. It is important to observe

that the value on the right hand side of (21) is obtained by choosing optimally the intensity of

linkages for each type t. On the other hand, since in a heterogeneous component the intensity of

linkages can only take one value which cannot be adjusted according to the type t of firm hit by a

b shocks, this expression only constitutes a lower bound for V
(
Kc, (|N c

t | ,Φt)
T
t=1

)
.

We are interested in particular in identifying the optimal segmentation structure, which now

requires determining not only the number of firms that should lie in each component but also - most

importantly - the composition of each component in terms of the different types of firms included in

it. One important concern will be to understand whether firms’ matching within components should

be assortative or dissortative – that is, whether components should be more or less homogeneous.

In this context, therefore, a structure must specify a set of components {1, .., C} and, for each

component c, the corresponding type distribution {N c
t }t=1,...,T , where N c

t ⊆ Nt stands for the

subset of firms of type t that belong to component c. Let K̂t be the number of nonzero terms

obtained at a solution of problem [IP] when the distribution of the b shocks is Φt for all firms;

as we saw31 in Section 2, K̂t is the value of K at which the function V (K,Φt) reaches a minimal

value. Thus, we have:

Proposition 8 Suppose that, for every t, the distribution Φt satisfies the properties stated in

Proposition 3 and that the cardinality |Nt| of the set of firms of type t is a multiple of K̂t+ 1. Then

at the optimal financial structure firms belong to homogeneous components, in each of which firms

are all of the same type, and K̂t + 1 is the common size of every component consisting of firms of

type t, for t = 1, .., T .

The intuition for this result is as follows. Conditionally on the b shock hitting a firm of type

t, the optimal arrangement is to have all components of size K̂t + 1, since K̂t is the value that

minimizes V (K,Φt), and the pattern of linkages set at the values obtained at a solution of problem

[IP] with F (.) = 1 − Φt((R −M)/.). If we had an heterogeneous component, with firms of type

t′, in addition to t, present in it, the size of this component - and the pattern of its connections

31See in particular the proof of Proposition 4 in the Appendix.
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- could not be set to equal simultaneously the (generally different) optimal values for the cases of

shocks hitting type t and type t′ firms. Hence the expected number of defaults could be reduced

by rearranging firms within homogeneous components, as this would allow to attain the minimum

of V (K,Φt) for each t (and, under the stated assumptions, this is always feasible).

The result says that , whenever some segmentation is beneficial, the optimal financial structure

exhibits perfectly assortative matching, that is safer firms will only establish linkages with firms

with an analogous risk profile and belong to large components, while riskier firms have only exposure

to riskier firms and lie in smaller components. Of course, a key feature required for this conclusion

to hold is that, as already noticed, the expected number of indirect defaults in a component only

depends on the type t of the firm directly hit by the shock and the size of the component.

When instead firms are heterogeneous in their size, that is in the level of their resources and

the likelihood of shocks hitting them, the conclusion is somewhat different. As we show in the

Appendix an irrelevance result holds in that case: once the exposure of any firm to large and small

firms is suitably modulated to “offset” the effect of size, heterogeneous components feature the same

default probability as homogeneous ones. Hence the presence of any other, even small, advantage

for small firms to connect to large firms, based on different considerations than risk sharing (for

instance informational processing reasons if information acquisition has increasing returns to scale),

would lead to the formation of components where large and small firms coexist, as in the case of

core periphery networks.

5 Conclusion

We have proposed a stylized model to study the problem that arises when firms establish financial

linkages among them to weather shocks that can threaten their survival, but by so doing they

become exposed to the risk coming from those same connections. We have then characterized the

patterns of linkages among firms that allow to minimize default in the system for different properties

of the distribution of the shocks that may hit firms. For distributions that exhibit a property we

identify as uniform curvature of the risk exposure function, the optimum is at one of two extremes:

either full integration or maximal segmentation. On the other hand, when this condition does not
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hold, we find that the use of intermediate degrees of segmentation or the modulation of the levels

of exposure to other firms allow to strike an optimal balance between limiting contagion while still

allowing some risk sharing. We also show that which of these two instruments proves more effective

depends on the specific way in which changes in curvature occur.

We have also explored whether such social optimum is aligned with the choices of individual

firms to establish linkages with other firms. There is a conflict between individual incentives and

social optima, due to the fact that firms have always an incentive to form connected components

of the size that minimizes the default probability of their members. By so doing, they ignore

the negative externality this behavior sometimes imposes on other firms because of the feasibility

constraints that relate the admissible linkages of one firm to those of other firms.32 Finally, we

have found that when we allow for heterogeneity among firms in the risk properties of the shocks

they receive, optimality requires perfect assortativity, that is to have homogeneous components, in

each of which the risk characteristics of the shocks affecting firms is the same.

The basic insights obtained from this analysis can inform the regulation and design of financial

systems in the real world. Should one separate commercial and investment banking? Should the

financial systems of different regions be insulated from each other, or should overall integration be

pursued? And, in the end, how effectively can we trust any prescription along these lines to be

indeed implemented by banks (i.e. to be compatible with their own individual incentives)? These

are some of the crucial questions that naturally arise, and to which we have shown our model can

provide answers based on the analysis of some key factors at play.

Loepfe et al. (2013) extends our analysis through numerical methods to environments with

more realistic features and verifies the robustness of our main results. More precisely, it finds that

the optimality of forming smaller/less dense networks when shocks come from distributions that

put more weight on large shocks extend to the cases where we allow for the possibility of shocks

hitting multiple firms at the same time and for networks where the balance condition (4) may not

hold. In a different vein, they also consider the effects of shocks to the real-life network of corporate

32A further conflict between social and individual incentives could arise when welfare is assessed in terms of a
convex - rather than linear - function of the number of defaults in the system, as briefly discussed in footnote 21.
This would create a wedge between the objective pursued in the social optimum problem and in the individual firm
problem, since the firm naturally cares only about its own survival. As a consequence the social optimum would
generally diverge from the individual one, typically by having lower and less dispersed exposures.
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control studied by Battiston et al. (2012) and find that they depend in important ways on the

nature of the shock distribution as suggested by our theory.

But, of course, a proper discussion of the risk-sharing and contagion phenomena in the real

world must also account for many important dimensions from which our model abstracts. One of

them is the consideration of problems of moral hazard and, in general, asymmetries of information

that have been repeatedly singled out as a key factor underlying the recent financial crisis. We also

ignore forces – intermediation, for instance, or also cooperation and the exploitation of synergies –

that, beyond risk-sharing and limiting contagion, contribute to determining the form of financial

networks. A proper study of all these crucial issues will demand a richer theoretical framework and

a more powerful methodology, the development of which can hopefully build in a fruitful manner

upon the present work.

Appendix

Proof of Proposition 1

To establish part [1], let λ be the Lagrange multiplier of constraint (12) in problem [IP]. Suppose

a∗ij = 0. Then from (12) it follows that we must have a∗ik > 0 for some k 6= i. From the first order

conditions in problem [IP] it then follows that

F ′ (0) = F
(
a∗ij
)
≥ F ′ (a∗ik) = λ.

Similarly, to prove part [2] note that, if a∗ijl 6= a∗ijm belong to a solution of [IP], the first order

conditions of this problem imply: F ′
(
a∗ijl

)
= F ′

(
a∗ijm

)
. Hence F ′′ (a) cannot have the same sign

for all aij ∈ (a∗ijl , a
∗
ijm

), which implies the function needs to change convexity between a∗ijl and

a∗ijm . Since there are p distinct elements with this property, this implies that convexity changes at

least p− 1 times.

To establish part [3], suppose the solution is characterized by k ≥ 2 distinct values āt, t ∈
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{1, ..., k}, each of them repeated nt > 0 times. Then nt, āt for t ∈ {1, ..., k}must solve the problem33:

min
(nt,āt)

k
t=1

k∑
t=1

niF (āt) (22)

s.t.
k∑
t=1

ntāt = 1− α,

k∑
t=1

nt = N − 1

1− α ≥ āt ≥ 0; nt ≥ 0

Suppose first that āv = 0 for some v ∈ {1, ..., k}. Then at the first order conditions of the above

problem we must have

F (āv) = F (0) = µ.

Since F (0) = 0, this implies that µ = 0. For t ∈ {1, ..., k}, t 6= v, we have then āt > 0 and

F (āt) = λāt + µ, (23)

ntF
′ (āt) = λnt (24)

Using the fact that µ = 0, we obtain

F ′ (āt) =
F (āt)

āt
(25)

If, instead āt > 0 for all t ∈ {1, ..., k}, then (24) must hold for all t and hence:

F (āt) = F ′ (āt) āt + µ

33As already noticed in the text, the constraint that nt is an integer, for each t = 1, .., k, is ignored here for
simplicity.
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Subtracting the expression for āt from that for āv yields

F (āt)− F ′(āt)āt = F (āv)− F ′(āv)āv.

Using then the fact that, by [2], F ′(āt) = F ′(āv) we readily obtain the claimed property.�

Proof of Remark 2.

From (9) we obtain

F ′′ (aij) = −(R−M)2

a4
ij

Φ′′
(
R−M
aij

)
− 2

(R−M)

a3
ij

Φ′
(
R−M
aij

)
≥ 0,

hence

− R−M
aij

Φ′′
(
R−M
aij

)
− 2Φ′

(
R−M
aij

)
≥ 0, (26)

from which the stated property readily obtains. Also, the log concavity of Φ (.) requires

∂2 (log Φ (x))

∂x2
=

Φ′′ (x) Φ (x)− (Φ′ (x))2

Φ2 (x)
< 0,

or
Φ′′ (x)

Φ′ (x)
<

Φ′ (x)

Φ (x)
,

always satisfied if (26) holds. A symmetric argument establishes the other property. �

Proof of Proposition 2

Let us consider problem [IP]. Note that this problem always has a solution. Assume first that

F (.) is convex and suppose that, at a solution of [IP] we have aij 6= aik for j, k 6= i. By the

convexity of F (·) we have:

2F

(
aij + aik

2

)
< F (aij) + F (aik) .

Hence replacing both aij and aik with (aij + aik)/2 still satisfies the constraints of problem [IP]

and yields a strictly lower value of the objective function, thus a contradiction. It then follows that

at a solution of [IP] we must have aij = aik for all j, k 6= i and hence aij = 1
2(N−1) ∀j 6= i.

Assume next that F (.) is concave and suppose that, at a solution of problem [IP] aij 6= 0,
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aik 6= 0 for some j, k 6= i. By the concavity of F (·) we get:

aij
aij + aik

F (aij + aik) +
aik

aij + aik
F (0) < F (aij) ,

aik
aij + aik

F (aij + aik) +
aij

aij + aik
F (0) < F (aik) .

Summing the two inequalities yields:

F (aij + aik) + F (0) < F (aij) + F (aik) ,

hence replacing aij , aik with the pair (aij + aik) , 0 is still a feasible configuration for problem [IP]

and allows to lower the value of the objective function, again a contradiction. Thus at a solution

of [IP] we can only have one nonzero off diagonal entry of A, that is aij = 1− α for some j 6= i.

Consider then a matrix A where the elements of each row are equal to a solution of [IP] for each

i = 1, .., N. In the first case we get a matrix with all the off-diagonal elements strictly positive and

equal to (1 − α)/(N − 1), that is a single component with uniform exposure. This matrix clearly

satisfies the additional constraints present in subproblem [P(N-1)]: the balance condition (4) and

the condition that, within the component, every firm is linked to every other firm lying in it34 and

so is also a solution of [SP]. When instead F (.) is concave the individually optimal component size,

given by the number of strictly positive entries at a solution of [IP] is 2. It is then immediate to

see that the matrix AK with off-diagonal elements equal to (1− α) /K and K = 1 implements the

solution of [IP] for any pair of distinct values of i and satisfies the additional constraints present in

subproblem [P(1)]. Moreover, since N is assumed to be even, the firms in the system can always

be arranged so as to implement the individually optimal component size (2 in this case), for every

component. Hence this specification also solves problem [SP]. �

Proof of Proposition 3

Differentiating the function F (aij) in (17) with respect to aij we obtain the following expression

34Strictly speaking, this is true provided ε ≤ (1 − α)/(N − 1), a natural requirement on admissible financial
structures.
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for the derivative of F (.):

F ′(aij) = pγ1a
γ1−1
ij

(
L

R−M

)γ1
+ (1− p) γ2a

γ2−1
ij

(
L

R−M

)γ2
. (27)

Since γ1 > 1 and γ2 < 1 the inequality

F ′′ (aij) = pγ1 (γ1 − 1) aγ1−2
ij

(
L

R−M

)γ1
+ (1− p) γ2 (γ2 − 1) aγ2−2

ij

(
L

R−M

)γ2
> 0

holds if and only if

aij > a∗∗ ≡
(

(1− p) γ2 (1− γ2)

pγ1 (γ1 − 1)

) 1
γ1−γ2

(
R−M
L

)
. (28)

Thus the function F ′ (aij) is first decreasing and then increasing.

We first establish that with this specification of F (.), in the solution of the [IP] problem

there cannot be k ≥ 2 distinct values āt, t ∈ {1, ..., k}, each of them repeated nt > 0 times. To

establish this, we proceed by contradiction, using again the simplified problem (22) in the Proof of

Proposition 1. By part (ii) of Proposition 1 we know that k = 2, as F (.) changes concavity only

once, so that we can only have two distinct values ā1 > 0 and ā2 > 0 each of them repeated n1

and n2 times respectively. Furthermore one of them, say ā1 < a∗∗, and ā2 > a∗∗. Thus F ′′ (ā1) < 0.

The concavity of F (.) at ā1 implies that for δ small n1
2 F (ā1 + δ) + n1

2 F (ā1 − δ) < n1F (ā1) , which

establishes that the default probability can be reduced by moving away from the proposed solution,

thus establishing a contradiction.

The previous argument shows that there can only be one positive value of a > 0 in the solution

of problem (22) so that we can rewrite the problem (noting that F (0) = 0) as

min
n,a

nF (a) (29)

s.t. na = 1− α,

1 ≤ n ≤ N − 1

The first order conditions for an interior solution of such problem are

F ′ (a) =
F (a)

a
.
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The solution of this equation is then uniquely given by35:

a∗ =

(
(1− p) (1− γ2)

p (γ1 − 1)

) 1
γ1−γ2

(
R−M
L

)
, (30)

and satisfies the constraints of problem (29) since, under the condition stated in the proposition,

we have n∗ ∈ (1, N − 1). In addition, note that 1−α
a F (a) is decreasing for a < a∗ and increasing

for a > a∗, thus (a∗, n∗) is indeed a solution of problem (29). �

Proof of Proposition 4

To characterize the solution of problem [SP] in the case under consideration, it is convenient

to consider the following constrained version of problem [IP], where the number of off-diagonal

elements that could be positive is constrained to be K̄, with 1 ≤ K̄ < N − 1 :

[IP(K̄)] min
(aij)j 6=i

K̄+1∑
j 6=i

F (aij) s. t.

K̄+1∑
j 6=i

aij = 1− α

aij ≥ 0, ∀j 6= i

Let D
(
K̄
)

denote the value of
∑

j 6=i F (aij) at a configuration that solves [IP(K̄)], for some given

K̄.

Applying again the same method followed in analyzing problem [IP] in the proof of Proposition

3, we can show that in the solution of [IP(K̄)] there cannot be k ≥ 2 distinct values āt, t ∈ {1, ..., k},

each of them repeated nt > 0 times. Thus, the solution is obtained from the following simplified

35Substituting the expression of F (·) in the equation a = F (a)/F ′(a) we obtain in fact:

pγ1a
γ1−1

(
L

R−M

)γ1
+ (1− p)γ2aγ2−1

(
L

R−M

)γ2
=
paγ1

(
L

R−M

)γ1
+ (1− p)aγ2

(
L

R−M

)γ2
a

which has a unique solution for a given by the expression in (30).
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constrained problem:

D
(
K̄
)
≡ min

K
KF

(
1− α
K

)
(31)

s.t. K ≤ K̄

Evidently, for all K̄ ≥ K̂ the constraint K ≤ K̄ is not binding and the optimum is the same as the

one characterized in the previous proof, that is D
(
K̄
)

= K̂F ((1− α)/K̂). Clearly for K̄ < K̂ the

solution obtains when D
(
K̄
)

= K̄F ((1− α)/K̄), since KF
(

1−α
K

)
is decreasing for K < K̂ .

It is immediate to see that, when K̄ ≤ K̂, the solution of problem (31), replicated for each

row i = 1, .., K̄ + 1 of the matrix AK̄ also constitutes a solution of problem [P(K̄)] since the

additional constraints present in the latter problem are satisfied at this solution. Hence we have

V (K̄) = D(K̄). In contrast, for K̄ > K̂ the solution of (31), replicated for i = 1, .., K̄ + 1, violates

the last constraint of problem [P(K̄)] and hence in that case we have V (K̄) ≥ D(K̄).

We turn then our attention to problem [SP]. Having assumed that N < 2(K̂ + 1) we cannot

have components that are all of size K̂ + 1. We show in what follows that if the social optimum

features more than one component, then they have to be of the same size, N/2 < K̂+1. We cannot

in fact have a component of size Ki > K̂ and another one of size Kj < K̂ at a solution of [SP].

To see that, note that Ki − K̂ < K̂ − Kj since Ki + Kj = N − 2 < 2K̂. Hence we can always

reduce Ki to be equal to K̂ and increase Kj to Kj +Ki − K̂ < K̂ and since V
(
K̂
)
< V (Ki) and

V
(
Kj +Ki − K̂

)
< V (Kj) since V (.) is strictly decreasing for K < K̂.

Also, we cannot have a component of size Ki < K̂ and another one of size Kj ≤ K̂ with

Ki 6= Kj , by the convexity of V (.) for K̄ ≤ K̂. We have in fact

V ′′(K̄) = −F ′((1− α) /K)(1− α)/K̄2 + F ′((1− α) /K)(1− α)/K̄2 + F ′′((1− α) /K) (1− α)2 /K
2

= F ′′((1− α) /K) (1− α)2 /K
2
> 0,

by the convexity of F (·) at ā > â. Given the assumption that N < 2(K̂ + 1) we cannot have

two components both of size bigger than K̂. We are then only left with the possibility of having

components all of the same size K∗ < K̂.

The above argument shows that expected defaults in the system are lower with two equal sized
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components that in any other configuration with two or more components. It remains however to

consider the possibility of an arrangement with a single component of size N . It is immediate to

see that in the solution to problem [P(N − 1)] the constraint (11) must be binding, since otherwise

one could simply replicate the solution to problem [IP] with a suitable rearrangement of elements

in each row to satisfy the balance condition (10). �

Proof of Proposition 5

Under the conditions stated in the proposition, the objective function of problem [IP] takes the

following form:

∑
j 6=i

(
pF̄ (aij) + (1− p) I (aij > (R−M) /L1)

)
, (32)

where recall that I(·) denotes the indicator function. First, note that at a solution of [IP] we

cannot have two values aij 6= aik with aij ≤ (R−M) /L1, aik ≤ (R−M) /L1. This is immediate

because otherwise we can always find an improvement: the choice a′ij = a′ik = (aij + aik) /2 is in

fact feasible, does not affect the value of the second part of the objective function in (32), and by

the convexity of F̄ (.) decreases the value of the first part, where F̄ (.) appears. By a symmetric

argument it also follows that there cannot be two values aij 6= aik with aij > (R−M) /L1,

aik > (R−M) /L1.

Condition (19) implies that we must have36 aik > (R−M) /L1 for at least some k 6= i. It then

follows that there can be no value aij < (R−M) /L1. If aij < (R−M) /L1, the alternative choice

a′ij = (R−M) /L1 and a′ik = aik− ((R−M) /L1 − aij) would allow an improvement: it is feasible,

does not affect the second part of the objective function and by convexity of F̄ (.) decreases the

first part. Hence there can be no term aij = 0, proving there has to be a single component.

From the above arguments it follows that at a solution of [IP] we have N−H−1 ≥ 0 terms with

exposure aij = (R−M) /L1 and the remaining H ≥ 0 terms with equal exposure a > (R−M) /L1,

such that

(N −H − 1)
R−M
L1

+Ha = 1− α. (33)

36If aij ≤ (R−M) /L1 for all j feasibility is violated.
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Solving this equation for a in terms of H and substituting into the objective function, we obtain

that the optimal value of H solves the following problem37:

min
N−1≥H

H (1− p) + pHF̄

(
1

H

(
1− α− (R−M)

N −H − 1

L1

))
+ p(n−H − 1)F̄

(
R−M
L1

)

The first-order condition for an interior solution is

(1− p) + pF̄ (a) + pF̄ ′ (a)

(
−a+

R−M
L1

)
− pF̄

(
R−M
L1

)
= 0,

while the condition for a corner solution at H = N − 1 is:

(1− p) + p

(
F̄

(
1− α
N − 1

)
− F̄

(
R−M
L1

))
+ pF̄ ′

(
1− α
N − 1

)(
− 1− α
N − 1

+
R−M
L1

)
≤ 0.

Under condition (20) the latter inequality never holds, hence the solution is interior, with exposure

(R−M) /L1 to a positive number of, but not all, other firms, and higher exposure a to the

remaining firms.

Since the solution we obtained features a single component, by a similar argument to that in

the proof of Proposition 2, it satisfies the additional constraints present in problem [SP], (10) and

(11) (provided ε is not too large), and hence it also solves problem [SP]. �

Proof of Proposition 6

From part [1] of Proposition 1 and the stated assumptions that F ′ (0) = 0 and F ′ (a) > 0 for

all a > 0, it immediately follows that a∗ij > 0 for every j which establishes claim (i).

Next we establish claim (ii) by contradiction. Suppose that there were three distinct values

a′ 6= a′′ 6= a′′′, such that there exists jk1 , jk2 and jk3 such that a∗ijk1
= a′, a∗ijk2

= a′′, a∗ijk3.
= a′′′.

Then it must be the case, by part [3] of Proposition 1 that

F (a′)− F (a′′)

a′ − a′′
=
F (a′)− F (a′′′)

a′ − a′′′
= F ′

(
a′
)

= F ′
(
a′′
)

= F ′
(
a′′′
)
.

37Note that at a solution of (33) we must have H > 0, hence the non-negativity constraint on this variable never
binds and can be ignored.

45



These are four equations in three unknowns, thus a small perturbation of the function F (.) implies

by standard arguments that the above systems has generically no solutions.

Finally, to establish claim (iii) we proceed by contradiction. Suppose there is a single strictly

positive level of exposure. By claim (i) this has to be at a = 1−α
N−1 , since a∗ij > 0 for every

j. If F ′′
(

1−α
N−1

)
< 0 the concavity of F (.) at 1−α

N−1 implies that for δ small N−1
2 F

(
1−α
N−1 + δ

)
+

N−1
2 F

(
1−α
N−1 − δ

)
< (N − 1)F

(
1−α
N−1

)
which establishes that the default probability can be re-

duced by moving away from the single level of exposure to two distinct ones, thus establishing a

contradiction. �

Proof of Proposition 7

We show first that for each firm j the size of the component Cj(S) to which j belongs has size

|Cj(S)|+ 1 ≤ K̂ + 1, where K̂ is the value obtained at the solution of the individual problem [IP],

characterized in Proposition 3. That is, no component in the CPE has size larger or equal to the

individually optimal one. Suppose not: |Cj(S)| > K̂ for some j. A subset W ⊂ Cj(S) formed of

K̂ + 1 firms can then profitably deviate by severing the linkages with the other firms in Cj(S) and

attain a lower probability of default, since V (K) attains indeed a minimum at K̂.

Next, we show that at a CPE we have |Cj(S)| < K̂ for some j and |Ci(S)| = K̂ for all other

Ci(S) 6= Cj(S). We proceed again by contradiction. Suppose there were two distinct components

Ci(S), Cj(S) such that 0 < |Cj(S)| ≤ |Ci(S)| < K̂. Pick then a subset of firms belonging to the first

component W ′ ⊂ Ci(S) so that the set given by the union of W ′ and Cj(S) has K̂ + 1 firms in

it. The firms in W ′ ∪ Cj(S) can deviate by severing the linkages of the firms in W ′ with the other

firms in Ci(S)\W ′ and forming new linkages with all the firms in Cj(S). By so doing each firm in

W ′∪Cj(S) attains a lower level of its probability of default, equal to V (K̂). Hence all firms involved

benefit from the deviation, a contradiction. This establishes the above claim and completes so the

proof of the Proposition. �

Proof of Proposition 8

Suppose the system is arranged into C components of size Kc + 1, for c = 1, .., C, and in

each component c there are |N c
t | firms of type t. Using (21), the expected number of firms in the

system that default when indirectly hit by a b shocks (and when the linkages within components
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are optimally chosen) is then

C∑
c=1

(Kc + 1)V
(
Kc, (|N c

t | ,Φt)
T
t=1

)
≥

C∑
c=1

(Kc + 1)

T∑
t=1

|N c
t |

Kc + 1
V (Kc,Φt) .

Exchanging the summation indices, the term on the right hand side of the above inequality satisfies

the following

C∑
c=1

T∑
t=1

|N c
t |V (Kc,Φt) ≥

T∑
t=1

C∑
c=1

|N c
t |V

(
K̂t,Φt

)
=

T∑
t=1

|Nt|V
(
K̂t,Φt

)

Note that, since for each t |Nt| is assumed to be a multiple of K̂t + 1,
∑T

t=1 |Nt|V
(
K̂t,Φt

)
is also

the expected number of defaults in the system if every firm of type t is part of a component with

K̂t other firms all of the same type t (with the pattern of linkages set at the values obtained from

a solution of problem [IP] when the distribution of the b shocks is Φt for all firms). The above

inequality shows that a segmentation of the system into homogenous components allows to attain

a lower number of expected defaults than any other pattern of segmentation. Moreover, as long

as the value of K̂t and/or the optimal intensity of linkages in a component vary non-trivially with

the firms’ type t, the above inequalities are strict, hence all optimal financial structures exhibit

segmentation into homogenous components. �

Firms heterogeneous in size For simplicity, we consider a situation with just two possible

sizes. On the one hand, there are firms of unit size, identical to the ones we have been considering

so far. On the other hand, there are firms of size β > 1, with such larger size having the following

two implications. First, the return on the projects of these larger firms when no shock hits them

is βR, i.e. it is scaled up by β compared to that of the smaller firms (naturally the same factor β

applies to the value of these firms’ liabilities, which are then βM). Second, the larger firms face a

probability of being directly hit by a shock that is β times larger (that is, equal to βq). Thus the

present scenario, where size affects the probability of arrival of the shocks, not their distribution,

can be viewed as complementary to the one considered in Section 4. Also, here one can view a
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large firm as a merger of β unit-sized firms.

Of course, condition (4), ensuring some balance between the exposure of a firm to other firms,

and from the other firms to this firm, needs to be properly reformulated when we consider exposures

between firms of different size. The level of the exposure of a firm of size 1 to a large firm (of size

β) should ‘count’ β times an exposure of the same level to a firm of unit size (because of the higher

probability of a shock). Vice versa, for a large firm the exposure to a smaller (unit size) firm counts

as 1/β times the exposure to a firm of the same size. Let us denote by N1 the subset of firms of

size 1, and by Nβ the subset of firms of size β.

Similarly, N c
1 and N c

β stand for the corresponding subsets of small and big firms within a

component c. This leads to an effective size of component c given by Kc + 1 = |Nc
1|+ β

∣∣Nc
β

∣∣. In a

component of this kind the expected fraction of firms who default (again in terms of their effective

size), if indirectly hit by a shock b, is given by

1

Kc + 1

∑
i∈N c1

 ∑
j∈N c1 \i

F (aij) + β
∑
j∈N cβ

Pr

{
L >

(R−M)

aij

} + (34)

∑
i∈N cβ

β

∑
j∈N c1

Pr

{
L >

β(R−M)

aij

}
+ β

∑
j∈Ncβ/i

Pr

{
L >

β(R−M)

aij

}

Let V
(
Kc, |N c

1 | ,
∣∣∣N c

β

∣∣∣) denote the value of the above expression when the pattern of linkages

is chosen optimally, subject to constraints (10) (suitably adjusted to reflect the different effective

sizes of the two types of firms) and (11). We show in the next proposition that in this case mixed

components fare equally well, in terms of expected defaults, as homogeneous components. We have

in fact:

Proposition 9 Under any of the conditions on the distribution of the b shocks stated in Propo-

sitions 2, 3, 5 or 6, for all 1 ≤ Kc ≤ N − 1 and all subsets N c
1 ⊆ N1 and N c

β ⊆ Nβ such that

|N c
1 |+ β

∣∣∣N c
β

∣∣∣ = Kc + 1, we have V
(
Kc, |N c

1 | ,
∣∣∣N c

β

∣∣∣) = V (Kc) .

Proof. Note that the expression in (34) of the expected fraction of firms defaulting in a

component with |N c
1 | unit sized firms and

∣∣∣N c
β

∣∣∣ large firms can be conveniently rewritten as follows:
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1

Kc + 1

∑
i∈N c1

 ∑
j∈N c1 /i

F (aij) + β
∑
j∈N cβ

F (aij)

+
∑
i∈N cβ

β

∑
j∈N c1

F

(
aij
β

)
+ β

∑
j∈N cβ/i

F (
aij
β

)

 .
In addition, the balance condition (12) is, in this case:

∑
j∈N c1 \i

aij +
∑
j∈N cβ

aijβ = 1− α, ∀i ∈ N c
1

∑
j∈N c1 \i

aij
1

β
+

∑
j∈N cβ\i

aij = 1− α, ∀i ∈ N c
β .

Hence, if we proceed to the following change of variable ãij ≡ aij/β for i ∈ N c
β and all j we see that

the minimization problem whose solution yields V
(
Kc, |N c

1 | ,
∣∣∣N c

β

∣∣∣) becomes the same as problem

[P(Kc)], subject to the additional constraint that at least β terms in each row and column of AKc

take the same value. Note that the latter constraint is always satisfied at a solution of problem

[P(Kc)] in all the cases considered in Section 2 (Propositions 2, 3, 5, 6), except when F (.) is

uniformly concave) whose solution yields V (Kc) . �

The proposition establishes an irrelevance result: the expected fraction of defaults in a com-

ponent containing both large and unit sized firms is exactly the same as that in a component (of

the same effective size) where all firms have unit size, provided in each of them the pattern of

exposures is chosen optimally, subject to the constraints. The proof shows that, for any pattern of

exposures [(āij)j 6=i]
Kc+1
i=1 in a homogeneous component of smaller firms, the same level of expected

defaults can be attained in a mixed component, by appropriately rescaling the exposures of larger

firms, setting aij = βāij for all i ∈ N c
β and all j, while keeping unchanged the levels of exposures

of smaller firms, akj = ākj for all k ∈ N c
1 and all j.

The result can be understood in the light of the fact that we have constructed larger firms to

be effectively the merger of β smaller firms. It is interesting to note that an analogous result holds

for other possible specifications of the effects of firms’ size (for instance if β affects the size of the

shock, which is then given by βl, instead of the probability of being hit by a shock, or even a

combination of the two). In this case the shock hitting a large firm is no longer the same as the
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one hitting β small firms, but the equivalence result still holds, only the rescaling factors change.

We can say that Proposition 9 holds for reasons that are reminiscent of those behind the

Modigliani-Miller theorem. The result shows that, as far as the effects on risk sharing and contagion

are concerned, smaller firms are indifferent between forming linkages with firms of the same size

or with larger firms. This stands clearly in contrast to the case where firms differ in terms of their

risk characteristics.
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