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Abstract

Question: Foundress associations of the desert leaf-cutter ant Acromyrmex ver-
sicolor exhibit a single forager-foundress prior to worker eclosion. A prior specialized
task, removing soil from the nest during excavation, allocates later forager risk. Ex-
periment reveals that a queen refusing such prior assignment is not replaced by
her cofoundresses; rather, these latter suicidally punish the shirker, leading to the
colony’s demise (Rissing et al. 1996). Why do cofoundresses fail to replace a shirker
when failure implies reproductive death?

Method: We model cofoundress options as a game in asexual haploid strategies
where self-preserving replacement of a shirking foundress exists as an alternative
(Pollock et al. 2004). Embedding this game in the natural history of A. versicolor,
we simulate populations for 500,000 years, with 100 replicates under various param-
eter sets, some deviating significantly from A. versicolor. Shirkers appear through
mutation, with suicidal punishers and self preservers mutating one to the other.

Results: Self preservation never outperforms suicidal punishment, although it can
recur and drift upwards for some time. Whenever forager assignment is retained,
suicidal punishment dominates. But stability is stochastic: forager assignment may
endure in many-to-most runs, yet be lost in others. Generally, the greater the
frequency of self preservers, the more likely assignment will be lost entirely in the
long run. Task coordination endures through suicidal punishment.

Keywords

Acromyrmex versicolor, coordination mechanism, correlated strategy, group selec-
tion, personal success, pleiotropy, population viscosity, self preservation, stochastic
stability, strategic success, subgame perfection, suicidal punishment
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1 Introduction

Most leaf-cutting ants are tropical, but the species Acromyrmex versicolor is un-
usual in making its home in the Sonoran Desert of Arizona, where it builds volcano-
shaped nests in the shade of trees that grow along ravines. Like other leaf-cutting
ants, it eats a fungus that grows on the leaves that the ants prepare for this purpose
in underground gardens.

Acromyrmex versicolor is also unusual in being pleometrotic, which means
that several queens (cofoundresses) often establish nests in common (Rissing et al.
1986). As in several other Acromyrmex species, the cofoundresses of Acromyrmex
versicolor forage for leaves before workers emerge to take on this task (Rissing et
al. 1989; Fowler 1992; Diehl-Fleig and de Arajo 1996; Fernndez-Marn et al. 2003;
cf Brown and Bonhoeffer 2003, for the general case). Such foraging is risky, yet is
essential if the colony is to survive.

One might expect the dangerous task of foraging to be shared equitably, or
that competitive inferiors might be forced to take it on, but a single queen usually
assumes all the risk in foraging without any observed contention, ritualistic or overt
(Rissing et al. 1986, 1996). An early event in nest construction strongly predicts
which queen will later take on the role of forager. During the construction of a nest,
one queen removes soil from the nest, while her cofoundresses dig internally. Some
time after nest construction, this prior surface excavator usually becomes the sole
forager for fungus garden substrate (Rissing et al. 1989).

If the foraging queen falls victim to predation, then she is replaced. But what
would happen if the queen assigned the role of forager were to refuse the task?
A laboratory experiment involving an exit that is always closed when the foraging
queen tries to leave (but always open to any other cofoundress) shows that the
foraging queen is then not replaced (Rissing et al. 1996). Nobody forages and
the colony dies out. Such an extreme punishment certainly provides a disincentive
for the queen nominated as forager to neglect her duties, but how is such suicidal
behavior on the part of her cofoundresses to be explained?

Continuing earlier work (Pollock et al. 2004), we look for an explanation using
evolutionary computer simulations. We find that suicidal punishment can survive
for long periods of time if the parameters of the model are suitably chosen, but that
the rival outcome in in which a recalcitrant foraging queen would get replaced is
always waiting in the wings. In seeking to understand these results, we apply the
methods of evolutionary game theory to a simple model of the underlying problem
that we call After You. Our analysis points to the importance of another feature
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of the fascinating natural history of the species Acromyrmex versicolor. Brood
raiding among nests founded under the same tree leads to fierce competition that
biases the outcome in favor of the suicidal alternative.

This paper has been much compressed for the purposes of publication. A much
more discursive version that also reports other simulations is available at

http://www.eco.uc3m.es/∼acabrales/research/EER2586revised.pdf

2 Natural History

The life cycle of Acromyrmex versicolor is summarized in Figure 1.

Figure 1: Life cycle of Acromyrmex versicolor.

Viscous dispersal. Established colonies of Acromyrmex versicolor release sex-
uals after desert monsoon rains. After mating locally, the fertilized queens disperse
viscously from the vicinity of their parental colony. The dispersal is viscous (Pollock
et al. ??) because the trees under which nests are made typically occur in linear
ravines so that widespread dispersal is not viable. Extant adult colonies are fiercely
territorial, destroying starting colonies whenever encountered. While foundresses
will alight under any tree, their new colony will survive only if the tree they choose
has no current adult colony.

Brood raiding. Multiple starting colonies under the same vacant tree are typical.
(Several hundred have been observed under the same tree.) Such starting colonies
must ultimately fight one another for exclusive possession of the tree. They do so
by raiding one another for brood once workers eclose. A single colony ultimately
triumphs, which then defends its territory against all comers (Rissing and Pollock
1987; Pollock and Rissing 1989; cf Pollock et al. 2004 for further citations). Such
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zero-sum brood raiding can be seen as a form of group selection by combat (Wilson
1990; Pollock and Cabrales 2008; DṠ. Wilson, personal communication).

The fact that only one colony under any given tree survives to adulthood neces-
sarily amplifies small differences in fitness among clumped starting colonies, because
colonies with more workers are better at raiding (Rissing and Pollock 1987, 1991;
Tschinkel 1992, 2006). The number of first brood increases both with early fungus
health (Rissing et al. 1996), and with the number of queens that found the colony
together (Rissing and Pollock 1987) but the issue that matters in this paper is the
amplification of differences in foraging efficiency of different starting colonies.

Figure 2: Viscous dispersal. Foundresses exit their parent colony, alighting only
under nearby trees. (In our simulations, the available trees are placed in a circle
and dispersal is restricted to immediately neighboring trees.) Foundresses that
find their way to the same tree readily associate with each other irrespective of
parental origin. When trees already have a resident adult colony, new starting
colonies are ultimately destroyed. When a tree has no living adult colony, multiple
starting colonies may get going in its territory. However, these starting colonies
eventually compete with each other via brood raiding for exclusive possession of
the territory. In the end, only one adult colony survives, as indicated in Figure 1.

Multiple queens. As already noted, Acromyrmex versicolor is pleometrotic.
Several queens coordinate their behavior in building a nest together. In many species
of social insects, the cofoundresses of such an association are sisters, but the need
for Acromyrmex versicolor to get underground quickly and start producing brood
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has apparently resulted in unrelated queens getting together very readily. The
associations then continue with little or no internal strife.

When there is sufficient space in the nest being built for all but one queen to
dig while the remaining queen removes soil to the surface, a unique queen—the
queen we are calling the surface excavator—adopts the latter role until replaced by
workers. This allocation of roles is seemingly made at random (Rissing and Pollock
1986; Rissing et al. 1996; cf Fewell and Page 1999; Anderson and Ratnieks 2000).
Although specialization at the surface allocates equally beneficial, complementary
roles to all the cofoundresses, this same specialization therefore later determines
which queen will take on all the risk of predation in her role as surface excavator
and then forager.

Shirking forager? Laboratory observation reveals that if the queen assigned the
foraging role fails to return to the nest as a result of predation, another queen takes
on her role without excessive delay (Rissing et al. 1996). So the ground would
seem favorable for a mutation that makes a queen assigned the role of forager into
a shirker or cheat. Such a deviant would refuse the above-ground task of foraging,
with its inherent risks of predation and exposure to abiotic extremes, leaving it to
one of the other queens to take on this role. But no such behavior is observed.

We therefore ran an experiment in which the assigned forager was made to ap-
pear to be a cheater shirking her risky role (Rissing et al. 1996). Whenever the prior
surface excavator tried to forage, we blocked her exit. However, her cofoundresses,
when examining the exit, found it clear. Only one foundress could examine the exit
at a time. The assigned forager would try to leave, but could not. Her cofoundresses
perceived an open exit with a prior surface excavator apparently refusing her for-
aging assignment. We cannot make a true shirker, but these latter cofoundresses
encountered a world identical with shirking. The experiment manipulated not so
much the assigned forager, but her cofoundresses’ perception of her.

While cofoundresses clearly can forage when a cheater refuses her assigned task,
they either (mostly) choose not to do so, or delay so long that the irreplaceable,
essential fungus perishes (Pollock and Rissing 1995; Rissing et al. 1996; Pollock et
al. 2004). Rather than replace the assigned but cheating forager, thereby assuring
themselves some chance of survival, all the cofoundresses then die. In contrast,
removal of the assigned forager in the experiment (as if lost to predation while above
ground) always leads to timely forager replacement by a previously nonforaging
cofoundress. Cofoundresses therefore distinguish between a lost forager and one
apparently refusing her risky task, replacing only the former.

So it seems that the cofounding queens are so strongly locked into the coordi-
nation mechanism that assigns the role of surface excavator and forager that they
effectively punish deviation with behavior that leads to a common death. Such sui-
cidal punishment (Pollock et al. 2004) seems so extreme that one is led to question
its evolutionary stability.
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Figure 3: Schema for the foundress foraging game. The labels attached to
the arrows refer to various strategies admitted in our simulations (Section 3).

3 Simulation Design

Figure 3 shows the decision tree faced by an association of queens before any
workers emerge. The surface excavator must first decide whether to accept the role
of forager. Laboratory observation shows that she usually accepts this assignment,
but in exploring questions of evolutionary stability, it is necessary to ask what would
happen if she were to refuse. Experiment in the laboratory shows that the other
cofoundresses would then not replace her in a timely fashion, with the result that
the colony would die out. Extending earlier work (Pollock et al. 2004), this paper
focuses on the evolutionary stability of the latter behavior, for which purpose we
need to ask what would happen if a shirking surface excavator were to be replaced.
This section outlines the computer simulations we use for this purpose.

Dispersal. The simulation design follows Pollock et al. 2004, with Acromyrmex
versicolor’s natural history cycle of Figure 1 iterated for 500,000 generations per
run—which is a long time given that the Sonoran desert itself is estimated as
being only 10,000 years old (Axelrod, 1979). In our simulation, adult colonies
independently die off each year with probability 0.05, giving an expected life span
of 20 years. This is slightly on the high side for Acromyrmex versicolor, but not
impossible (Rissing: personal observation).

In the Sonoran Desert, adult Acromyrmex versicolor colonies are somewhat
linearly and uniformly spaced at one colony per large tree in desert ravines (Rissing
et al. 1986; Pollock et al. 2004). In our simulation, we employ 100 adult colonies,
distributed uniformly on a circle to avoid end-point effects (Lehmann et al. 2008).

We treat queens as haploid and asexual, so that there are no males in our simula-
tion. Each year, new foundresses depart simultaneously from their parental colonies
and seek a new tree under which to form an association with other foundresses. The
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members of each association under a particular tree are equally likely to be drawn
from any of the parental colonies that send foundresses to that tree. If the tree
happens to be occupied already by an adult colony, such a new association dies.

The cases of unrestricted and viscous dispersal of foundresses from the parental
colony were treated in separate simulations, although we only report the latter
simulations here. Under unrestricted dispersal, all extant adult colonies send an
adequate number of new queens to all trees. The more realistic case of viscous
dispersal (Rissing et al. 1986, 1989; Hagen et al. 1988; Rissing, personal observa-
tion) is captured by restricting the spread of new queens to trees adjacent to their
parental colony on the circle shown in Figure 2.

Coordination. When a tree is not already occupied by an adult colony, the
simulation assumes that 5 starting colonies with 3 cofoundresses each will form.
Except in the event of the death of a forager, all queens reproduce equally in
the starting colony that emerges victorious from a later brood-raiding phase that
determines which of the 5 colonies ends up in sole possession of the tree.

In each starting colony, a surface excavator is first chosen at random indepen-
dently of her genotype. She performs the excavating task without fail, but may or
may not honor the coordination mechanism that subsequently assigns her the role
of forager. Which way she goes depends on the strategy written into her genotype.

If the surface excavator honors the coordination mechanism, then she forages for
her group, thereby facing a death probability d that measures her assumed foraging
risk in the simulation. Different simulations use the values d = 0.2, d = 0.5, and
d = 0.8. Foraging is idealized as a single event in which the forager returns with
substrate even if she dies. Otherwise it would be necessary to simulate multiple
foraging trips, with deaths from predation resulting in associations with less than
three queens when replacement occurs. (Associations with up to 16 cofoundresses
have been observed but our informal estimate of the average number is 2.5.) Death
of the forager is the sole cause of queen-specific mortality in the simulation, reflecting
the fact that Acromyrmex versicolor queens coexist for years without aggression
in laboratory colonies.

If the surface excavator refuses the foraging assignment, she may or may not
be replaced, depending on the strategies written into the genotypes of the other
queens. In either case, a refusal by the surface excavator is assumed to reduce the
fitness of a starting colony. The reason is that, even if there is no significant delay,
the effectiveness of a forager should improve with the experience that the surface
excavator gained while orienting herself above ground during the initial construction
of the nest (Schmid-Hempel and Schmid-Hempel, 1984; Hölldobler and Wilson,
1990; Dukas and Visscher, 1994; Schatz et al. 1995; Ratnieks and Anderson, 1999;
Robson and Traniello 2002; Bisch-Knaden and Wehner, 2003).

Brood raiding. Any reduction in colony foraging efficiency will be amplified by
the brood-raiding competition among starting colonies illustrated in Figure 2.
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To model such a zero-sum game with only one winner, our simulation assigns a
fitness of A = 1, 000 to a starting colony whose prior surface excavator accepts her
foraging role. Colonies whose excavator refuses to forage but is replaced by another
queen are assigned replacement fitnesses of either B = 200 or B = 900, depending
on the particular simulation being run. A lower fitness in these circumstances
corresponds to more foraging inefficiency through loss of the surface excavator’s
experience coupled with any replacement delay.

Once starting colony fitnesses are calculated, the simulation chooses the new
adult colony at random from the competing starting colonies with probabilities that
are proportional to their relative fitnesses. An association with a fitness of B = 200
will therefore suffer severely from brood raiding, while an association with a fitness
of B = 900 will be relatively free from brood raiding.

We avoid assigning a fitness of 0 to a non-foraging colony to guarantee that
trees cannot remain vacant for years on end. A fitness of B = 1 is therefore assigned
to a colony whose queens all refuse to forage. This choice corresponds to assuming
that a forager is actually always replaced, but only after a nearly fatal delay. The
very small fitness of 1 assigned to a non-foraging colony is negligible when compared
with the fitness of at least 200 assigned to a replacing colony—but Table 1 shows
that it nevertheless significant when the predation rate d is high.

Strategies. At the first decision node of Figure 3, the surface excavator decides
whether to accept her assignment as the forager. If she refuses, the two remaining
cofoundresses in the simulation decide at the second decision node whether or not
to offer themselves as replacements. If both make the offer, the actual choice of a
replacement is made at random.

A queen might need to make a decision at either of the two nodes of Figure 3.
Its genome must therefore determine a strategy that tells the queen what to do if
she finds herself at either of the two nodes. We simplify by considering only haploid
genomes at which the relevant strategies are determined at a single locus.

The tree of Figure 3 has two decision nodes at each of which two choices are
available. So the simulation requires 4 = 2 × 2 strategies corresponding to the
decisions R = (yes, yes), P=(yes,no), C = (no, yes), Q = (no,no) in Figure 3.
These strategies are described more discursively below:

P is a punisher that agrees to forage when occupying the role of surface exca-
vator, but never replaces a surface excavator that shirks. So P is the suicidal
punisher revealed by our experiment (Rissing et al. 1996).

Q is a quitter that always refuses to forage in either role. After refusing to
forage when occupying the role of surface excavator, a quitter will be punished
by any queen in the association using P.

R is a replacer that always agrees to forage in either role. A replacer therefore
plays according to the established coordination mechanism when occupying the
role of surface excavator, but “makes the best of a bad lot” by planning to play
her individual best reply when exposed to a surface excavator that shirks.

7



C is a (sophisticated) cheater that refuses to forage when occupying the role of
surface excavator, but always offers to replace a surface excavator that shirks.
Such a cheater can exploit queens in the association using R. We have no
natural or experimental evidence that C currently exists.

To assess how these four strategies interact, it may be helpful to study Figure
4, which anticipates results from Section 4 by outlining a typical evolutionary sim-
ulation that ends in the population state PPP in which all three cofoundresses use
the suicidal punishment strategy P. However, it should not be thought that all our
simulations yield such a tidy history of events. Much depends on the parameter
values in use and the mutation assumptions to be made next.

Figure 4: How does suicidal punishment get established? The figure shows an
idealized sequence of cofoundress associations in simulated adult colonies under
viscosity with closest variant mutation (regime 3). The succession from Figure
4a to Figure 4h shows the strategy P eventually supplanting R via a sequence
of intermediate states that reflect the differing reactions of P and R to Q and
C. Associations are shown as all using the same strategy for clarity—associations
like QPP, CRR. CPP, and CCP should properly intervene as long temporal
sequences of transitional states between the pure states of the figure. In Figures 4b
and 4c, P eliminates Q when it appears at a predominantly P location. In Figures
4b and 4c, R incubates its closest mutant variant C. In Figure 4d, C incubates
its closest mutant variant Q, until C is eliminated in Figure 4f. In Figures 4g and
4h, P eliminates Q encountered at its boundary, until only P remains.

Mutation. Adult colonies live many years. Mutants arise not as queens in an
already established adult colony, but among their offspring. So a genotype generally
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breeds true, but will occasionally produce an offspring of another genotype.
Since our focus is on the survival of cooperative behavior when challenged by

quitters and cheaters, we never allow mutations from the latter kind of strategy (Q
and C) to the former (P and R). Within this constraint, our simulations explored
three different mutation regimes. The first and second of these mutation regimes
were studied previously in Pollock et al. 2004. We note here only that our results
with these regimes in the more elaborate setting of the current paper are consistent
with the earlier work. We therefore restrict attention to the third mutation regime,
which we feel to be more realistic. Unless something is said to the contrary, mutation
should therefore always be assumed to follow the following rules.

The simulations always begin with the population saturated with either the
strategy P or the strategy R. We call these population states all P and all R. We
allow mutations from P to Q and from R to C; also mutations back and forward
between Q and C, and between P and R.

Hopeful monsters? Our mutation assumptions take account of the fact that
some of our strategies are more complex than others by ruling out the equivalent
of very unlikely“hopeful monsters” (Dawkins, 1980; Maynard Smith, 1984; Darwin,
1859 on the origin of new variation). Only mutations that change one planned piece
of behavior at a time are therefore allowed. The arrows of Figure 5(a) show all the
mutations possible under this restriction.

We employ a mutation probability of 0.001 for the loss of a behavioral property
and a mutation probability of 0.0001 (one order of magnitude smaller) for the gain
of a behavioral property. That is to say, we make the probability attached to an
arrow in Figure 5a that corresponds to a no mutating into a yes much lower than the
probability attached to an arrow in the reverse direction. We thereby recognize that
mutations that disable some existing piece of complex behavior are much more likely
than mutations that create a new piece of complex behavior (where the complex
behavior in our case consists of an ant conditioning her behavior on being the surface
excavator, or conditioning her behavior on the surface excavator shirking her duty).

All our simulations also rule out mutations that convert genotypes in which the
surface excavator behaves cooperatively (P and R) into one that does not (Q and
C). This latter requirement biases the simulation against the evolutionary stability
of the coordination mechanism observed in nature in which the surface excavator
accepts the role of forager. Eliminating these possibilities from Figure 5a yields
Figure 5b, which should be taken as summarizing how we model mutation in the
simulations reported here.

Initial population states. The initial states in all our simulations consist of
populations in which either all queens are programmed with R or else with P. How
stable are such populations? If unstable, where does evolution take the system?
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Figure 5: Restrictions on mutations. Figure 5(a) shows that mutations affecting
more than one piece of behavior at a time are not allowed. Figure 5(b) incorpo-
rates the extra assumption that mutations which convert a genotype that refuses to
honor the coordination mechanism into a genotype that does honor the coordination
mechanism are not allowed. Arrows that point down or left are assigned a mutation
rate of 0.001. Arrows that point up or right are assigned a mutation rate of 0.0001.

4 Simulation Results

Space does not permit our describing all our simulations, and so we report only
what we believe to be the most significant results. In particular, we confine our
attention to the more realistic case of viscous dispersal, noting only that the effects
we report are significantly weaker in the case of unrestricted dispersal.

For the fixed mutation regime described in Secton 3, the results depend on
the values of the parameters d (the death probability of a forager) and B (the
replacement fitness of a colony). Table 1, shows the strategies that are predominant
in the long run with both initial states all P and all R.

B = 200 B = 900

d = 0.2 P C

d = 0.8 P Q

Table 1: Strategies predominating in the long run. The table is the same whether
the initial state is all P or all R. The simulations were run for 500,000 years, but
the table would be the same with a time period of 60,000 years or less. It should not
be thought that the predominating strategy is never challenged. In practice, there
is a fair amount of churning. In particular, R recurs persistently when B = 200.

The evolutionary success of C and Q when B = 900 (and so brood raiding
is a relatively weak phenomenon) is discussed in the next section. (The surprising
appearance of Q arises because we set the replacement fitness of a colony consisting
of all Q to B = 1 rather than B = 0.)

We focus here on what the simulations tell us about the evolutionary success
of the suicidal punishment built into P when B = 200 (and so brood raiding is
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a relatively strong phenomenon). We note that the level of the forager’s death
probability seems unimportant for the latter result since it is sustained with both
d = 0.2 and d = 0.8 (and also with d = 0.5).

When the initial state is all R, the tendency to move toward P when B = 200
is facilitated by the fact that mutations from R to P are ten times more likely than
mutations in the reverse direction. However, a detailed examination of the history
of the simulations (100 runs when B = 200) shows that mutations from R to its
“cheater” variant C are much more important. The probability of mutation from
P to its own “cheater” variant Q is the same, but Ps more readily eliminate Qs
than Rs eliminate Cs.

Figure 4 is an idealized description of an observed progression to all P that is
most marked when d = 0.8 and B = 200. We think it important to stress that
such a progression depends on dispersal being viscous. It begins in Figure 4a with a
mixture of strategies R and C that are phenotypically indistinguishable except in the
presence of the cheater variants C and Q. Figure 4b illustrates the appearance of
Q in a colony previously held by P, and the appearance of C in a colony previously
held by R. Figure 4c shows the P colony that converted to Q reverting to P after
invasions from its P neighbors. It also shows the R colony that converted to C
not only remaining a C colony but taking over its neighbors. Figure 4c shows the
strategy :C spreading further but also being contaminated by the appearance of Q.
Figure 4e shows Q spreading at the expense of C until C is lost in Figure 4e. But
then P eliminates Q in Figure 4d, finally leaving all P in Figure 4f.

5 Game Theory

This section seeks to make sense of our simulations with the help of the game of
Figure 6a that we call After You because it captures the idea that the queen who
accepts the task of foraging is put at a disadvantage. Our simulations represent a
substantial simplification on what happens in nature and After You simplifies even
further. For example, the game has only two players.

5.1 After You

The extensive form of the game After You starts at the decision node labeled 1 in
Figure 6a. At this node, the surface excavator decides whether or not to accept the
role of forager. If she accepts (Y ), the game ends at a box where the colony’s fitness
is A (A = 1, 000 in the simulation). Both queens would then get a payoff of 1

2
A

(because only half the brood will be offspring of a particular queen) if it were not for
the fact that the forager faces a probability d of predation. The forager’s average
payoff therefore needs to be adjusted to As, where s = 1− d is the probability that
the forager survives. If the forager fails to survive, the simulation assumes that the
colony nevertheless persists with overall fitness A but all offspring derive from the
surviving queen, whose average payoff is therefore 1

2
As+Ad = 1

2
A(2−s). Here and
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Figure 6: The game After You. Only the case with with d > (A−B)/(A+B) is illustrated,
and so the analysis does not apply when B = 200 and d = 0.5 or d = 0.8. (Recall that
d = 1 − s). Figure 6a shows the game with the Nash equilibrium (N, Y ) highlighted.
(Factors of 1

2
are systematically omitted.) Figure 6b shows the same game with the Nash

equilibrium (Y, N) highlighted. The equilibrium (N, Y ) is subgame perfect, which reduces
in this simple case to the requirement that the second mover plans to move optimally.
The equilibrium (Y, N) is not subgame perfect, because the second mover would move
suboptimally if her decision node were reached. This suboptimal move corresponds to the
suicidal punishment studied in this paper. Figure 6c illustrates the fact that After You
should be regarded as a subgame of a larger symmetric game that begins with a chance
move which assigns the roles of 1 (surface excavator) and 2 at random to the players I and
II. Note that the two symmetric Nash equilibria (P,P) and (C,C) in the symmetrized
game correspond to the use of (Y, N) and (N, Y ) respectively in After You.

elsewhere, we suppress the factor of 1
2

when writing payoffs in representations of
games. The surface excavator’s payoff in the southwest of the box that represents
her accepting the role of forager is therefore only proportional to her fitness. The
same goes for the payoff to the other queen written in the northeast of the box.

If the surface excavator refuses (N) the role of forager at node 1, then the other
queen decides whether or not to accept the role of forager at the node labeled 2 in
Figure 6a. If she accepts (Y ), the colony’s fitness is B (B = 200 or B = 900 in
the simulations). If she refuses (N), the colony’s fitness is 0 (rather than 1 as in
the simulation).

In evolutionary game theory, it is unorthodox to model the timing issues captured
by the extensive form of a game. One usually goes immediately to the strategic (or
normal) form of the game, which is a table that shows the payoffs of the players
for each possible combination of strategies that the players might use. It is also
unorthodox to consider an asymmetric strategic form like After You. Usually, only
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the payoffs of the first player are written down, with the implicit assumption that
the game is symmetric (looks the same to both players).

Symmetrization. Our simulation assigns the roles of first and second mover in
After You at random. This chance move is modeled in Figure 6c.

The players in the symmetrized game are labeled I and II. Each becomes the first
mover in After You with probability 1

2
. (This 1

2
is suppressed when writing payoffs).

A player’s (pure) strategy must now say what she will do, both when chosen as 1
and when chosen as 2. The resulting four strategies are R, P, C, and Q, as
already described in Section 3. The strategic form of Figure 6c constructed with
these four strategies is symmetric, but we have nevertheless included the payoffs for
both players (with player I’s payoff in the southwest of each cell).

Equilibria. Only the strategy C is an evolutionary stable strategy (ESS) in Figure
6c, but this is not an adequate reason to reject the strategy P, because the ESS
notion is fully satisfactory only in the case of symmetric 2 × 2 simultaneous-move
games. Even in symmetric 3 × 3 games, the replicator dynamics—the simplest
mathematical model of an evolutionary process—sometimes converges on strategies
that are not ESS (Hofbauer and Sigmund [2]). In extensive-form games, matters
are worse (Binmore et al. [?], Cressman [?]). We therefore appeal instead to the
notion of a Nash equilibrium, which relaxes the requirements of an ESS by only
requiring of a pair of strategies that each be a best reply to the other. When the
replicator dynamics converges in a symmetric game, it necessarily converges on a
symmetric Nash equilibrium.

Best replies are shown in Figure 6c by circling payoffs. For example, in the
strategic form of Figure 6c, player I’s payoff of 2A is circled twice in the column
corresponding to the strategy P, because both R and P are best replies for player
I to player II’s choice of P. A Nash equilibrium in pure strategies arises when both
payoffs in a cell are circled. So Figure 6c has four Nash equilibria in pure strategies,
but we need only pay attention to the symmetric equilibria (P,P) and (C,C),
because only symmetric equilibria can result when players I and II are drawn from
the same population of genetically programmed potential players. The equilibrium
(P,P) corresponds to both players using the asymmetric Nash equilibrium (Y, N)
for After You highlighted in Figure 6b. The equilibrium (C,C) corresponds to the
asymmetric Nash equilibrium (N, Y ) for After You highlighted in Figure 6a.

Nash equilibria in mixed strategies—when players use their pure strategies with
appropriate probabilities—are also relevant in this problem. In particular, it is a Nash
equilibrium in Figure 6a if 1 plays Y for certain, and 2 plays Y with a sufficiently low
probability x (x ≤ As/B(2−s)). Such a mixed equilibrium can be realised without
any active randomizing on the part of the players if the population of animals from
which 2 is drawn is polymorphic, with a fraction x programmed to play Y and 1−x
programmed to play N .

Any randomizing in a mixed equilibrium has nothing to do with the chance move
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of Figure 6c, which models the coordination mechanism that determines who gets
first refusal at the foraging role. Correlated equilibria arise when such coordination
mechanisms exist but are not formally modeled. In mixed equilibria the players
randomize independently.

The case d > (A − B)/(A + B). In our simulations, d > (A − B)/(A + B)
whenever B = 900 and for d = 0.8 when B = 200. Figures 6a and 6b show
that After You then has two Nash equilibria (N, Y ) and (Y, N) in pure strategies.
Always playing according to the first of these yields the Nash equilibrium (C,C) in
Figure 6c. Always playing according to the latter yields the Nash equilibrium (P,P)
in Figure 6c.

The all P equilibrium is Pareto efficient in the class of symmetric outcomes
(those in which players I and II use the same (possibly mixed) strategy). This
means that there is no other outcome that makes one player better off without
making another player worse off. A naive group selection argument would therefore
favor all P over all C. However, the strategy C is an ESS, whereas P is not. An
additional reason for being doubtful about the evolutionary viability of P is that it
is not subgame perfect.

Game theorists say that the Nash equilibrium (N, Y ) of After You is subgame
perfect because it calls for Nash equilibrium play in all subgames of After You
(whose only proper subgame begins at node 2). The Nash equilibrium (Y, N) is
not subgame perfect because it calls for the suboptimal play of N at node 2. This
paper dramatizes this feature of the equilibrium (Y, N) (and hence of the strategy
P) by saying that it specifies suicidal punishment.

The fact that P is neither ESS nor subgame perfect does not imply that it
cannot be an attractor of the replicator dynamics. Binmore and Samuelson [?, ?]
demonstrate this fact for a game that is very similar to After You, but the point is
evident from Figure 7a, which shows trajectories of the standard replicator dynamics
for the symmetrized game of Figure 6c in the case when B = 900 and d = 0.8.
There is an asymptotic attractor at the ESS C marked by a star. There is also a
whole set N of locally stable attractors that correspond to Nash equilibria that are
neither ESS nor subgame perfect. These attractors are all mixed except for P.

Introducing low levels of mutation moves the ESS at C slightly, but cannot
destabilize it. The same is not true of the attractors in N . If mutations tend to move
the population to the right in the neighborhood of the set N , then it will eventually
reach the right endpoint of N (where p = As/B(2 − s)), from whence it will be
carried away to C. However, Binmore and Samuelson [?] show that introducing
mutations that tend to move the system to the left in the neighborhood of N
can reduce the set N to a single asymptotic attractor L whose precise location is
determined by the mutation regime. The attractor L will primarily be a mixture of
P and R but will not usually lie on the surface of our tetrahedron.

When should we expect to see such a asymptotically stable rest point L? The
answer depends on the mutation regime and the size of the set N . Larger values
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Figure 7: The standard replicator dynamics for the symmetrized version of the game
After You (Figure 6c). The four surfaces of a tetrahedron with vertices P, Q, R, and
C have been unfolded to lie flat on the page. A point (p, q, r, c) with p+q+r+c = 1
in the tetrahedron corresponds to a state in which a fraction p of the population play
P, a fraction q play Q, a fraction r play R, and a fraction c play C. Figure 7a shows
the more interesting case when d > (A−B)/(A+B). The particular parameter values
are A = 1, 000, B = 900, and d = 0.8. (The set N is smaller for other parameter
values). There is an asymptotic attractor at C with a large basin of attraction. If
the population is displaced slightly from C the dynamics return it to C. The set N
consists of local attractors. If population is displaced slightly from a local attractor
it is returned to a nearby point. Figure 7b shows the case d > (A−B)/(A + B) for
the parameter values A = 1, 000, B = 200, and d = 0.2. Note that the asymptotic
attractor at C disappears and N expands to be the whole line segment joining P and
R. We are grateful to Francisco Franchetti for his help in preparing these figures.

of As/B(2 − s) make the set N bigger and so favor the appearance of L. So does
our mutant regime, in which mutations from R to P are ten times more likely than
mutations from P to R. More importantly, the process described in Figure 4 also
has the same effect.

We therefore have an evolutionary model in which the suicidal punishment built
into P can survive as part of a mixture with R for certain values of our parameters,
provided that the system is started at P or some other point within the basin of
attraction of L. If the system is started outside this basin of attraction—say at
R—it will converge on C.

The case d < (A − B)/(A + B). This case arises when B = 200 and d = 0.5
or d = 0.2. The strategy R is now (weakly) dominant, which implies that it always
yields at least as good a payoff as any alternative strategy. However, (R,R) is not
the only symmetric Nash equilibrium because (P,P) continues to be an equilibrium.
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There are also mixed Nash equilibria (M,M) in which M is any mixture of R and
P. Figure 7b shows that the replicator dynamics does not necessarily converge on
the weakly dominant strategy R. It is also necessary to recall that mutation regime
3 makes mutations from R to P ten times more likely than in the reverse direction,
which will tend to increase the fraction of Ps in a population consisting of a mix of
only these two strategies.

Finite population. In the case when d > (A − B)/(A + B), the replicator
dynamics may take the system to one of two outcomes: C or a mixture L of P and
R. To investigate which of these two possibilities is more likely, we need to make
the model more realistic.

The population size in our simulations is only 30. Unlike the deterministic
replicator dynamics, so the underlying evolutionary dynamics has a stochastic com-
ponent. One must therefore expect that the system will (very) occasionally be
bounced out of the basin of attraction in which it currently resides into the basin
of attraction of another attractor.

The closer an attractor is to the boundary of its basin of attraction, the easier it
will be to bounce the system into a new basin. This consideration counts against a
mixture of P and R like L because it will usually be much closer to the boundary of
its basin of attraction than C is to the boundary of its basin of attraction (Binmore
and Samuelson, [?]). Without other considerations, we must therefore expect to
see attactors like L appearing only with low frequency over a long period. However,
there are other considerations.

5.2 Stochastic stability.

The payoffs of zero associated with the strategy pair (Q,Q) in Figure 6 fail to
capture an aspect of the strategy Q that turns out to matter. In our simulation, a
very small positive payoff is assigned to such an association, which guarantees that
it will almost never win a brood-raiding competition except when its competitors
are equally inept at starting a colony. But what if just that situation were to arise?

Asking this question makes it clear that considering the replicator dynamics
operating in a single game is an inadequate approach. We really have two games
sitting on top of each other: a zero-sum brood-raiding game (in which the players
are associations rather than individuals) and a reproduction game. The replicator
dynamics is also deficient. It suppresses all noise and implictly assumes random
dispersal within an infinite population. It is possible to use Young’s [4] theory of
stochastic stability to address these issues to some extent, to which end we simplify
the model of our simulation even more.

C versus Q. A population of all C is said to “incubate” invading Qs in Figure
4. How come?
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To study this question, we present the new model with only the alleles C and
Q. In the new model, there are only 3 trees (rather than 10) and associations are
restricted to pairs of queens (rather than triples). Figure 8a shows the 10 configu-
rations (or states) of associations then possible after brood-raiding has reduced the
number of competing colonies at each tree to one. In each period, a colony dies out
with a probability D that is small enough to make the possibility that two colonies
die out simultaneously negligible (D = 0.01 in the simulation). Assuming viscous
dispersal, we can then compute the transition probabilities between our ten states
when the death probability of a foraging queen is d (d = 0.2, d = 0.5, or d = 0.8
in the simulation).

The new model makes the brood-raiding competition even fiercer than in our
simulation by assuming that a vacant tree is immediately invaded by infinite numbers
of infant queens from the neighboring trees, who then pair off at random. The
winning association is then chosen from the infinity of associations that result (rather
than 5 associations as in the simulation) by choosing one of the associations with
highest fitness at random (rather than choosing an association with a probability
proportional to its fitness).

Figure 8b shows the Markov chain that governs transitions from one of the
10 states of the new model to another when 0 < d < 1. Firmly drawn arrows
indicate positive transition probabilities in the absence of mutations. The only
absorbing states in the absence of mutations are 1 (all C) and 10 (all Q). It follows
immediately from Young’s [4] Theorem 3.1 that these are the only stochastically
stable states of the system with mutations. This means that the probabilities that
the system is in a particular state converge over time to a distribution that itself
converges as mutation rates become vanishingly small to a limiting distribution that
assigns positive probability only to all C and all Q. The immediate point is that
all Q always survives with positive probability.

To determine the relative probabilities with which all C and all Q survive in
the long run, we can appeal to a result of Friedlin and Wentzell [?] that Young [4]
quotes as Lemma 3.1. However, this is easy only in the extreme cases when d = 0
and d = 1. In case d = 0, the existence of the two barriers drawn in Figure 8c—
which can be crossed from left to right only with the aid of a mutation—is enough
to show that that the long-run probability of all Q is zero. In the more interesting
case when d = 1, the symmetry (including transition probabilities) of Figure 8d in
the absence of mutations allows us to reduce everything to the rates with which
mutations allow the system to exit from 1 and 10. The rate ε (ε = 0.001 in the
simulation) at which C mutates to Q is assumed to be ten times the rate at which
Q mutates to C in the simulation (Figure 5). Maintaining this assumption in the
new model and confining attention to the limiting case when ε becomes vanishingly
small, we are led to the conclusion that the long-run probability of all Q is ten
times the long-run probability of all C, reflecting the fact that it is a lot easier to
get out of the absorbing state all C than all Q.

In summary, if only C and Q were possible within the new model and the
foraging death rate were d = 1, we would see all C 0.09 of the time and all Q
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Figure 8: Stochastic stability: Figure 8a shows all possible configurations of associ-
ations possible in the new model. Figure 8b shows the Markov chain that governs
transitions from one of these states to another when 0 < d < 1. Firmly drawn arrows
indicate positive transition probabilities in the absence of mutations. Broken arrows
indicate possible transitions due to mutation at states 1 and 10. (Mutations at other
states will also occur but are suppressed in the diagrams because their effect becomes
negligible when the mutation rate is small enough—except when crossing barriers in
Figure 8c.) To illustrate how transition probabilities are calculated in the absence of
mutations, note that state 9 transits to state 5 with probability 1

2
D, to state 8 with

probability 3
2
(1− d)D, and to state 10 with probability D. The rest of the time, the

system stays in state 9. If a colony corresponding to QQ dies in state 9, then the
winner of the ensuing brood-raiding contest under the resulting vacant tree is CC
with probability 1

4
and QC with probability 3

4
(where writing Q first means that the

quitter is chosen as surface excavator). It is then important to factor in the possibility
that the foraging queen may be lost to a predator. If this happens to an association
that would correspond to QC if the forager survived, then the association becomes
QQ, because the adult colony that finally results will only have the Q allele but will
be no smaller than colonies under other trees. Figure 8c shows the case d = 0 with
two barriers that cannot be crossed from left to right without a mutation. Figure 8d
shows the case d = 1, which is entirely symmetric about the vertical axis.

0.91 of the time. When d = 0, we would see all C essentially all the time.

P versus Q. The simplifications of the new model allow the conclusions of the
preceding analysis to be applied to this case as well when the mutant regime is that
of Figure 5a (rather than Figure 5b, which is mutant regime 3 of the simulation).
The important difference is that the rate at which P mutates to Q is now one tenth
of the rate at which Q mutates to P. If only P and Q were possible within the new
model and the foraging death rate were d = 1, we would therefore see all P 0.91
of the time and all Q 0.09 of the time.

C versus P. The same reasoning can also be applied to this case, provided that
one ignores the fact that mutations between C and P must necessarily proceed via
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the other two strategies in Figure 5a. When d = 1, it would then be equally difficult
to leave both the absorbing states all P and all C, and so each would occur half
the time.

5.3 Summary

We hope that the game theory of this section removes the apparent paradox implicit
in the survival of all P, both in nature and in our simulations. One problem is that
the mutant regime 3 of Figure 5b does not allow downward mutations in Figure
5a. This assumption makes it harder for all P to survive in the simulations, so
the fact that it does sometimes survive becomes more significant. The stochastic
stability analysis suggests that all P would eventually be lost in the absence of such
mutations over a sufficiently long time span. But the Sonoran desert is thought only
to have been in existence for some 10,000 years (Axelrod 1979) and it can often
take much longer periods to get out of the basin of attraction of an equilibrium
when mutation rates are small.

6 Conclusion

The current paper follows Pollock et al. (2004) in being motivated by the exper-
imental finding in Rissing et al. (2004) that if a founding queen were to refuse
when assigned the foraging role, none of the other cofoundresses would replace her,
with the result that the colony would die. Such apparently suicidal behavior seems
paradoxical. It cannot, for example, be part of a subgame-perfect equilibrium in
the game the cofoundresses play. In a subgame-perfect equilibrium, a cofoundress
that refuses the foraging role will necessarily be replaced, but the final outcome is
then inefficient in the sense that all the players would be better off on average if
they always accepted when assigned the foraging role. Is it possible that the very
fierce competition between rival colonies through brood-raiding (Rissing and Pol-
lock 1987, Pollock and Rissing 1989) can explain why the inefficient outcome is not
observed in practice?

Continuing the analysis of Pollock et al. (2004), this paper conducts addi-
tional simulations using a simplified version of the natural history of Acromyrmex
versicolor. The simulation assumes that the cofoundresses of a new colony are
programmed with predetermined answers to two questions: Shall I accept the role
of forager when nobody has so far refused this role? Shall I accept the role when it
has already been refused? The strategies (punisher (P, replacer R, quitter Q, and
cheater C) describe the 4 = 2 × 2 possible ways these questions can be answered.
We improve on the simulations of Pollock et al. (2004) by using a more realistic
mutation regime. In particular, mutations between P and R are allowed. We also
offer a game-theoretic analysis of a simplified version of the game our simulated
ants play in an attempt to better understand our simulation results.
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The main result is that when brood raiding is relatively strong the punisher
strategy P is very resilient, especially if in addition the mortality risk d when foraging
is large. Under those conditions, the frequency of P is very high at the final
date of the simulations independently of the initial conditions, and it is very rarely
lost. Studying the dynamics of the simulations reveals the predominant process by
means of which this preeminence is achieved. The environments with clusters of P
punishers and R replacers give rise to their mutant variations, which are Q quitters
and C cheaters respectively. The inefficiency of Q makes it an easy target for P.
Strategy R, in turn, is easily taken over by C, which itself breeds Q, that is finally
displaced by P.

The analytic solution of the After You game offers insight into both the exper-
imental and the simulation results. We show that there is a component of Nash
equilibria with various mixtures of P and R. For some of the parameter range there
is also a Nash equilibrium with the whole population playing C. The latter is also
an ESS and subgame perfect, whereas the former is neither, which perhaps can be
viewed as a formalization of the “puzzle” motivating this research. However, the
equilibrium component with P and R can be an attractor of the replicator dynam-
ics. This attractor set is fragile, since the endpoint of the attractor set need not
itself be a local attractor, and if reached the population will be carried away to C.
But Binmore and Samuelson (1997) have shown that adding suitable mutations can
shrink the attractor set to a single asymptotically stable attractor, thereby elimi-
nating the fragility problem. This goes a long way towards explaining the apparent
puzzle, since even under random assortment the P strategy in combination with R
can be the limit outcome provided the initial conditions are not too distant from
that point.

The game-theoretic analysis of the After You game leaves some open questions,
since the replicator dynamics assumes away both random factors and viscosity, which
are important in small populations and in the simulations. We thus complement it
by studying the stochastic stability of pairs of strategies in the game. Using this
analysis it becomes clear that when only Q and C are present, Q dominates most
of the time. If only Q and P are present, on the other hand, P dominates. This
is very much in line with the dynamics observed in the simulations and provides an
analytical rationale for those findings.

One advantage of introducing the game After You is that it highlights a phe-
nomenon that may be much more general. It is captured in the fable of Belling
the Cat, in which all the mice will profit if one of their number will take on the
dangerous task of attaching a bell to the cat’s tail (Perry [3] 1965; see also Bilodeau
and Slivinski [1] (1996) for an updated discussion of providing a public service at a
personal cost). We hope that the present paper will encourage a search for exam-
ples of similar phenomena in other species other than the fascinating Acromyrmex
versicolor.

20



7 Acknowledgements

Pollock is grateful for support from a Senior Fulbright Fellowship held at Wirtschaft-
stheorie III, University of Bonn, from KALX, from LLC, and from a benefac-
tor who prefers to remain anonymous. He also thanks Stan Faeth for his host-
ing him at Arizona State University. Cabrales is grateful for support from the
Human Capital and Mobility Program of the European Union (contract ERB
CHBGCT 930443), from the Spanish Ministry of Science and Technology grants
CONSOLIDER-INGENIO 2010 (CSD2006-0016) and ECO2009-10531, and from
the visitor program of Wirtschaftstheorie III, University of Bonn, and from the Re-
search Distinction Program of the Generalitat de Catalunya.

References

[1] M. Bilodeau and A. Slivinski. Toilet cleaning and department cchairing: Volun-
teering a public service. Journal of Public Economics, 59:299–308, 1996.

[2] J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics.
Cambridge University Press, Cambridge, 1998.

[3] B. Perry. Babrius and Phaedrus. Harvard University Press, Cambridge, MA,
1965.

[4] P. Young. Individual Strategy and Social Structure: An Evolutionary Theory
of Institutions. Princeton University Press, Princeton, 2001.

21


