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Abstract

We study a model that integrates productive and socializing ef-

forts with occupational choice in the presence of endogenous spillovers.

Among other results, we show that more talented individuals work

harder and contribute more to the emergence of externalities, but also

have incentives to segregate. Average socializing increases in the average

productivity of the occupation. Also, the size of an occupation grows

in its network synergies. Turning to efficiency, we show that individu-

als underinvest in productive and socializing effort, and sort themselves

inefficiently into occupations. We derive the optimal subsidy to achieve

efficient effort within occupations and show that efficient sorting into

occupations can always be achieved by a linear tax. We illustrate the

importance for the government to intervene on both margins, as solving

only the within occupation investment problem can exacerbate misallo-

cations due to network choice and may even reduce welfare in presence

of congestion costs.

JEL-Classification: D85, H21, H23, J24

Key-words: occupational choice, social interactions, endogenous spillovers,

optimal taxation

∗This paper is part of a substantial revision of the paper circulated under the title
”Targeted socialization and production”. It is based on the first part of the older paper
only and introduces mainly new results. Hauk acknowledges financial support from the
Spanish Ministry of Economy and Competitiveness through the Severo Ochoa Program
for Centers of Excellence in R&D (SEV-2015-0563) and through CICYT project number
ECO2015-67171-P (MINECO/FEDER) and from the government of Catalonia (2014 SGR
1064). We thank participants at numerous conferences and seminars for helpful comments.
†University of Nottingham and IIIEP-CONICET; facundo.albornoz@nottingham.ac.uk
‡University College London; email: a.cabrales@ucl.ac.uk
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1 Introduction

Many productive processes are mediated by social interactions. The accumu-

lation of human capital (Moretti, 2004), innovation (Cassiman and Veugelers,

2002), and crime (Glaeser, Sacerdote, and Scheinkman, 2003), are examples of

activities carried out by individuals whose actions are affected by the activities

and abilities of others they establish connections with. Since social interactions

have productive consequences, economic agents naturally devote a considerable

effort to developing them. From the perspective of an individual, socializing

in production activities involves two different but interconnected decisions:

first selecting who to interact with, and then choosing the strength of these

interactions, together with the productive effort. However, the literature has

explored these two dimensions of socializing separately.1 This paper brings

together both dimensions of socializing by studying a model of occupational

choice with endogenous spillovers emerging from individual productive efforts

and socializing decisions.

More specifically, we study how the choice between employment and en-

trepreneurship is affected by those who participate in each occupation, their

productive effort, and the interactions they establish within the same occupa-

tional group. In our model, individuals are endowed with different (occupation-

specific) abilities as, say, entrepreneurs and employees, and socializing is mul-

tidimensional. First, each individual make a decision about which occupation

to join. Once this decision is taken, they choose a level of productive ef-

fort, together with the intensity of their social interactions. Employees or

entrepreneurs socialize to take advantage, in an endogenous way, of spillovers

emerging from the productive efforts of those in the same occupation. With

these features, we provide a tractable model that allows for a complete equi-

librium and welfare analysis, and generates novel results with implications for

policy interventions.2

Embedding endogenous spillovers in a model of occupational choice is im-

portant for several reasons. First, because these spillovers exist: empirically

1The study of how peers are selected has been conducted from various angles; among
them, neighborhoods (Benabou, 1993), schools (Epple and Romano, 1998; Ferreyra and
Kosenok, 2015), social networks (Goyal, 2012; Jackson, 2010; Vega-Redondo, 2007) and
even specialties within occupations (Arcidiacono and Nicholson, 2005). The issue of within
group socializing has been studied by Cabrales, Calvó-Armengol, and Zenou (2011) and
Canen and Trebbi (2016).

2Although specifically designed to study occupational decisions, the model admits other
interpretations, which will be occasionally discussed.
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the importance of social connections for entrepreneurs (see for example Guiso

and Schivardi, 2011; Guiso, Pistaferri, and Schivardi, 2015; Hoanga and An-

toncic, 2003), for professionals (see for example West, Barron, Dowsett, and

Newton (1999) for the medical and Ogus (2002) for the legal profession) and

even for the unemployed Korpi (2001) has been widely established. Second, be-

cause they matter: Guiso and Schivardi (2011) find that spillovers rather than

heterogeneous entry costs are the explanation for differences in entrepreneurial

activities across Italian regions.3 Third, spillovers are likely to be endogenous:

if spillovers are beneficial (damaging), rational individuals will look for ways

to enhance (reduce) them. The scarce existing literature introducing spillovers

into occupational choice takes them as exogenous (e.g. Guiso and Schivardi,

2011; Cicala, Fryer Jr, and Spenkuch, 2016; Chandra and Staiger, 2007). Last,

as we spell out in detail below, analyzing endogenous spillovers leads to im-

portant insights. For example, we derive optimal policies to achieve efficiency

in occupational choice, to correct both the within sector inefficiency caused by

the externality of spillovers and the misallocations across occupations. These

results allow us to rationalize why many measures implemented by govern-

ments to boost entrepreneurship have failed (see e.g. Henrekson and Stenkula,

2010; Acs, Åstebro, Audretsch, and Robinson, 2016).

In our model, productive efforts within an occupation are assumed to be

complementary (i.e. spillovers are multiplicative) and the size of the resulting

spillovers does not only depend on individual productive effort but also on

the degree of social interactions. To fix ideas, one can view spillovers as the

consequence of information sharing within an occupation, which implies that

the individual marginal productivity with respect to one’s own stock of human

capital increases linearly in the knowledge stock of others in the same occu-

pation. Absorbing others’ information requires social interactions. Individual

incentives to socialize increase with the information everyone has, which im-

plies a complementarity between socializing and productive investments. As a

result of the socializing process, spillovers within an occupation are determined

by the collective output of individual productive and socializing decisions.

Our first set of results concern individual decisions of productive and so-

cializing effort for a given occupation. All these results have empirical implica-

tions and we contrast them with some existing evidence. We show that more

3The approach on heterogeneous entry costs is implicitly followed by a large literature
that focuses on (particularly financial) factors that keep the would-be entrepreneurs from
actually creating a new firm (e.g Quadrini, 2009).
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talented individuals not only work harder but also generate more spillovers.4

Furthermore, our model predicts that on average individuals in more produc-

tive occupations work harder and socialize more.5 But average socializing

and, hence, learning spillovers are also increasing in network synergies. As a

consequence, occupations with weaker synergies should experience lower in-

teractions and fewer spillovers.6 Insofar as synergies capture institutional and

technological aspects of socializing, we can provide an explanation for the in-

tensity of spillovers varying across geographical regions (e.g. Bottazzi and Peri,

2003) and over time (e.g. Jaffe, 1986). We complete our characterization of

individual decisions by showing how the benefits of interaction are greater for

highly productive workers; this provides a rationalization for the existence of

fraternities and elite societies (e.g. Popov and Bernhardt, 2012).

Turning to the policy implications of endogenous spillovers and multidi-

mensional socializing, we identify and distinguish two different types of in-

efficiencies. For a given distribution of individuals between employees and

entrepreneurs, (socializing and productive) effort decisions are inefficient as a

consequence of the spillovers. We show, however, that an optimal subsidy to

fix effort inefficiencies for a given composition of the occupation exists and

provide its explicit form.

But, since individuals sort themselves into each of the occupations, we also

show that allocative inefficiencies matter. We first prove that, independently of

productive and socializing efforts, there is an equilibrium division of individuals

between occupations. We show that linear taxes/subsidies can be used to alter

the composition of each occupation, which implies that socially optimal sorting

between entrepreneurship and employment can be achieved in equilibrium.

The presence of two different sorts of inefficiencies in occupational choices,

requiring specific policy instruments, implies that optimal policy responses are

quite complex and single instruments may fail or even worsen the problem to

be addressed. For example, the usual policy response to boost entrepreneur-

ship involves differential taxation. But this policy response does not take into

4This result is consistent, for example, with Azoulay, Zivin, and Wang (2010), who show
that researchers collaborating with a superstar scientist experience a significant decline in
their productivity (quality adjusted publication rate) after the unexpected death of their
superstar collaborators. Similarly, Waldinger (2010) find that the expulsion of high quality
Jewish scientists from Nazi Germany harmed, in a significant way, their students left behind.

5The connection between occupation productivity and individual socializing effort is in
line with Currarini, Jackson, and Pin (2009) and consistent with observations provided by
Albornoz, Cabrales, Hauk, and Warnes (2017).

6This result is observed by Nix (2015) for the case of Sweden.
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account that within sector externalities typically require a specific level of

taxation to correct the “internal” effort inefficiency. It is therefore possible

that a single tax to correct an allocative inefficiency might distort the inter-

nal allocation of effort. Similarly, correcting only for within sector inefficiency

might worsen the across sector allocation. To examine this question more rig-

orously and to explore further the implications of endogenous spillovers and

multidimensional socializing, we need to make specific assumptions about the

distributions of occupation-specific abilities. We analyze two cases: the uni-

form and the Pareto distribution. In both cases, we show that the equilibrium

is unique, which is a useful feature of our framework.

In the case of the uniform distribution function, we find that, independently

of the effort choices, there are always fewer entrepreneurs than optimally re-

quired. Crucially, optimal subsidies designed to reach internal efficiency ex-

acerbate allocative problems by inducing congestion, which -if costly- could

imply a reduction in global efficiency. This rationalizes the observed failures

in the use of subsidies to spur entrepreneurship (Henrekson and Stenkula,

2010; Acs, Åstebro, Audretsch, and Robinson, 2016). We show by example

that this reduction in global efficiency can occur in our model.

Allocative inefficiency also emerges when productivities are assumed to be

given by a Pareto distribution, although whether it results in overpopulation

or underpopulation of the entrepreneurial sector depends on the Pareto shape

parameter and the strength of the synergies. In spite of this general ambiguity,

we are able to provide some sufficient conditions for under and overpopulation

of a sector. For example, we show that the sector with a higher intensity of

synergies (which we think likely to be the entrepreneurial sector) could be

underpopulated for distributions of abilities exhibiting a relatively low level of

dispersion (a shape parameter sufficiently high). Notice that a low dispersion

in a Pareto distribution means that the number of superstars in that sector will

be very small. Thus, if both sectors have a low number of superstars, the sector

with a larger impact of synergies is likely to be underpopulated. Although this

is a matter that obviously requires more research, we think it is an interesting

rule of thumb to detect underpopulation in a productive sector. On the other

hand, we also show that the size of the sector with higher synergies could be

sub-optimally large if the synergies are sufficiently small in both sectors.

Since wages and income, at least at the top of the distribution, are well

described by a Pareto (Guvenen, Karahan, Ozkan, and Song, 2015, for a re-

cent reference), our model can associate inequality in talent with the possibil-
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ity of allocative inefficiency. We show that changes that make distributions

more disperse increase the average level of socializing and productive effort.

This effect is not confined to the occupation where inequality increased, but

also takes place in the other occupation. Distributional spillovers across oc-

cupations imply that greater inequality may lead to higher productive and

socializing intensity, connecting two phenomena that are generally considered

as independent from each other.7

Our model contributes to several aspects of the literature of occupational

choice. This literature generally builds upon the seminal contribution by Lucas

(1978). In Lucas (1978)’s model as well as in several follow-up papers, ability

has a single dimension which implies the counterfactual prediction that all

entrepreneurs should earn more income than every employee. The literature

has accounted for low and high income in both sectors by adding a second

dimension of ability à la Roy (1951).8 We follow this approach and allow

for occupation-specific abilities. As a consequence, occupational choices are

determined by comparative rather than absolute advantage. In this context,

Rothschild and Scheuer (2012) and Scheuer (2014) study the optimal design

of redistributive income taxes. We also study optimal policy instruments but

our concern is efficiency not redistribution. A fundamental contribution of our

approach is introducing endogenous spillovers. The few papers studying the

effect of spillovers in occupational choice take them as exogenously given. In

Guiso and Schivardi (2011), exogenous spillovers affect occupational choices

by shifting productivity. In Cicala, Fryer Jr, and Spenkuch (2016); Chandra

and Staiger (2007), exogenous spillovers change relative benefits from different

activities. We complement this literature by providing a framework where

individual efforts affect the level of spillovers they enjoy and derive its policy

implications.

There is plenty of evidence of excessive or insufficient number of partic-

ipants in specific occupations. Many countries make it a priority to spur

entrepreneurship. Shakhnov (2014) finds that financial markets are over-

crowded with respect to entrepreneurship and that the model matches well

US data. Khabibulina and Hefti (2015) find a negative correlation of relative

wages in the financial sector with respect to the manufacturing sector in the

7Inequality spilling over across occupations is a relatively unstudied possibility. In a
recent paper, Clemens, Gottlieb, Hémous, and Olsen (2016) show that higher inequality
in one occupation spills over into other occupations through consumption demand across
occupations, yielding further increases in inequality.

8Early examples are Heckman and Sedlacek (1985, 1990) and Jovanovic (1994).
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U.S. states from 1977 to 2011. Lopez-Martin (2015) obtain similar results

for the allocation of workers between the formal and informal sectors. Our

paper provides an explanation for these phenomena and shows that overpopu-

lation/underpopulation can emerge in a model without much structure. More

generally, our results have concrete implications for economic growth, as mis-

allocation of talent and resources is viewed as a major force of cross country

GDP and productivity differences (e.g. Murphy, Shleifer, and Vishny, 1991;

Restuccia and Rogerson, 2013; Hsieh and Klenow, 2009).

There is a huge research effort to understand the effect of social rela-

tions and occupational decisions and outcomes (e.g. Granovetter, 1995; Calvo-

Armengol and Jackson, 2004; Bentolila, Michelacci, and Suarez, 2010, to men-

tion some of many contributions). The main goal of this literature is to clarify

how previous social connections affect future employment decisions. In our

analysis, occupational choice is driven by future socializing, not past connec-

tions. In this sense, our paper offers a new direction to explore the relationship

between socializing and productive decisions.

This paper is organized as follows. Section 2 describes the model. Sec-

tion 3 contains the equilibrium analysis and the general results valid for any

occupation specific ability distribution. Section 4 contains the results when

making specific distributional assumptions. Section 5 concludes. Most proofs

are gathered in the Appendix.

2 The model - payoffs

We consider an economy with a continuum of heterogeneous individuals that

choose their occupation. They can be either employees (employed in occupa-

tion M) or entrepreneurs (occupation F ). Each individual i has an occupation-

specific individual productivity parameter bni for n ∈ {M,F} , which is ran-

domly and independently drawn for each occupation. For the time being, we

make no specific assumptions on how these abilities are distributed.9

After choosing their activity, all agents within the same occupation simul-

taneously decide their direct productive effort kni and their socializing effort

sni . Socializing activities allow them to take advantage of productive efforts

made by the other members of the same occupation. Consequently, the payoff

within a particular occupation n is the sum of two components, a private com-

9In section 4, we study the cases where abilities are distributed uniformly or according
to a Pareto distribution.
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ponent P n
i , and a synergistic component Sni derived from social interactions.

The private component P n
i has a linear-quadratic cost-benefit structure and is

given by

P n
i = dnbni k

n
i − 1/2 (kni )2 ,

where dn is an occupation-specific parameter and is multiplicative in individual

ability in occupation n. It is a useful normalization about the distribution of

“final” abilities dnbni that allows us to discuss the comparative statics of a

change in the mean of the ability distribution while fixing the distribution of

bni . Obviously a shift that increases dn involves a specific way to introduce a

first order stochastically dominating shift in “final” abilities dnbni .

The synergistic component, Sni , captures that socializing is required to

take advantage of the externalities generated within each occupation, which

are due to the complementarity in productive efforts. In addition, socializing

within each occupation is undirected.10 Specifically, this means that within

occupational groups the agents only choose the amount of interaction si, but

not the identity of the individuals with whom they interact. However, we allow

individuals to choose the occupational group where they socialize. This is the

way in which socializing often occurs in reality: entrepreneurs and employees

go to conferences or business fairs, they join professional associations and

go to their meetings, or simply share social activities or events. Synergistic

effort is mostly generic within the conference, fair or social gathering; but

clearly individuals carefully choose the socializing spaces they attend and the

associated socializing intensity.

Denoting by Ni the occupational group to which individual i belongs, the

synergistic returns are given by

Sni = adnbni (kni )1/2
∫
j∈Ni

(
dnbnj

(
knj
)1/2

gnij(s)
)
dj − 1

2
(sni )2 ,

where the parameter a captures the overall strength of synergies, s is the profile

of all socializing efforts and gnij(s) is the link intensity of individual i and j,

which we define below. Each occupational group is composed by a continuum

10Undirected socializing and the requirement of socializing to enjoy externalities are fea-
tures shared with Cabrales, Calvó-Armengol, and Zenou (2011). However, we propose a
different functional form for the benefits from synergistic returns. We will show that using
our synergistic component Sni leads to a game with a unique symmetric equilibrium within a
network, while the game in Cabrales, Calvó-Armengol, and Zenou (2011) has multiple equi-
libria. Equilibrium uniqueness in socializing and productive efforts facilitate our analysis of
directed occupational choice.
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of individuals N n ⊂ R for n ∈ {M,F} , where the measure of the set N n is

Nn.

Observe that synergistic returns are multiplicative in individual productiv-

ity parameters and in the square root of productive efforts additively separable

by pairs, hence productive efforts are complementary.11 Adopting this specific

functional form implies that synergistic returns are symmetric in pairwise pro-

ductive efforts and that the synergistic returns exhibit constant returns to scale

to overall productive efforts. Similar assumptions are imposed on the link in-

tensity, which captures the extent to which individuals take advantage of the

endogenously generated productive occupational externalities. Formally, these

assumptions are:12

(A1) Symmetry: gnij(s
n
i , s

n
j ) = gnji(s

n
j , s

n
i ), for all i, j, n;

(A2) The total interaction intensity of individual i in group n exhibits constant

returns to scale to overall inputs in socializing efforts and symmetry:∫
j∈Ni g

n
ij(s

n
i , s

n
j )dj = 1

Nn

∫
j∈Ni (sni )1/2

(
snj
)1/2

dj;

(A3) Anonymous socializing: gnij(s
n
i , s

n
j )/
(
snj
)1/2

= gnki(s
n
k , s

n
i )/ (snk)1/2, for all

i, j, k;

These assumptions imply a specific functional form of gnij(s
n
i , s

n
j ), which we

state in the following result:

Lemma 1. Suppose that, for all s 6= 0, the link intensity satisfies assumptions

(A1), (A2) and (A3). Then, the link intensity is given by

gnij(s
n
i , s

n
j ) =

1

Nn
(sni )1/2

(
snj
)1/2

. (1)

Proof of Lemma 1: Fix s. Combining (A1) and (A3) gives

(snk)1/2 gnij(s
n
i , s

n
j ) =

(
snj
)1/2

gnij(s
n
i , s

n
k).

Integrating across all j’s and using (A2) gives gnij(s
n
i , s

n
k) = 1

Nn (sni )1/2 (snk)1/2.

Notice that given (A2) and a level of socializing effort for all members of

the group, total socializing of an individual in a group
∫
j∈Ni g

n
ij(s

n
i , s

n
j )dj is

11Complementarity in productive returns in Cabrales, Calvó-Armengol, and Zenou (2011)
is generated by synergistic returns being multiplicative in productive efforts and additively
separable by pairs.

12While Cabrales, Calvó-Armengol, and Zenou (2011) also model symmetric and anony-
mous socializing, which is the key for generic socializing, they assume that link intensity
satisfies aggregate constant returns to scale.
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independent of the size of the group. In other words, individuals will not have

more contacts in larger occupational groups if everyone in the same occupation

chooses the same sni independent of size. One could easily accommodate other

assumptions, where socializing is either easier or more difficult in larger groups

by using 1/ (Nn)β for some β different from 1.

Combining the private returns and the synergistic component yields indi-

vidual payoffs of an individual i in an occupational group n as:

uni = P n
i + Sni

= dnbni k
n
i + adnbni (kni )1/2

∫
j∈Ni

(
dnbnj

(
knj
)1/2

gnij(s)
)
dj −

1

2
(kni )2 − 1

2
(sni )2 . (2)

We assume that individuals can only belong to one single group. This as-

sumption is consistent with a number of potential applications: most people

are either entrepreneurs or employees. They tend to have only one profession

to which they dedicate themselves; academics generally do not work simultane-

ously in very distinct fields; top athletes generally only excel in one sport; and

in spite of “Ingres’ violin” the same thing generally holds for artists.13 It can

also be justified formally within the model in a variety of ways. For example,

by adding a sufficiently large fixed cost to join a group which could arise from

training costs. We also assume no specific capital requirements to become an

entrepreneur. This could be due to the absence of capital market imperfections

or justified by simply assuming that entry costs are similar across occupations.

This way, occupational choices are not associated with initial wealth and we

can focus on social interactions and productive decisions.14

Finally, the timing of events is as follows: each individual i first chooses

whether to be a employee or an entrepreneur, and then takes the decisions

over ki and si simultaneously.

13The term ”Ingres’ violin” comes from the French neoclassical artist Jean Auguste Do-
minique Ingres, who while famous for his paintings was also incredibly talented though less
well known for his skill on the violin.

14See Evans and Jovanovic (1989) for the seminal contribution on the analysis of the effect
of liquidity constraints on entrepreneurial choice.
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3 The equilibrium and general results

We solve the game by backward induction. We compare the individual opti-

mum with the social optimum in which a social planner maximizes the sum

of individual utilities. We first solve for the optimal efforts within an occupa-

tional group and then let individuals sort themselves (or be sorted by a social

planner) into occupations.

3.1 Choice of production and socializing efforts

For each individual, we have to find the optimal productive and socializing

effort within each occupation (we suppress the superindex referring to the

occupation when there is no ambiguity). For the individual choice problem -

the decentralized problem - this is the choice of ki and si that maximizes (2).

The social planner, on the other hand, chooses ksi and ssi to maximize the sum

of individual utilities given by

∫
i∈NM∪NF

ui(bi)di =

∫
i∈NM∪NF

(
biki + abi

√
kisi

∫
j∈Ni

bj
√
kjsj

N i
dj − 1

2
k2i −

1

2
s2i

)
di.

(3)

Denote by b2 =
∫
j∈Ni b

2
jdj. We assume that

Assumption 1. supC

(
ad2b2

)2
< 1.

We can now derive the equilibrium decisions in terms of productive and

socializing efforts, which we state as follows:

Proposition 1. Under assumption 1, both the individual choice problem and

the social planner choice problem have a unique (interior) solution which for

each individual is equal to her own productivity multiplied by a function that

is identical for all individuals in the group.15 That is

ki = bik and si = bis for all i (4)

ksi = bik
sand ssi = bis

s for all i (5)

15The individual choice problem also has a trivial partial corner solution where si = 0.
If nobody socializes, socializing is not profitable. However, this equilibrium is not stable,
since the marginal utility of si is positive for any (even infinitesimally small) average level
of socializing in the occupational group. We therefore ignore this solution in our analysis.

10



where the optimal common group functions for productive and socializing effort

are given by

k =
d

1−
(
a
2
d2b2

)2 , (6)

s =
a
2
d3b2

1−
(
a
2
d2b2

)2 , (7)

for the individual choice problem, and by

ks =
d

1−
(
ad2b2

)2 , (8)

ss =
ad3b2

1−
(
ad2b2

)2 , (9)

for the social planner.

Proof. See Appendix A.1.

There are a couple of aspects worth of notice in these solutions. An im-

mediate observation is that since productivity bi is complementary to effort,

more talented individuals will also tend to work harder.16 On the other hand,

the common group functions are increasing in the average group squared pro-

ductivity b2 and in average group productivity b =
∫
j∈Ni bjdj. Since individual

socializing is si = bis, average socializing is bs. Thus, an interesting corollary

of Proposition 1 follows:

Corollary 1. Average socializing, bs, is increasing in b.

16The correlation between talent and effort has been observed in education; a sector for
which we have good data on both ability and effort (see e.g. Yeo and Neal (2004) and
Babcock and Betts (2009)). But these individual features also translate to the group level,
something that allows to make intergroup comparisons as well. On the one hand, high
talented individuals generate greater externalities on their fellows. Evidence consistent with
this result is observed in the academic world. For example, the sudden absence of extremely
highly productive researchers provides a natural test for our prediction. Azoulay, Zivin,
and Wang (2010) find that researchers collaborating with a superstar scientist experience a
lasting and significant decline in their quality adjusted publication rate after the unexpected
death of their superstar collaborator. A result similar in spirit is provided by Waldinger
(2010) when showing that the expulsion of high quality Jewish scientists from Nazi Germany
has a negative effect on the productivity of the PhD students left behind.
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The empirical implication of Corollary 1 is that individuals within more

productive occupational groups socialize more on average.17

Average socializing and hence learning spillovers are also increasing in net-

work synergies a. Thus, occupation with fewer synergies should experience

lower interactions and fewer spillovers.18 Insofar as synergies capture institu-

tional and technological aspects of socializing, we can also provide an expla-

nation for the intensity of spillovers varying across geographical regions (e.g.

Bottazzi and Peri, 2003) and over time (e.g. Jaffe, 1986).

Since we have derived the optimal efforts, we can obtain the associated

individual utilities, which are given by

Proposition 2. The resulting individual utilities are

ui(bi) =
b2i d

2

2


(

1 +
(
a
2
d2b2

)2)
(

1−
(
a
2
d2b2

)2)2

 , (10)

in the individual choice problem and

usi (bi) =
1
2
d2b2i(

1−
(
ad2b2

)2) . (11)

for the social planner solution.

Proof. See Appendix A.1.

An implication of Proposition 2 is that while all individuals benefit from

being in a more productive occupational group (since ∂usi (bi)/∂b
2 > 0 so util-

17This empirical implication of our model is consistent with evidence presented in Cur-
rarini, Jackson, and Pin (2009) showing that the number of interactions within friendship
groups are increasing in size. Albornoz, Cabrales, Hauk, and Warnes (2017) provide fur-
ther empirical evidence for this prediction based on the analysis of co-authorships within
economics fields. Furthermore, academic life is clearly an example of a situation in which
an individual’s productive outcomes are affected by the abilities and activities of other re-
searchers involved in the same production process. Hence socializing decisions become key
productive choices. Moreover academics choose their field of research: their group. Us-
ing data scrapped from the IDEAS-RePEc website Albornoz, Cabrales, Hauk, and Warnes
(2017) establish that economic researchers who work in more productive fields tend to have
more co-authors.

18This is indeed found by Nix (2015) for the case of Sweden. After constructing a ranking
of interactions with peers using Swedish data on workers, their peers, and their firms from
1985-2012, Nix (2015) compares it to estimated learning spillovers per-occupations and finds
a strong correlation between those two measures.
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ity increases in b2 for everyone), higher types benefit even more from a given

level of within-occupation externality (that is, ∂2usi (bi)/∂bi∂b
2 > 0, so that

individual type and group type are complementary). This creates an incen-

tive for high types to segregate from low types if possible, as productivity is

independent of occupational group size for a given average spillover, as shown

above by Lemma 1. We certainly observe a tendency for high-skilled employees

or entrepreneurs to create elite societies. Good examples are the Freemasons

or the Rotary club (Yanagida (1992), Burt (2003)) where access is restrictive

and whose objective seems to be mainly to socialize among like-minded high-

skilled individuals. These examples are particularly interesting because they

are often secretive, i.e., they are not created for the purpose of signaling such

quality to the external world.19

From Proposition 1, it is easy to see that individuals fail to internalize

the positive externality of their investment decisions on the other members of

their occupational group. Therefore, the individual utility resulting from the

decentralized solution (10) is lower than the individual utility resulting from

the social planner solution (11), which leads to

Proposition 3. Individuals underinvest in both productive and socializing ef-

fort (ks > k and ss > s).

Underinvestment clearly creates a rationale for subsidizing some profes-

sional activities where learning spillovers are important for productivity.20 As

discussed in the introduction, Guiso and Schivardi (2011) find that spillovers

rather than heterogeneous entry costs are the explanation for differences in

entrepreneurial activities across Italian regions.21 In the last few decades, en-

19There are other examples where elite groups use restricted settings to socialize, like
London clubs in the late 1800s and early 1900s (Brayshay, Cleary, and Selwood (2006),
Brayshay, Cleary, and Selwood (2007)). Also, fraternities in college serve the purpose of
segregation, are mainly for networking and have a positive effect on future income. Mar-
maros and Sacerdote (2002) report that fraternity membership is positively associated with
networking and with finding a high paying job directly out of college. Routon and Walker
(2014) confirm that fraternity membership increases the probability of a recent graduate ob-
taining a job. Mara, Davis, and Schmidt (2016) find that fraternity membership increases
expected future income by roughly 30%.

20This is clear in the high-tech industry. To cite one example, Pirolo and Presutti (2007)
analyze the metropolitan high-tech cluster in Rome and show that social interactions are the
most significant determinant of the innovation process and relationships based on knowledge
sharing are the most important ones.

21The approach on heterogeneous entry costs is implicitly followed by a large literature
that focuses on (particularly financial) factors that keep the would-be entrepreneurs from
actually creating a new firm, as described in Quadrini (2009)
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trepreneurship has emerged as a key issue in the policy arena.22 For instance

the European Commission launched the “Small Business Act for Europe” in

June 2008, which explicitly recognizes the central role of innovative small and

medium-size enterprises (SMEs) in the EU economy and sets out a compre-

hensive policy framework for the EU and its member states. In this document,

the Commission proposes that member states should create an environment

that rewards entrepreneurship, specifically mentioning taxation in this context.

Since entrepreneurial effort in particular, and effort within an occupation in

general, is suboptimal in the presence of spillovers, we now turn to the deter-

mination of an optimal subsidy within each occupation.

Denote individual output in a given occupation yi by

yi ≡ dbiki + adbi (ki)
1/2

∫
j∈Ni

(
dbj (kj)

1/2 gij(s)
)
dj.

Proposition 4. A subsidy that achieves efficient effort within an occupation

(taking as given the selection into occupations) is given by:

yi − d
(ki)

2

k
. (12)

Proof. See Appendix A.2

This subsidy, which is based on observable individual output and produc-

tive effort, alters the original utility in a way that induces socially optimal

levels of effort. However, it takes as given the selection into occupations. For

this reason, it is only part of an optimal policy. Individuals choose their oc-

cupation, and these individual choices might not be efficient. We now analyze

the optimal individual occupational choice and then return to the issue of

taxation to induce efficient occupational choices.

3.2 Choice of occupation

Having found the second-stage utilities, we can now solve the first-stage in

which individuals sort themselves into either employees (group M) or en-

trepreneurs (group F ). We show now that independently of whether pro-

ductive or socializing efforts within the occupation are individually chosen

(decentralized solution) or by the social planner, the solution is characterized

22The Economist on 14th March 2009 published a special report on entrepreneurship with
the title “Global Heroes”.
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by a dividing line bMi = CbFi such that individuals who fall below the line

choose group F , while individuals above the line choose group M . Such a

dividing line implies that

bM2 = E
(
bM

2

i

∣∣bMi > CbFi

)
, (13)

bF 2 = E
(
bF

2

i

∣∣bMi < CbFi

)
. (14)

In other words, comparative advantage determines the choice of occupation

in a particularly simple way. For individuals whose ratio of types bMi /b
F
i is

bigger than C, they choose to become employees (group M). On the other

hand, individuals whose ratio of types bMi /b
F
i is lower than C choose to become

entrepreneurs (group F ). Naturally, C is an endogenous function of all the

parameters in the model, and in general, it need not be unique.

We denote the slope of the dividing line by CP if effort choices in the occu-

pational groups are decentralized and by CE if the social planner implements

efficient effort choices within the occupations.

When deciding which occupational group to join, individuals take the occu-

pation choices of others as given. They choose the occupation that grants them

the maximal utility given the optimal within occupation investment choices,

which could result from the decentralized or the centralized solution derived

in the previous section.

Under the decentralized solution, individuals choose to become an employee

(group M) if and only if ui(b
M
i ) ≥ ui(b

F
i ). Hence, whenever

bM
2

i dM
2

2


(

1 +
(
aM
2
dM

2
bM2

2
)2)

(
1−

(
aM
2
dM2bM2

2
)2)2

 >
bF

2

i dF
2

2


(

1 +
(
aF
2
dF

2
bF 2

2
)2)

(
1−

(
aF
2
dF 2bF 2

2
)2)2

 .

(15)

If the dividing line exists, its slope is defined when the expressions on either

side of the inequality in (15) are equal. In other words, the dividing line is

defined by the following expression:
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bMi = bFi
dF

dM

√√√√√√√√
(

1 +
(
aF
2
dF 2bF 2

2
)2)

(
1−

(
aF
2
dF 2bF 2

2
)2)2

(
1−

(
aM
2
dM2bM2

2
)2)2

(
1 +

(
aM
2
dM2bM2

2
)2) = bFi CP .

Hence CP is the fixed point of the mapping

CP =
dF

dM

√√√√√√√√
(

1 +
(
aF
2
dF 2bF 2

2
)2)

(
1−

(
aF
2
dF 2bF 2

2
)2)2

(
1−

(
aM
2
dM2bM2

2
)2)2

(
1 +

(
aM
2
dM2bM2

2
)2) , (16)

where the right hand of (16) depends on CP through bM2 and bF 2 , which

are defined by equations (13) and (14) respectively. Put differently, CP is

implicitly defined by a zero of the mapping

g(C, ·) ≡ dF
2

dM2

(
1 +

(
aF

2
dF

2
bF 2

)2)
(

1−
(
aF

2
dF 2bF 2

)2)2

(
1−

(
aM

2
dM

2
bM2

)2)2

(
1 +

(
aM

2
dM2bM2

)2) − C2. (17)

If ss and ks are induced by the social planner (say via subsidies), people

would choose to become an employee (group M) if and only if usi (b
M
i ) ≥ usi (b

F
i )

and the dividing line, should it exist, would solve

CE =
dF

dM

√√√√√√√
(

1−
(
adM2bM2

)2)
(

1−
(
adF 2bF 2

)2) , (18)

and is implicitly defined by a zero of the mapping

f(C, ·) ≡ dF
2

dM2

1−
(
aMdM

2
bM2

)2
1−

(
aFdF 2bF 2

)2 − C2. (19)

We can use the implicit definitions of CP and CE to derive comparative

static results based on the implicit function theorem. First observe that
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Proposition 5. For any underlying distribution of abilities, if assumption 1

is satisfied, a zero of the mappings f(C) and g(C), and thus an equilibrium,

always exists. Furthermore, in any stable equilibrium, ∂f(C)
∂C

< 0 and ∂g(C)
∂C

< 0.

Proof. See Appendix A.3.

This is a helpful technical result. Basically, ∂f(C)/∂C < 0 and ∂g(C)/∂C <

0 mean that establishing comparative static results only requires checking the

sign of the derivatives of the functions defining CP and CE with respect to the

underlying parameters an and dn for n ∈ {M,F}.

Proposition 6. For any underlying distribution of abilities, if assumption 1

is satisfied, both CP and CE are decreasing in aM and dM and they are also

both increasing in aF and dF .

Proof. See Appendix A.4.

When C decreases more people become employees (join the M -group).

Similarly, an increase in C implies that more people become entrepreneurs (join

the F -group). Thus, according to Proposition 6, an increase in the power of

synergies, or a specific first order stochastic dominance shift in the distribution

of final abilities, will lead to more people joining the affected occupation.

Higher within occupation synergies a might be caused by the introduction

of new or improved communication technology facilities. The effect of these

technologies on productivities has been widely acknowledged.23 To our knowl-

edge, there is no study linking the relative sizes of economic sectors with their

differential adoption of communication technologies. This paper provides clear

predictions linking relative sector sizes with other observable characteristics.

These predictions can be tested in future research and exhibit the nice feature

of being independent of the underlying distribution of abilities.

Similarly, our model delivers clear and testable predictions for a shift in

d. Such shifts could be technological changes that affect the productivity of

every individual in a given occupation. Or they could be due to institutional

features. For example, in some institutional settings very large (or very small)

23Some examples are: Lio and Liu (2006) who find positive and significant relationship
between the adoption of information and communication technology and agricultural pro-
ductivity based on data collected in 81 countries for the period 1995–2000. Bayes (2001)
find that village phones in Bangladesh allow farmers to obtain better prices through infor-
mation diffusion. Genius, Koundouri, Nauges, and Tzouvelekas (2013) provides this type
of evidence for olive farmers in Greece while Sene (2015) studies peanut farmers in Senegal
and obtains a positive impact of connectivity on output.
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firms are extremely regulated, while in others there are too many loopholes

for politically connected firms. If we interpret our model as choosing to work

in the formal or informal sector, for example, a looser degree of control would

induce a first-order stochastic dominant shift in the profitability of the informal

sector and it will increase the attractiveness of that sector. A high taxation

level in the formal sector will have a similar effect.24

The above results only indicate how the relative occupational sector sizes

change with the underlying parameters, but they do not inform us about the

efficiency or inefficiency of the equilibrium outcomes. Is there an occupational

sector which is too big or too small? We will turn to this question in Subsection

4.1 where we make specific assumptions for the underlying talent distributions.

But before assuming specific distributions, we can show in all generality that

a social optimal sorting into occupations can always be achieved since:

Proposition 7. Any C ∈ [0,∞) can be obtained in equilibrium using a linear

tax/subsidy on output.

Proof. See Appendix A.5.

From proposition 7 it is immediate that

Corollary 2. The socially optimal C can be achieved in equilibrium using a

linear tax/subsidy on output.

4 Additional results for specific distributions

of talent

We know wish to derive additional insights from our model. At this stage, we

assume specific ability distributions. We study the cases of the Uniform and

Pareto distributions of talent. The following results state that both distribu-

tions deliver a unique equilibrium.

Proposition 8. If abilities are uniformly and independently distributed in

[0,Bn] for n ∈ {M,F} , both CP defined by (16) and CE defined by (18) exist

and are unique.

Proof. See Appendix A.6.

24Lopez-Martin (2015) find plentiful evidence for these effects.
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Proposition 9. If abilities are distributed independently and follow a Pareto

law in [1,∞) with shape parameter αj for j ∈ {M,F}, both CP , defined by

(16) and CE, defined by (18) exist and are unique.

Proof. See Appendix A.7.

Uniqueness is a useful feature of our model to study the emergence of effi-

cient allocations of individuals across occupations. Global allocative efficiency

is discussed in Section 4.1 for both distributions. The uniform distribution al-

lows to show in a simple way the policy implications of allocative inefficiency

(Section 4.2). The Pareto distribution provides a framework to study the ef-

fect of inequality on socializing and productive efforts, and the emergence of

inequality spillovers across sectors (Section 4.3).

4.1 Global allocative inefficiency in the absence of in-

tervention on location

We focus here on the relationship between decentralized and centralized effort

choices within occupations and social optimality in occupational choice. We

begin with the case of abilities being uniformly and independently distributed.

Without loss of generality, we let BM > CBF . This assumption simply says

that the general employment sector is larger than that of the entrepreneurs.

To see whether occupations are over or under populated, we simply need to

compare the equilibrium cut-off dividing lines. Notice, for example, that occu-

pation F is overpopulated if the social planner would choose a cutoff that lies

to the right of those cutoffs chosen by the individuals in both cases studied

above. Formally, overpopulation of the occupation F is implied by C∗E > CE

and C∗P > CP , where C∗E is the cutoff a social planner would choose when

effort choices in the groups are centralized while C∗P is the cutoff the social

planner would choose when effort choices in the groups are decentralized. The

next result shows that this is indeed the case:

Proposition 10. If abilities are uniformly and independently distributed in

[0, B]n] for n ∈ {M,F}, social welfare is increasing in C for all C ≤ CE and

C ≤ CP .

Proof. See Appendix A.8.

Proposition 10 implies that with a uniform distribution of individual tal-

ent, too few people join the F group, independently of whether the choice of
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productive and socializing efforts are efficient or not. The intuition is simple.

At either CE or CP , individuals at the margin, for whom bMi is very close to

CbFi , are almost indifferent about which occupation to choose. For this rea-

son, moving them from one occupational group to the other does not affect

much their utilities. However, this relocation affects welfare in both occupa-

tional groups by affecting their average type. For entrepreneurs (occupation

F ), this effect is almost non-existing because its average type does not depend

on C under the uniform distribution (see equation (40) in Appendix A.6).

For the general occupation (M group), the average type improves with C (see

equation (42) in Appendix A.6) and hence average welfare increases when the

indifferent, and close to indifferent, M -types in the group are induced to join

the entrepreneurial sector. Society would be better off had they joined the F

group. This occurs independently of whether productive and socializing efforts

are generated in a socially optimal way, or in a decentralized way. This is im-

portant because, as we mentioned previously, the fact that some activities are

not sufficiently populated from a social point of view motivates interventions,

such as incentives to become entrepreneurs (Haufler, Norbäck, and Persson

(2014)).

However, the stark result according to which it is always the same occupa-

tion that is overpopulated hinges on the assumption that individual produc-

tivities are uniformly distributed. When talent follows a Pareto distribution,

occupations are still inefficiently populated but in a way that depends on the

underlying parameters. To save space, we just compare C∗E to CE (i.e. the case

where investment in productive and socializing effort are optimally determined

by a social planner). The next result characterizes allocative inefficiency for

the case of the Pareto distribution:

Proposition 11. Let abilities be independently distributed, and assume they

follow a Pareto law in [1,∞) for n ∈ {M,F} with a common shape parameter

α. Then there might be too few (i.e. ∂w(C)
∂C

∣∣∣
C=CE

> 0) or too many people (i.e.

∂w(C)
∂C

∣∣∣
C=CE

< 0) in occupation F compared to the social optimum.

In particular:

• For fixed values of aF , aM , dF and dM , satisfying aM
2
dM

2
< aF

2
dF

2
,

there is a value of α high enough such that ∂w(C)
∂C

∣∣∣
C=CE

> 0.

• Also, for fixed values of dF , dM and for
(
aM

2
dM

2
)(

aF
2
dF

2
)
< 1,, there

is an aF low enough such that ∂w(C)
∂C

∣∣∣
C=CE

< 0.
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Proof. See Appendix A.9.

Notice that aM
2
dM

2
< aF

2
dF

2
implies that the overall strength of synergies

for entrepreneurs is higher than for employees. In Lemma 4 (Appendix A.9),

we show that aM
2
dM

2
< aF

2
dF

2
is equivalent to CE > 1. An important

implication of CE > 1 is that the average type in occupation F decreases with

C, while the average type in occupation M increases with C.25 Thus, under

CE > 1, reallocating M -types that are close to indifferent to occupation F

lead to lower welfare in occupation F , since the average type in occupation F

decreases. At the same time, welfare in occupation M increases because the

average type in occupation M increases. The overall effect on social welfare is

therefore ambiguous.

In spite of the general ambiguity, we are able to provide sufficient condi-

tions for under- and overpopulation of the entrepreneurial sector when CE > 1.

Notice that Proposition 11 establishes that occupation F is underpopulated

for distributions with relatively low dispersion (high values of α). Notice as

well that a low dispersion in a Pareto distribution means that the tails of

the distribution are thin, which implies that the number of superstars is very

small. Thus, if both sectors have a low number of very able individuals, the en-

trepreneurial sector, which under CE > 1 has a larger impact of synergies, will

be underpopulated. We are not aware of any empirical research documenting

whether these conditions (aM
2
dM

2
< aF

2
dF

2
and α small) are satisfied. This is

a matter that obviously requires further research. However, this result provides

a potentially useful rule of thumb to detect underpopulation/overpopulation

of different occupational sectors.

Proposition 11 also establishes that the size of the occupation with higher

synergies is sub-optimally large when synergies are sufficiently small in both

occupations. To see this, notice that occupation F is overpopulated when aF

(the strengths of synergies in F , and also in M , since aM
2
dM

2
< aF

2
dF

2
for

CE > 1) is very low.

Although the direction of overpopulation is conditional on the distribution

of abilities, the general message of our analysis is relevant in its own right:

decentralized selection involves sub-optimal composition of occupations. As a

consequence, the social optimum is achieved when the central planner inter-

venes at both margins, i.e. by inducing optimal efforts within the occupation

and chooses the optimal ratio C∗E.

25If CE < 1, we just have to interchange the labels of the group.
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There is plenty of evidence of excessive or insufficient size of specific oc-

cupations. Shakhnov (2014) shows that financial markets are overcrowded

with respect to entrepreneurship and that the model matches well US data.

Khabibulina and Hefti (2015) find a negative correlation of relative wages in

the financial sector with respect to manufacturing sector in case of the U.S.

states from 1977 to 2011. A similar, while somewhat less robust, result applies

to the case of relative sector sizes as measured by the labor force. Our pa-

per provides an explanation for these phenomena and shows that productive

and informational spillovers are prime candidate mechanisms for overpopula-

tion/underpopulation to emerge in economic sectors.

4.2 Welfare-reducing policy interventions with conges-

tion

In this section, we assume that abilities are uniformly and independently dis-

tributed in [0,Bn] for n ∈ {M,F} . Proposition 10 established that C∗E > CE,

however, this result is silent towards the position of C∗E with respect to CP .

This poses an interesting question, since CE requires intervention by the social

planner when choosing productive and socializing efforts, while CP is the cutoff

chosen by individuals in the absence of any intervention. Can no intervention

be better than intervening at one margin only? We turn to this question in a

setup where we allow for congestion. We first show that inducing the optimal

socializing and production effort can induce over-congestion. Then we show

that if congestion is costly, inducing within-group efficiency without correcting

for misallocations in occupational choice can reduce global efficiency.

Optimal socializing and production effort can induce excessive con-

gestion

We want to show the existence of parameter values for which a decentral-

ized choice of occupation, together with an optimal choice of socializing and

production efforts can lead to over-congestion in the occupation of general

employees.

Proposition 12. Suppose aM = aF , dM = dF and BM = BF + ε. For ε small

enough we have that CE < CP < 1 < C∗E.

Proof. Suppose first that aM = aF , dM = dF and BM = BF . It is easy to see

that in the absence of any asymmetries C∗E = CE = CP = 1. It is then optimal,
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both socially and individually, for individuals to sort into the occupation where

they have the higher productivity draw bji . Now, suppose we give a small

advantage to occupation M, by increasing BM . Since the F parameters are

left unchanged also the utility for an individual from choosing occupation F is

unaffected (since average type in occupation F is independent of C). From the

definitions of CE and CP it is easy to see that increasing BM will reduce CE and

CP : for a fixed C, the right hand side of both defining equations (16) and (18)

decrease if BM increases. Hence to preserve the equality, the variable C has to

fall. An increase in BM increases average type in occupation M and therefore

it draws more people into this occupation. However, individuals with lower bMi
than before the increase in BM are now drawn into occupation M , and those

individuals lower the average type in occupation M , which eventually stops

the inflow. This effect is stronger when efforts are induced optimally since

the optimal effort choices allow individuals to take more advantage of the

improved parameters in occupation M , hence CE < CP < 1 when aM = aF ,

dM = dF and BM = BF + ε, for ε small enough. From the point of view

of the social planner, when aM = aF , dM = dF and BM > BF restricting

occupation M (i.e. inducing more people to become entrepreneurs), does not

affect the average type in occupation F because it is the marginal type that

joins occupation F , while it improves the average type in occupation F . From

the above discussion, it is immediate that CE < CP < 1 < C∗E and the result

follows.

CE < CP < 1 < C∗E corresponds to situations in which achieving within

occupation efficiency induces a lower number of individuals to become en-

trepreneurs. Under these circumstances, the regulating government operating

only on one margin is “wasting” part of the effort because it generates a counter

reaction on the other margin it does not control. For this reason, inducing ef-

ficient efforts for a given composition of occupations induces an even more

severe underpopulation of the entrepreneurial occupation than in the absence

of any intervention. We next show that this can lead to a reduction in global

efficiency if congestion is costly.
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Congestion can reduce global efficiency

We model congestion as follows. The utility of agents in the more crowded

occupation M is multiplied by the following function f
(
C, bMi

)
:

f
(
C, bMi

)
=

 1 if bMi < C∗BF

(C∗BF )
2

bM
2

i

+ (1− v (C))

(
1− (C∗BF )

2

bM
2

i

)
if bMi ≥ C∗BF

, (20)

where for the time being v (C) is any function that guarantees f ′C
(
C, bMi

)
≥

0.26 This captures the fact that congestion is more harmful the larger the

population in M , since there are fewer people in M the larger is C. Observe

that (20) takes away part of the welfare of bMi types above C∗BF and make

it closer to the welfare of type bMi = C∗BF when C is progressively smaller.27

We could also also allow for congestion in the other group, but this would not

change the qualitative results. So, for notational simplicity, we apply conges-

tion only in group M . This way of describing congestion has the advantage

that it does not alter our equilibrium location analysis. The reason is that

it takes welfare away only from agents that are “supramarginal”, i.e., they

will choose to go to occupation M anyway. This is admittedly artificial, but

the point of this exercise is only to highlight a theoretical possibility, and this

particular modeling device is the simplest one that delivers the conclusion in

a transparent way.

Proposition 13. Suppose congestion costs are given by f
(
C, bMi

)
defined in

equation (20), and also that there is no intervention in occupational choice.

An intervention designed to optimize the si, ki choice within occupations, tak-

ing as given the equilibrium occupational choice might lead to a lower welfare

than no intervention. That is, there are parameter values for which welfare

under socially optimal socializing and productive efforts within occupations is

lower than the welfare with individually optimal choice of both socializing and

productive effort.

To prove Proposition 13, we first derive an expression for welfare.

26We choose a specific v(C) in Lemma 3 since we illustrate with a specific example that
an intervention to correct within-occupational inefficiency without accounting for across
occupation misallocations can be worse than no intervention at all.

27Other ways that take surplus away from high bMi and are also related to C would also
work.
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Lemma 2. In the presence of congestion, social welfare when the government

induces efficient productive and socializing efforts within occupations is given

by

wE(C) =
CBF 3

8BM


 dF

2

1−
(
aFdF 2bF 2

)2
+ C2

 dM
2

1−
(
aMdM2bM2

)2



+

(
1− C BF

BM

) (
CBF

)2
2

 dM
2

1−
(
aMdM2bM2

)2
+ (1− v (C))GE (C) ,

where

GE (C) =
1

BFBM

∫ BF

0

∫ BM

CBF

bM
2

i

2

 dM
2

1−
(
aMdM2bM2

)2
 dbMi db

F
i

(21)

− 1

BFBM

(BM − CBF
)
C2BF 3

2

 dM
2

1−
(
aMdM2bM2

)2

 .

Similarly, welfare in the absence of government intervention is given by

wP (C) =
CBF 3

2BM


dF

2

(
4 +

(
aFdF

2
bF 2

)2)
(

4−
(
aFdF 2bF 2

)2)2 +

dM
2

(
4 +

(
aMdM

2
bM2

)2)
(

4−
(
aMdM2bM2

)2)2 C2



+2

(
1− C BF

BM

)(
CBF

)2 dM2

(
4 +

(
aMdM

2
bM2

)2)
(

4−
(
aMdM2bM2

)2)2 + (1− v (C))GP (C) ,
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where

GP (C) =

∫ BF

0

∫ BM

CBF

2bM
2

i

BFBM

dM
2

(
4 +

(
aMdM

2
bM2

)2)
(

4−
(
aMdM2bM2

)2)2 dbMi db
F
i (22)

−4

(
1− C BF

BM

) (
CBF

)2
2

dM
2

(
4 +

(
aMdM

2
bM2

)2)
(

4−
(
aMdM2bM2

)2)2 .

Proof. See Appendix A.10

To complete the proof of Proposition 13, we only need to find a func-

tion v(C) and some parameter values such that no intervention delivers more

welfare than the intervention which is focused only on inducing optimal pro-

ductive and socializing efforts within an occupation. This is done in Lemma 3.

It assumes that congestion only has a bite in extremely crowded occupations.

Lemma 3. Let v (C) = 1 for C close to zero, and for C bounded away from

zero v (C) = 0. Then if 1 −
(
aMdM

2 BM
2

3

)2
(sufficiently small) and BM big

enough, w(CE) < w(CP ).

Proof. See Appendix A.11

Proposition 13 points to the possibility that intervention at one margin

might be worse than no intervention. If there are congestion costs in occu-

pational choice, the absence of any government intervention can be socially

better than the existence of local intervention via transfers and taxes that

induce the efficient effort levels within the occupations. A parallel result is

found in the education literature in models in which overall student effort is

influenced both by parental effort and the school environment. In this con-

text Albornoz, Berlinski, and Cabrales (2017) have shown that a reduction in

class size leads to lower parental effort and hence little (or no) improvement

in overall educational performance.

4.3 Inequality and effort choices

We explore now the link between inequality of abilities and productive and

socializing efforts. We focus on the Pareto distribution because of its capacity

to describe the variation of wages and income (and thus, indirectly, in talent)

26



across individuals (e.g. Mandelbrot, 1960; Guvenen, Karahan, Ozkan, and

Song, 2015). Notice that the shape parameter αi is an (inverse) measure of the

spread of talent. Thus, we can simply associate a general increase of inequality

with a reduction of αi. One difficulty with the Pareto, though, is that reducing

αi increases both mean and dispersion. To circumvent this problem, we look

at the effect of a “neutralized” reduction in αj. More specifically, as αj falls

we impose an equivalent change is a to reduce effort as much as necessary

to fix the unconditional mean of the Pareto distribution; which, remember,

is E
(
bj

2

i

)
= αj/ (αj − 2) , for j ∈ {M,F}). This way, we focus exclusively

on the effect of changes in the dispersion of talent, which we associate with

inequality. We can at this point state:

Proposition 14. Suppose abilities are distributed independently and follow

a Pareto law in [1,∞) with shape parameter αj for j ∈ {M,F}. Suppose as

well that the shape parameter αj of one of occupations decreases and that a

is reduced to exactly compensate for the increase (i.e. a′ = a (αj − 2)αj) in

the unconditional mean of squared types. Then, if we hold CE or CP constant,

both bM2 and bF 2 increase, and thus productive and socializing effort increase

in both occupations.

Proof. See Appendix A.12.

As a basic intuition, notice that as the dispersion in one of the distributions

increases, both occupations receive a better selection of types. The tails of one

of the distributions is now larger and comparative advantage forces a selection

mostly from the tails. For a more analytical explanation, let us rewrite the

expression for bF 2 to obtain:

bF 2 = E
(
bF

2

i

∣∣bMi < CbFi

)
=

∫∞
1

∫ CbF
1

bF
2
fF
(
bF
)
fM
(
bM
)
dbMdbF∫∞

1

∫ CbF
1

fF (bF ) fM (bM) dbMdbF

=

∫ ∞
1

bF
2

fF
(
bF
) FM

(
CbF

)∫∞
1
fF (bF )FM (CbF ) dbF

dbF .

Observe that if αM decreases, the amount of mass on the tail of the distri-

bution increases. In this way, the weight given to larger values of bF increased

by a (now larger) factor FM
(
CbF

) ∫∞
1
fF
(
bF
)
FM

(
CbF

)
dbF .

The effect of a decrease of αF is more direct, as it increases fF
(
bF
)

for

larger values of bF . But of course, we are compensating for the direct increase

by reducing a. But the key difference in the conditional expectation is that
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the F
(
CbF

) ∫∞
1
f
(
bF
)
F
(
CbF

)
dbF term, now unchanged, gives more weight

to changes that occur for higher values of bF .

Clearly, the effect of inequality in talent on socializing and productive

efforts emerges from the existence of spillovers within occupations. This is a

novel empirical implication of our model that stands as a challenge for future

empirical work.

5 Conclusion

In this model, we study a model that integrates productive and socializing ef-

forts with occupational choice. Socializing allows for capturing informational

spillovers between individuals. We show that the existence of spillovers leads

to some interesting implications. It causes more talented individuals to work

harder, generating bigger positive externalities within their occupation, but

they also have incentives to segregate. We also show that average socializ-

ing increases in average group productivity and in network synergies. Also,

any increase in within occupation synergies or improvement in final abilities

for an occupation causes more people to choose this occupation no matter

how abilities in the different occupations are distributed. This result provides

interesting testable implications on how sector sizes should vary, for exam-

ple, after the generalization of new communication technologies, which may

differentially be adopted across sectors. Another interesting implication of

endogenous spillovers is higher inequality of abilities imply more socialization

and productive efforts. Interestingly this effect influences also other occupa-

tions. This is something that would not happen in a world without spillovers

within occupations.

As one would expect in a model with complementarities, individuals under-

invest in productive and social effort. We solve for the optimal subsidy within

occupations. However, since occupational choice is endogenous, solving only

the within-group investment problem is not sufficient for efficiency, since indi-

viduals tend to sort themselves into occupations in a socially inefficient way in

the presence of spillovers. Our paper shows that the socially optimal sorting

can always be achieved by a linear tax on output no matter how talents are

distributed across occupation. Policy-makers have to combine this optimal lin-

ear tax with the optimal subsidy for efficient effort within occupations. If they

only intervene at one margin, the result might be worse than no intervention

at all. We show that inducing optimal effort only within an occupation may

28



exacerbate misallocations of individuals across occupations. In fact, it can do

so to the point that in the presence of congestion costs it may generate an

even lower social welfare than no intervention at all.

Since the Pareto distribution is widely used to model wage (and thus indi-

rectly talent distributions), and arguably wages and income are well described

by a Pareto law (Guvenen, Karahan, Ozkan, and Song, 2015, for a recent ref-

erence), our model provides two rules of thumb to identify potentially over-

or underpopulated occupational sectors. The first rule applies to a situation

with a low dispersion in the Pareto distribution, implying that there are few

superstars in each sector. In such a situation, the sector with a larger impact

of synergies is likely to be underpopulated. The second rule applies to a situ-

ation where synergies are small in all occupational sectors. If this is the case,

overpopulation in the sector with higher synergies is likely to occur.

One possible avenue for further research would be to explore the dynamic

implications of our model. The agents’ choices in our framework are static,

but the work on homophily shows that some fruitful insights can be obtained

from dynamic models of group formation. For example, Bramoullé, Currarini,

Jackson, Pin, and Rogers (2012) show that it is only for young individuals

that homophily-based contact search biases the type distribution of contacts.28

Hence in the long-term groups need not be type-biased. We could extend

our model to allow for participation in more than one occupation over time

and thus ascertain if biases in occupational choice persist over time. Clearly,

another extension would be to allow some spillovers between groups and partial

participation of agents in several of them. We could also allow for horizontal

preferences over occupations which are not necessarily related to individual

productivity and for correlated productivities across occupations.
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A Appendices

A.1 Proof of Propositions 1 and 2

The FOC for the decentralized problem are

ki = dbi +
a

2
d2bi

√
si
ki

∫
j∈Ni

bj
√
kjsj

N i
dj for all i (23)

si =
a

2
d2bi

√
ki
si

∫
j∈Ni

bj
√
kjsj

N i
dj for all i (24)
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while the FOC for the social planner simplify to

ksi = dbi + ad2bi

√
ssi
ksi

∫
j∈Ni

bj
√
ksjs

s
j

N i
dj for all i (25)

ssi = ad2bi

√
ksi
ssi

∫
j∈Ni

bj
√
ksjs

s
j

N i
dj for all i (26)

We first prove that ki
si

=
kj
sj

for all i and j.

We divide (23) by (24) to get

ki
si

=
d+ a

2
d2
√

si
ki
K (b,k, s)

a
2
d2
√

ki
si
K (b,k, s)

=

√
ki
si

+ a
2
dK (b,k, s)

a
2
dki
si
K (b,k, s)

(27)

where bold face letters denote vectors and

K (b,k, s) =

∫
j∈Ni

bj
√
kjsj

N i
dj

Rearranging (27) gives

d

(
ki
si

)2
a

2
K (b,k, s) =

√
ki
si

+ d
a

2
K (b,k, s) (28)

from which it is immediate that

ki
si

= F (K (b,k, s))

for some K (.) with a unique solution. To see the uniqueness notice that letting√
ki
si

= xi (28) can be written as

dx4i
a

2
K (b,k, s) = xi + d

a

2
K (b,k, s) (29)

the left hand side of (29) is a convex function taking the value 0 when xi = 0

and the right hand side it is a linear and takes the positive value da
2
K (b,k, s)

when xi = 0. Hence there is a single crossing point at the positive orthant.

Hence
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ki = dbi +
a

2
d2bi

K (b,k, s)√
F (K (b,k, s))

for all i

si =
a

2
d2bi

√
F (K (b,k, s))K (b,k, s) for all i

Thus it is clear we can write

ki = bik (b,k, s) for all i

si = bis (b,k, s) for all i

An analogous proof establishes that also for the centralized problem

ksi = bik
s (b,ks, ss) for all i

ssi = bis
sKs (b,ks, ss) for all i

It remains to determine the common optimal group parameters.

Using ki = bik and si = bis it follows that K (b,k, s) =
∫
j∈Ni

b2j
√
ks

N i dj =

b2
√
ks for the individual problem where

b2 =

∫
j∈Ni

b2j
N i
dj

and using ksi = bik
s and ssi = bis

s it follows that Ks (b,ks, ss) = b2
√
ksss for

the centralized problem.

Suppressing the dependence on the vectors, we get two simultaneous equa-

tions with two unknowns, namely

k = d+ d2
a

2

√
s

k
b2
√
ks = d+ d2

a

2
b2s

s =
a

2
d2
√
k

s
b2
√
ks =

a

2
d2b2k

k =
d

1−
(
a
2
d2b2

)2
s =

a
2
d3b2

1−
(
a
2
d2b2

)
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for the decentralized problem and

ks = d+ ad2
√
ss

ks
b2
√
ksss = d+ ad2b2ss

ss = ad2
√
ks

ss
b2
√
ksss = ad2b2ks

ks =
d

1−
(
ad2b2

)2
ss =

ad3b2

1−
(
ad2b2

)
The optimal investments follow immediately from solving this system of linear

equations. Assuming
(
ad2b2

)2
< 1 guarantees positive investment levels.

Introducing the optimal investment levels into the utility functions gives

us
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a
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for the decentralized solution and

usi (bi) = db2i k
s + ad2b2i k

sssb2 − b2i
2

(ks)2 − b2i
2

(ss)2

=
1
2
d2b2i(

1−
(
ad2b2

)2) .
for the centralized solution.

A.2 Proof of Proposition 4

Observe that if rather than the original utility we had

uni = dnbni k
n
i + 2adnbni (kni )1/2

∫
j∈Ni

(
dnbnj

(
knj
)1/2

gnij(s)
)
dj − 1

2
(kni )2 − 1

2
(sni )2

by proposition 1 the individual efforts would be socially efficient. Thus a

subsidy equal to

adnbni (kni )1/2
∫
j∈Ni

(
dnbnj

(
knj
)1/2

gnij(s)
)
dj

would be enough to induce the right investments. But note

adnbni (kni )1/2
∫
j∈Ni

(
dnbnj

(
knj
)1/2

gnij(s)
)
dj

= dnbni k
n
i + adnbni (kni )1/2

∫
j∈Ni

(
dnbnj

(
knj
)1/2

gnij(s)
)
dj − dnbni kni

and using the fact that

bi =
ki
k

then given that

yi = dnbni k
n
i + adnbni (kni )1/2

∫
j∈Ni

(
dnbnj

(
knj
)1/2

gnij(s)
)
dj

we have that the optimal subsidy will be

yi − d
(ki)

2

k

39



A.3 Proof of Proposition 5

Define

gA(C) ≡ dF
2

dM2

(
1 +

(
aF

2
dF

2
bF 2

)2)
(

1−
(
aF

2
dF 2bF 2

)2)2

(
1−

(
aM

2
dM

2
bM2

)2)2

(
1 +

(
aM

2
dM2bM2

)2)

so that g (C, ·) = gA(C)−C2. Then, given that we assume that supC

(
ad2b2

)2
<

1

g(0, ·) > 0

Then, note that the assumption supC

(
ad2b2

)2
< 1 means that b2 is bounded

above, so the numerator of the function gA (C) is bounded above by

(
1 +

(
aF

2
dF

2
supC b

F 2

)2)
.

Similarly the denominator of gA (C), is bounded below by

(
1−maxC

(
aF

2
dF

2
bF 2

)2)2

.

This means that for all C

gA (C) <
dF

2

dM2

(
1 +

(
aF

2
dF

2
supC b

F 2

)2)
(

1−maxC

(
aF

2
dF 2bF 2

)2)2

which implies that if we define Cg as

Cg ≡

√√√√√√√ dF 2

dM2

(
1 +

(
aF

2
dF 2 supC b

F 2

)2)
(

1−maxC

(
aF

2
dF 2bF 2

)2)
we have that for all C > Cg

g (C, ·) < 0

and thus by the mean value theorem there exists a value C∗ ∈
(
0, Cg

)
such

that g (C∗, ·) = 0.

Similarly, let

fA(C) ≡ dF
2

dM2

1−
(
aMdM

2
bM2

)2
1−

(
aFdF 2bF 2

)2
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so that f (C, ·) = fA(C)−C2. Then, given that we assume that supC

(
ad2b2

)2
<

1

f(0, ·) > 0

The assumption supC

(
ad2b2

)2
< 1 means that b2 is bounded above, so the nu-

merator of the function fA (C) is bounded above by

(
1−

(
aMdM

2
supC b

M2

)2)
.

Similarly the denominator of fA (C), is bounded below by

(
1−maxC

(
aFdF

2
bF 2

)2)2

.

This means that for all C

fA (C) <
dF

2

dM2

(
1 +

(
aMdM

2
supC b

M2

)2)
(

1−maxC

(
aFdF 2bF 2

)2)
which implies that if we define Cf as

Cf ≡

√√√√√√√ dF 2

dM2

(
1 +

(
aMdM2 supC b

M2

)2)
(

1−maxC

(
aFdF 2bF 2

)2)
we have that for all C > Cf

f (C, ·) < 0

and thus by the mean value theorem there exists a value C∗ ∈
(
0, Cf

)
such

that f (C∗, ·) = 0.

For stability, note that if g (C) > 0 we would have

dM
2

2


(

1 +
(
aM
2
dM

2
bM2

2
)2)

(
1−

(
aM
2
dM2bM2

2
)2)2

 <
dF

2

2


(

1 +
(
aF
2
dF

2
bF 2

2
)2)

(
1−

(
aF
2
dF 2bF 2

2
)2)2


and thus for an individual with bMi = CbFi would not be indifferent between

group M and F but would prefer to move to group F so that C would present

a tendency to increase. This leads us to postulate a natural tatônnement-like

adjustment dynamic
∂C (t)

∂t
= R (g (C (t, ·)))
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where R (.) is an increasing function that is positive if and only if g (C, ·) is

positive. It is then easy to see that in any stable equilibrium C∗∗, g (C, ·) has

to be decreasing at C∗∗ as otherwise, a small increase or decrease from C∗∗

will push the dynamics away from the equilibrium. An analogous argument

proves the result for f (C, ·) .

A.4 Proof of Proposition 6

From Proposition 5 we know that

∂f(C, ·)
∂C

< 0

∂g(C, ·)
∂C

< 0

So using the implicit function theorem, we only need to check how the

functions f (.) and g (.) vary directly with aM , aF , dM and dF to calculate how

C changes with those underlying parameters.

We start by looking at changes in aM

∂f(C, ·)
∂aM

=
dF

2

dM2

−2aM
(
dM

2
bM2

)2
1−

(
aFdF 2bF 2

)2 < 0

g(C, ·) =
dF

2

dM2

(
4 +

(
aFdF

2
bF 2

)2)
(

4−
(
aFdF 2bF 2

)2)2

(
4−

(
aMdM

2
bM2

)2)2

(
4 +

(
aMdM2bM2

)2) − C2
P = 0

sign

(
∂g(C, ·)
∂aM

)

= sign


−4aM

(
dM

2
bM2

)2(
4−
(
aMdM

2
bM2

)2)(
4+
(
aMdM

2
bM2

)2)
(
4+
(
aMdM2bM2

)2)2

−
2aM

(
dM

2
bM2

)2(
4−
(
aMdM

2
bM2

)2)2

(
4+
(
aMdM2bM2

)2)2


< 0
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Hence

dCE
daM

= −
∂f(C,·)
∂aM

∂f(C,·)
∂CE

< 0

dCP
daM

= −
∂g(C,·)
∂aM

∂g(C,·)
∂CP

< 0

If the synergies of the M -group become more important, C decreases, thus

more people join the M -group. We now show that the opposite happens when

synergies in the F -group increase.

∂f(C, ·)
∂aF

=
dF

2

dM2

(
1−

(
aMdM

2
bM2

)2)
2aF

(
dF

2
bF 2

)2
(

1−
(
aFdF 2bF 2

)2)2 > 0

sign

(
∂g(C, ·)
∂aF

)

= sign



2aF
(
dF

2
bF2

)2(
4−
(
aF dF

2
bF2

)2)2

((
4−
(
aF dF2bF2

)2)2
)2

+
4aF

(
dF

2
bF2

)2(
4−
(
aF dF

2
bF2

)2)(
4+
(
aF dF

2
bF2

)2)
((

4−
(
aF dF2bF2

)2)2
)2


> 0

Hence

dCE
daF

= −
∂f(C,·)
∂aF

∂f(C,·)
∂CE

> 0

dCP
daF

= −
∂g(C,·)
∂aF

∂g(C,·)
∂CE

> 0

Now we look at changes in dM .

f(C, ·) =
dF

2

dM2

1−
(
aMdM

2
bM2

)2
1−

(
aFdF 2bF 2

)2 − C2
E = 0 (30)
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∂f(C, ·)
∂dM

= −2dF
2

dM3

1−
(
aMdM

2
bM2

)2
1−

(
aFdF 2bF 2

)2 − dF
2

dM2

4dM
3
(
aMbM2

)2
1−

(
aFdF 2bF 2

)2 < 0

Hence
dCE
dM

= −
∂f(C,·)
∂dM

∂f(C,·)
∂CE

< 0

Similarly

sign

(
∂g(C, ·)
∂dM

)
= sign


−4dM3

(
aM bM2

)2(
4−
(
aMdM

2
bM2

)2)(
4+
(
aMdM

2
bM2

)2)
(
4+
(
aMdM2bM2

)2)2

−
4dM

3
(
aM bM2

)2(
4−
(
aMdM

2
bM2

)2)2

(
4+
(
aMdM2bM2

)2)2


< 0

Therefore
∂CP
∂dM

= −
∂g(C,·)
∂dM

∂g(C,·)
∂CE

< 0

If dM increases fewer people join the F−group.

Finally we want to understand how the dividing line is affected by changes

in dF .

∂f(C, ·)
∂dF

=

1−
(
aMdM

2
bM2

)2
dM2




2dF
(

1−
(
aFdF

2
bF 2

)2)
+ 2aF

(
dF

2
bF 2

)2
dF

2

(
1−

(
aFdF 2bF 2

)2)2

 > 0

Therefore
∂CE
∂dF

= −
∂g(C,·)
∂dF

∂g(C,·)
∂CE

> 0

Similarly
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sign

(
∂g(C, ·)
∂dF

)

=

dF
2

(
4 +

(
aFdF

2
bF 2

)2)
(

4−
(
aFdF 2bF 2

)2)2

= sign



(
8dF+6dF

5
(
aF bF2

)2)(
4−
(
aF dF

2
bF2

)2)2

((
4−
(
aF dF2bF2

)2)2
)2

+
8dF

3
(
aF bF2

)2(
4−
(
aF dF

2
bF2

)2)(
4dF

2
+dF

2
(
aF dF

2
bF2

)2)
((

4−
(
aF dF2bF2

)2)2
)2


> 0

Therefore
∂CP
∂dF

= −
∂g(C,·)
∂dF

∂g(C,·)
∂CE

> 0

A.5 Proof of Proposition 7

We first characterize the optimal choices under a linear tax/subsidy on output.

The FOC for the decentralized problem are

ki = dtbi +
a

2
d2tbi

√
si
ki

∫
j∈Ni

bj
√
kjsj

N i
dj for all i (31)

si =
a

2
d2tbi

√
ki
si

∫
j∈Ni

bj
√
kjsj

N i
dj for all i (32)

We first prove that ki
si

=
kj
sj

for all i and j.

We divide (31) by (32) to get

ki
si

=
d+ a

2
d2
√

si
ki
K (b,k, s)

a
2
d2
√

ki
si
K (b,k, s)

=

√
ki
si

+ a
2
dK (b,k, s)

a
2
dki
si
K (b,k, s)

(33)
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where bold face letters denote vectors and

K (b,k, s) =

∫
j∈Ni

bj
√
kjsj

N i
dj

Rearranging (33) gives

d

(
ki
si

)2
a

2
K (b,k, s) =

√
ki
si

+ d
a

2
K (b,k, s) (34)

from which it is immediate that

ki
si

= F (K (b,k, s))

for some K (.) with a unique solution. To see the uniqueness notice that letting√
ki
si

= xi (34) can be written as

dx4i
a

2
K (b,k, s) = xi + d

a

2
K (b,k, s) (35)

the left hand side of (35) is a convex function taking the value 0 when xi = 0

and the right hand side it is a linear and takes the positive value da
2
K (b,k, s)

when xi = 0. Hence there is a single crossing point at the positive orthant.

Hence

ki = dtbi +
a

2
d2tbi

K (b,k, s)√
F (K (b,k, s))

for all i

si =
a

2
d2tbi

√
F (K (b,k, s))K (b,k, s) for all i

Thus it is clear we can write

ki = bik (b,k, s,t) for all i

si = bis (b,k, s,t) for all i

It remains to determine the common optimal group parameters.

Using ki = bik and si = bis it follows that K (b,k, s) =
∫
j∈Ni

b2j
√
ks

N i dj =
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b2
√
ks for the individual problem where

b2 =

∫
j∈Ni

b2j
N i
dj

Suppressing the dependence on the vectors, we get two simultaneous equa-

tions with two unknowns, namely

k = dt+ d2t
a

2

√
s

k
b2
√
ks = dt+

a

2
d2tb2s

s =
a

2
d2t

√
k

s
b2
√
ks =

a

2
d2tb2k

k =
dt

1−
(
a
2
d2tb2

)2
s =

a
2
d3t2b2

1−
(
a
2
d2tb2

)2
The optimal investments follow immediately from solving this system of

linear equations. Assuming
(
ad2tb2

)2
< 1 guarantees positive investment

levels.

Introducing the optimal investment levels into the utility functions gives

us

ui(bi) = db2i tk + ad2b2i tksb
2 − 1

2
b2i k

2 − 1

2
b2i s

2

= b2i

(
dtk + ad2tksb2 − 1

2
k2 − 1

2
s2
)

=
b2i d

2t2

2


2

(
1−

(
a
2
d2tb2

)2)
+ 4

(
a
2
d2tb2

)2
− 1−

(
a
2
d2tb2

)2
(

1−
(
a
2
d2tb2

)2)2


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so that

ui(bi) =
b2i d

2t2

2

 1 +
(
a
2
d2tb2

)2
(

1−
(
a
2
d2tb2

)2)2

 (36)

for the decentralized solution. We similarly obtain that for the centralized

solution

ui(bi) =
b2i d

2t2

2

1(
1−

(
ad2tb2

)2)2 (37)

From expression (36) we get that the equation that defines CP implicitly

is

g(C, t, ·) =
dF

2
tF

2

dM2tM2

(
4 +

(
aFdF

2
tF bF 2

)2)
(

4−
(
aFdF 2tF bF 2

)2)2

(
4−

(
aMdM

2
tMbM2

)2)2

(
4 +

(
aMdM2tMbM2

)2)−C2
P = 0

(38)

and from expression (37) we get that the equation that defines CP implicitly

is

f(C, t, ·) =
dF

2
tF

2

dM2tM2

1−
(
aMdM

2
tMbM2

)2
1−

(
aFdF 2tF bF 2

)2 − C2
E = 0 (39)

from expression (39) and (38) we get that lim tF

tM
→0
CE = lim tF

tM
→0
CP = 0

and lim tM

tF
→0
CE = lim tM

tF
→0
CP = ∞. This, plus continuity of CE and CP as

a function of tF , tM establishes that one can obtain any value of CE and CP

between 0 and ∞ by appropriately varying tF

tM
.

A.6 Proof of Proposition 8

Existence follows from Proposition 5.

Let first BM ≥ CBF . Then assuming a uniform distribution on individual

productivities between zero and Bl we can calculate bF 2 and bM2 .

bF 2 = E
(
bF

2

i

∣∣bMi < CbFi

)
=

∫ BF
0

∫ cbF
0

bF
2
dbMdbF∫ BF

0

∫ cbF
0

dbMdbF
=

CBF 4

2CBF 2
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So

bF 2 =
BF 2

2
(40)

bM2 = E
(
bM

2

i

∣∣bMi > CbFi

)
=

∫ BF
0

∫ BM
cbF

bM
2
dbMdbF∫ BF

0

∫ BM
cbF

dbMdbF
=

1

6

4BM3 − C3BF 3

2BM − CBF

(41)

So

bM2 =
1

6

(
BF 2

C2 + 2BFBMC + 4BM2 − 4BM3

2BM − CBF

)
(42)

Observe that

∂bM2

∂C
=

1

6

(
2CBF 2

+ 2BFBM − 4BM3
BF

(2BM − CBF )2

)
(43)

Since 2CBF 2
+ 2BFBM is linear and 4BM

3
BF

(2BM−CBF )2
is convex then ∂bM2

∂C
> 0

provided it is positive for C = 0 and for BM = CBF . But 6∂b
M2

∂C
= BFBM

when C = 0 and 6∂b
M2

∂C
= 0 when BM = CBF . This means that

∂bM2

∂C
≥ 0 for BM ≥ CBF with strict equality when BM = CBF (44)

a result we will use later.

Using the expressions derived for (40) and (41) we can calculate CP and

CE. In the case of CP the expression (16) becomes

CP =
dF

dM

√√√√√√√√
(

4 +
(
aFdF 2 BF2

2

)2)
(

4−
(
aFdF 2 BF2

2

)2)2

√√√√√√√√
(

4−
(
aMdM2 1

6

4BM3−C3
PB

F3

2BM−CPBF

)2)2

(
4 + aM2

(
dM2 1

6

4BM3−C3
PB

F3

2BM−CPBF

)2)

Rearranging we get(
4−

(
aFdF

2 BF
2

2

)2)2

(
4 +

(
aFdF 2 BF2

2

)2) C2
P =

dF
2

dM2

(
4−

(
aMd

M2
bM2

)2)2

(
4 +

(
aMdM

2bM2

)2) (45)
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We define

F (C) ≡ dF
2

dM2

(
4−

(
aMd

M2
bM2

)2)2

(
4 +

(
aMdM

2bM2

)2)
and check how it changes with the dividing line C.

∂F (C)

∂C
=

dF
2

dM2

−4bM2

(
aMd

M2
)2(

4−
(
aMd

M2
bM2

)2)(
4 +

(
aMd

M2
bM2

)2)
∂bM

2

∂C(
4 +

(
aMdM

2bM2

)2)2

− d
F 2

dM2

2bM2

(
aMd

M2
)2(

4−
(
aMd

M2
bM2

)2)2
∂bM2

∂C(
4 +

(
aMdM

2bM2

)2)2

= −2
dF

2

dM2 b
M2

(
aMd

M2
)2(

4−
(
aMd

M2

bM2

)2) ∂bM2

∂C

(
12 +

(
aMd

M2
bM2

)2)
(

4 +
(
aMdM

2bM2

)2)2

< 0

where the last inequality is true because we know that

(
4−

(
aMd

M2
bM2

2
)2)

> 0 by Assumption 1, and because∂bM2/∂C > 0 when BM > CBF as shown

in expression 44. Hence the LHS of (45) is increasing in C while the RHS is

decreasing, so equilibrium is unique.

A symmetric argument shows that ∂F (C) /∂C < 0 when BM < CBF ,

which establishes the result.

A.7 Proof of Proposition 9

We assume now that returns b follow a Pareto distribution with shape pa-

rameter αi for i ∈ {F,M}

f (b) =
αi
bαi+1

for 1 ≤ b ≤ ∞

We will derive the results under the assumption that the C that defines the

dividing line bMi = CbFi is such that C ≥ 1.29 Existence follows from

29If C < 1, the same results hold with the names of the networks interchanged.
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Proposition 5.

We now calculate bF 2 and bM2 for C ≥ 1.

bF 2 = E
(
bF

2

i

∣∣bMi < CbFi

)
=

∫∞
1

∫ CbF
1

bF
2 αF

bF
αF+1

αM

bM
αM+1 dbMdbF∫∞

1

∫ CbF
1

αF

bF
αF+1

αM

bM
αM+1 dbMdbF

=
αF

αF − 2

((αF + αM − 2)CαM − (αF − 2))(
CαM − αF

αF+αM

)
(αF + αM − 2)

which can be rewritten as

bF 2 = (αF + αM)
αF

(αF − 2)

(αF + αM − 2)CαM − (αF − 2)

((αF + αM)CαM − αF ) (αF + αM − 2)
(46)

while

bM2 = E
(
bM

2

i

∣∣bMi > CbFi

)
=

αMαF
(αM−2)CαM−2

1
(αF+αM−2)

αF
CαM

1
αF+αM

which simplifies to

bM2 =
αM

(αM − 2)

αF + αM
(αF + αM − 2)

C2 (47)

bM2 is obviously increasing in C.We now show that bF 2 is decreasing in C

∂bF 2 (C)

∂C
= − (αF + αM)

(αF + αM − 2)

αF
(αF − 2)

(
2α2

MC
αM−1

((αF + αM)CαM − αF )2

)
< 0 (48)

We first prove uniqueness of CE defined by

CE =
dF

dM

√√√√1− aMdMbM2
2

1− aFdF bF 2
2 (49)

Note that the LHS of (49) is increasing in CE so all we need to show is the RHS

is decreasing in CE so that a unique equilibrium exists. Clearly the numerator

of the RHS is decreasing in CE because bM2 is increasing in CE. Since bF 2 is

decreasing in CE, the denominator of the RHS is increasing in CE. And thus

the result follows.
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We now prove uniqueness of CP which is defined by

CP =

√√√√√√√√ dF 2

dM2

(
1 +

(
aF

2
dF 2bF 2

)2)
(

1−
(
aF

2
dF 2bF 2

)2)2

(
1−

(
aM

2
dM2bM2

)2)2

(
1 +

(
aM

2
dM2bM2

)2) (50)

Again note that the LHS of (50) is increasing in CP so all we need to show is the

RHS is decreasing in CP so that a unique equilibrium exists. It is again easy

to see that

(
1−

(
aM

2
dM

2
bM2

)2)2

/

(
1 +

(
aM

2
dM

2
bM2

)2)
is decreasing in CP

because bM2 is increasing in CP . Also, since we showed in (48) that bF 2 is de-

creasing in CP then

(
1 +

(
aF

2
dF

2
bF 2

)2)
/

(
1−

(
aF

2
dF

2
bF 2

)2)2

is decreasing

CP . As a result RHS of (50) is decreasing in CP and the result follows.

A.8 Proof of Proposition 10

(i) The social planner would choose C to maximize social welfare with socially

optimal investments in productive and socializing efforts where social welfare

is given by

w(C) =
1

BFBM

∫ BF

0

∫ CbFi

0

bF
2

i

2

 dF
2

1−
(
aFdF 2bF 2

)2
 dbMi db

F
i

+

∫ BF

0

∫ BM

CbFi

bM
2

i

2

 dM
2

1−
(
aMdM2bM2

)2
 dbMi db

F
i



∂w(C)

∂C
=

1

BFBM

∫ BF

0

bF
3

i

2


 dF

2

1−
(
aFdF 2bF 2

)2
− C2

 dM
2

1−
(
aMdM2bM2

)2

 dbFi



+

∫ BF

0

∫ BM

CbFi

∂
bM

2

i

2

(
dM

2

1−
(
aMdM2bM2

)2
)

∂C
dbMi db

F
i (51)
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We already established when proving Proposition 8) that for all C

∫ BF

0

∫ BM

CbFi

∂
bM

2

i

2

(
dM

2

1−
(
aMdM2bM2

)2
)

∂C
dbMi db

F
i > 0 (52)

by showing the integrand is positive as ∂bM
2

∂C
> 0 (44). Letting

H (C) =
1

BFBM

∫ BF

0

bF
3

i

2


 dF

2

1−
(
aFdF 2bF 2

)2
− C2
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(
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)2
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 dbFi



∂H(C)

∂C
=

1

BFBM


∫ BF

0

bF
3

i

2

−2C

(
dM

2

1− aM2dM2bM2
2

)
− C2

∂

(
dM

2

1−
(
aMdM2bM2

)2
)

∂C

 dbFi


and again by the proof of Proposition 8 we know that

∫ BF

0

bF
3

i

2


∂

(
dM

2

1−
(
aMdM2bM2

)2
)

∂C

 dbFi > 0

so
∂H(C)

∂C
< 0. (53)

It is also easy to see that for CE =

√
dF2

dM2

1−
(
aMdM2bM2

)2
1−
(
aF dF2bF2

)2

H (C)|C=CE
= 0

and hence by (53) we have that H (C) > 0 for C < CE and the result follows

for CE.

(ii) The social planner would choose C to maximize social welfare taking

the optimal socializing and productive effort choices by individuals as given so
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that social welfare is given by

ui(bi) =
b2i d

2

2


(

4 +
(
ad2b2

)2)
(

4−
(
ad2b2

)2)2



w(C) =
1

BFBM


∫ BF

0

∫ CbFi

0

2bF
2

i

dF
2

(
4 +

(
aFdF

2
bF 2

)2)
(

4−
(
aFdF 2bF 2

)2)2 dbMi db
F
i

+

∫ BF

0

∫ BM

CbFi

2bM
2

i

dM
2

(
4 +

(
aMdM

2
bM2

)2)
(

4−
(
aMdM2bM2

)2)2 dbMi db
F
i



∂w(C)

∂C
=

1

BFBM


∫ BF

0

2bF
3

i


dF

2

(
4 +

(
aFdF

2
bF 2

)2)
(
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(
aFdF 2bF 2

)2)2 − C
2

dM
2

(
4 +

(
aMdM

2
bM2

)2)
(

4−
(
aMdM2bM2

)2)2

 dbFi



+

∫ BF

0

∫ BM

CbFi

∂

2bM
2

i

dM
2
(
4+
(
aMdM

2
bM2

)2)
(
4−
(
aMdM2bM2

)2)2


∂C

dbMi db
F
i

We already established when proving Proposition 8) that for all C

∫ BF

0

∫ BM

CbFi

∂

2bM
2

i

dM
2
(
4+
(
aMdM

2
bM

2
)2)

(
4−
(
aMdM2bM2

)2)2


∂C

dbMi db
F
i > 0 (54)

by showing the integrand is positive as ∂bM2

∂C
> 0 (44). Letting

HP (C) =
1

BFBM


∫ BF

0

2bF
3

i


dF

2

(
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(
aFdF

2
bF 2
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(

4−
(
aFdF 2bF 2

)2)2 − C
2

dM
2

(
4 +

(
aMdM

2
bM2

)2)
(

4−
(
aMdM2bM2

)2)2

 dbFi


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∂HP (C)

∂C
=

1

BFBM


∫ BF

0

2bF
3

i

−2C

dM
2

(
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(
aMdM

2
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(

4−
(
aMdM2bM2

)2)2 − C2

∂

dM
2
(
4+
(
aMdM

2
bM2

)2)
(
4−
(
aMdM2bM2
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
∂C

 dbFi


and again by the proof of Proposition 8 we know that

∫ BF

0

2bF
3

i

∂

dM
2
(
4+
(
aMdM

2
bM2

)2)
(
4−
(
aMdM2

bM2
)2)2


∂C

dbFi > 0

So
∂HP (C)

∂C
< 0. (55)

It is also easy to see that for CP =

√√√√√ dF2

dM
2

(
1+
(
aF

2
dF2bF2

)2)
(
1−
(
aF

2
dF2bF2

)2)2

(
1−
(
aM

2
dM2bM2

)2)2

(
1+
(
aM

2
dM2bM2

)2)

HP (C)|C=CP
= 0

and hence by (55) we have that HP (C) > 0 for C < CP and the result follows

for CP .

A.9 Proof of Proposition 11

We will prove Proposition for αF = αM .. We will first show that

Lemma 4. CE > 1⇔ aM
2
dM

2
< aF

2
dF

2

Note also that if aM
2
dM

2
= aF

2
dF

2
the solution of (49) is at CE = 1. An

increase of aM
2
dM

2
with respect to aF

2
dF

2
displaces the RHS to the left so

that the new equilibrium entails CE < 1.

We will now show that for CE > 1 there might be too few ∂w(C)
∂C

∣∣∣
C=CE

> 0

or too many people ∂w(C)
∂C

∣∣∣
C=CE

< 0 in the F group compared to the social
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optimum.30 The F group will be underpopulated if and only if

aM
2
dM

2

aF 2dF 2 >
((2α− 2)Cα − (α− 2))2Cα

α2 (2Cα − 1)3C2
(56)

We will check how a decentralized group choice deviates from the efficient

group choice CS implemented by a social planner who maximizes social wel-

fare. We study the case where the social planner also implements the socially

optimal investments in productive and socializing effort.

The social planner would choose C to maximize social welfare with socially

optimal investments in productive and socializing efforts where social welfare

is given by

w(C) =

∫ ∞
1

∫ CbF
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∫ ∞
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Now at CE =

√
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2

∂w(C)

∂C

∣∣∣∣
C=CE

= aF
2

2bF 2 α

α− 2

1

α− 1

(
−2αCα−1

(2Cα − 1)
2

)(
1

1− aF 2dF 2bF 2
2

)2
α ((2α− 2)Cα − (α− 2))

(2α− 2) (α− 2)Cα

+aM
2

2bM2 α

α− 2

α
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1
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1
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30The assumption CE > 1 is without loss of generality subject to relabeling. It implies
that synergies are bigger in occupation F .
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CE =

√
1−aM2dM2bM2

2

1−aF2dF2
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(
1

1−aM2dM2
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)2
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(
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Therefore
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2
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and
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aF 2dF 2 <
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By Lemma 4 since CE > 1⇔ aM
2
dM

2
< aF

2
dF

2
, hence aM

2
dM

2

aF2dF2 < 1.

We will now show that

1 >
((2α− 2)Cα − (α− 2))2Cα

α2 (2Cα − 1)3C2
=

((α− 1) (2Cα − 1) + 1)2Cα

α2 (2Cα − 1)3C2
(57)

Note that

((α− 1) (2Cα − 1) + 1)2 < α2 (2Cα − 1)2

since that expression is equivalent to

(α− 1) (2Cα − 1) + 1 < α (2Cα − 1)

⇔ 1 < 2Cα − 1⇐⇒ 1 < Cα

thus
((α− 1) (2Cα − 1) + 1)2Cα

α2 (2Cα − 1)3C2
<

Cα

(2Cα − 1)C2
<

1

C
< 1 (58)

where the last two inequalities hold since C > 1, noting that in that case

2Cα − 1 > Cα. Thus equation (58) establishes (57).

The next two lemmas establish that overpopulation can occur in both sec-

tors and depends on the underlying parameters. Lemma 5 shows the existence

of parameter values that ∂w(C)
∂C

∣∣∣
C=CE

< 0 while Lemma 6 shows the existence

of parameter values that ∂w(C)
∂C

∣∣∣
C=CE

> 0.

Lemma 5. Let aM
2
dM

2

aF2dF2 = r < 1. For a fixed α and r there exists an aF
2

low
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enough that

r =
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or

−
(

1− aF 2
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2
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√
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2
+ 4raF 2dF 2
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√
(1− aF 2dF 2)

2
+ 4raF 2dF 2 > 1
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2
(
aF

2

dF
2

+ 4r − 2
)

> 0

which requires r > 2−aF2
dF

2

4
which is true for example if r > 1

2
.

Proposition 11 immediately follows from these Lemmas.

A.10 Proof of lemma 2

Under congestion, the welfare of the group F remains unchanged while the

welfare of group M is given by
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(60)

when the government induces efficient socializing and productive efforts within

a group and by
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(61)
These expressions (60) and (61) can be decomposed in the welfare of those
member of M below bMi < CBF for whom congestion does not matter and
those above bMi ≥ CBF for whom congestion impinges. For the case where
the government induces efficient efforts
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The second line captures welfare of those for whom congestion matters. After
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some calculations this second line becomes

(
C∗BF

)2
2

 dM
2

1−
(
aMdM2bM2

)2
 (BM − CBF

)
BF

BFBM

+
(1− v (C))

BFBM

∫ BF

0

∫ BM

CBF

bM
2

i

2

 dM
2

1−
(
aMdM2bM2

)2
 dbMi db

F
i

−
(
BM − CBF

)
BF
(
C∗BF

)2
2

 dM
2

1−
(
aMdM2bM2

)2



which decomposes the welfare of people beyond the bMi ≥ C∗EB
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ary in two parts. First the welfare for types exactly at the boundary is
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times the fraction of people in that area is
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,which

gives the first line. And the second line is the surplus welfare for those types,

in addition to what the boundary types get, and on which the congestion

impinges. Using (21) we can now write total welfare when the government

induces efficient socializing and productive efforts as
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Welfare in absence of any government intervention wP (C) is derived in a par-

allel way.

A.11 Proof of lemma 3

We first show that it suffices to have 1 −
(
aMdM

2 BM
2

3

)2
≈ 0 (sufficiently

small), to have CE = ε ≈ 0 (very small). Observe that when CE ≈ 0

bM2 =
1

6

4BM3 − C3BF 3

2BM − CBF
' BM2

3
(62)
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Hence

CE =

√√√√√√ dF 2

dM2

1−
(
aMdM2bM2

)2
1−

(
aFdF 2bF 2

)2 (63)

in which case CE small by having

C2
E '

dF
2

dM2

1−
(
aMdM

2 BM
2

3

)2
1−

(
aFdF 2 BF4

4

)2 (64)

and thus it suffices to have

1−

(
aMdM

2BM2

3

)2

' ε2 (65)

small to have CE small.

Next we show that Cp > 0 for these parameter values (65). Recall that

CP =

√√√√√√√√ dF 2

dM2

(
4 +

(
aFdF 2bF 2

)2)
(

4−
(
aFdF 2bF 2

)2)2

(
4−

(
aMdM2bM2

)2)2

(
4 +

(
aMdM2bM2

)2) (66)

Assume for contradiction that CP = ε ≈ 0. Since bM2 = 1
6
4BM

3−C3BF
3

2BM−CBF , in this

case bM2
2

=
(
BM

2

3

)2
. But using (65) we get

4−

(
aMdM

2BM2

3

)2

= 3 + 1−

(
aMdM

2BM2

3

)2

︸ ︷︷ ︸
≈ε2

' 3

4 +
(
aMdM

2

bM2

)2
= 5−

1−

(
aMdM

2BM2

3

)2

︸ ︷︷ ︸
≈ε2

 ' 5
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and so

CP =

√√√√√√√√ dF 2

dM2

(
4 +

(
aFdF 2bF 2

)2)
(

4−
(
aFdF 2bF 2

)2)2

(
4−

(
aMdM2bM2

)2)2

(
4 +

(
aMdM2bM2

)2)

CP =

√√√√√√√√ dF 2

dM2

(
4 +

(
aFdF 2bF 2

)2)
(

4−
(
aFdF 2bF 2

)2)2

(
4−

(
aMdM2bM2

)2)2

(
4 +

(
aMdM2bM2

)2) '
√√√√√√ dF 2

dM2

(
4 + aF 2 BF4

4

)
(

4− aF 2 BF4

4

)2 9

5
> 0

(67)

which contradicts our assumption that CP = ε ≈ 0. Hence CP 6= 0.

Observe that rewriting (18) as

dM
2

(1−
(
aMdM2 BM2

3

)2C2
E '

dF
2

1−
(
aFdF 2 BF2

2

)2 (68)

we can express welfare when optimal socializing and productive efforts are

induced in the group (Lemma 2) when (65) holds and hence CE is very small

as

wE(C) =
CBF 3

8BM

 dF
2

1−
(
aFdF 2 BF2

2

)2 +
dF

2

1−
(
aFdF 2 BF2

2

)2


+

(
1− C BF

BM

) (
BF
)2

2

dF
2

1−
(
aFdF 2 BF2

2

)2 + (1− v (C))GE (C)

which reduces to

wE(CE ≈ 0) ≈
(
BF
)2

2

dF
2

1−
(
aFdF 2 BF2

2

)2 . (69)

To calculate welfare without any government intervention wP (CP ) recall that
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CP 6= 0 and hence v (CP ) = 0. Hence

wP (CP ) =
CBF 3

2BM


dF

2

(
4 +

(
aFdF

2 (BF )
2

2

)2
)

(
4−

(
aFdF 2 (BF )2

2

)2)2 +

dM
2

(
4 +

(
aMdM

2
bM2

)2)
(

4−
(
aMdM2bM2

)2)2 C2



+2

(
1− C BF

BM

)(
CBF

)2 dM2

(
4 +

(
aMdM

2
bM2

)2)
(

4−
(
aMdM2bM2

)2)2 +GP (C)

=
1

BFBM


4dF

2

(
4 +

(
aFdF

2 (BF )
2

2

)2
)

(
4−

(
aFdF 2 (BF )2

2

)2)2

CPB
F 4

8



+
1

BFBM


4dM

2

(
4 +

(
aMdM

2
bM2

)2)
(

4−
(
aMdM2bM2

)2)2

(
BM3

BF

6
− C3B

F 4

24

)

which coincides with the expression for welfare without congestion. Indeed

v (CP ) = 0 is equivalent to no congestion in the group.

Note that

4dM
2

(
4 +

(
aMdM

2
bM2

)2)
(

4−
(
aMdM2bM2

)2)2 =

4dM
2

(
4 +

(
aMdM

2
(

1
6
4BM

3−C3BF
3

2BM−CBF

))2)
(

4−
(
aMdM2

(
1
6
4BM3−C3BF3

2BM−CBF

))2)2

is increasing in C so we can have a bound on that term by taking CP = 0

and on C3BF
4

24
by taking CP = 1

w(CP ) =
1

BFBM


4dF

2

4 +

aF dF2
(
BF

)2
2

2
4 −

aF dF2

(
BF

)2
2

22

CPB
F4

8
+

4dM
2
(
4 +

(
aMdM

2
(

1
6

4BM3
−C3BF3

2BM−CBF

))2)
(
4 −

(
aMdM

2
(

1
6

4BM3−C3BF3

2BM−CBF

))2
)2

BM3
BF

6
− C

3 B
F4

24




≥
1

BFBM


4dM

2
(
4 +

(
aMdM

2 BM2

3

)2)
(
4 −

(
aMdM

2 BM2

3

)2)2

BM3
BF

6
−
BF4

24



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We know by (65) that
(
aMdM

2 BM
2

3

)2
' 1, so then

w(CP ) ≥ dM
2

BFBM

[
20

9

(
BM3

BF

6
− BF 4

24

)]

Using (69)wE(CE ≈ 0) ≈ (BF )
2

2
dF

2

1−
(
aF dF2 BF

2

2

)2

w(CE)− w(CP ) ≤ 1

2
× BF 2

dF
2

1−
(
aFdF 2 BF2

2

)2 − dM
2

BFBM

[
20

9

(
BM3

BF

6
− BF 4

24

)]

=
1

2

BF 2
dF

2

1−
(
aFdF 2 BF2

2

)2 +
5

54

BF 4
dM

2

BM
− 10

27
BM2

dM
2

which is negative for BM big enough.

A.12 Proof of Proposition 14

Suppose we normalize by the expected second moment αM
(αM−2)

, then

bM2

NORM =
αF + αM

(αF + αM − 2)
C2 =

(
1 +

2

αF + αM − 2

)
C2

Clearly, this is decreasing in αF and αM .

Suppose we normalize bF 2by the expected second moment αF
(αF−2)

, then

bF 2

NORM =

(
1− αF−2

αF+αM−2
1

CαM

)
(

1− αF
αF+αM

1
CαM

)
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∂bF 2

NORM

∂αF
=

1
1

CαM
αF

αF+αM
− 1

(
1

CαM (αF + αM − 2)
− 1

CαM

αF − 2

(αF + αM − 2)2

)
− 1(

1
CαM

αF
αF+αM

− 1
)2 ( 1

CαM (αF + αM)
− 1

CαM

αF

(αF + αM)2

)

×
(

1

CαM

αF − 2

αF + αM − 2
− 1

)
= − 1

1− 1
CαM

αF
αF+αM

(
1

CαM

αM

(αF + αM − 2)2

)
+

1(
1

CαM
αF

αF+αM
− 1
)2 ( 1

CαM

αM

(αF + αM)2

)(
1− 1

CαM

αF − 2

αF + αM − 2

)

we want to show that
∂bF 2

NORM

∂αF
< 0

this is true if and only

1− 1
CαM

αF−2
αF+αM−2

1− 1
CαM

αF
αF+αM

<
(αF + αM)2

(αF + αM − 2)2

or(
1− 1

CαM

αF − 2

αF + αM − 2

)
(αF + αM − 2)2 <

(
1− 1

CαM

αF
αF + αM

)
(αF + αM)2

(70)

We will now show that

G (αF ) ≡ (αF + αM)2
(

1− 1

CαM

αF
αF + αM

)
is increasing in αF and given that ∂bF 2

NORM/∂αF < 0 is equivalent to expres-

sion (70) the result follows. Then

∂G (αF )

∂αF
= −

(
1

CαM (αF + αM)
− 1

CαM

αF

(αF + αM)2

)
(αF + αM)2

−
(

1

CαM

αF
αF + αM

− 1

)
(2αF + 2αM)

=
1

CαM
(2CαMαF + 2CαMαM − 2αF − αM) > 0
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Now note that

∂bF 2

NORM

∂αM
=

(
1

CαM
αF−2

αF+αM−2
− 1
)

(
1

CαM
αF

αF+αM
− 1
)2 ( 1

CαM

αF

(αF + αM)2
+

1

CαM
αF

lnC

αF + αM

)

− 1
1

CαM
αF

αF+αM
− 1

(
1

CαM

αF − 2

(αF + αM − 2)2
+

1

CαM
(lnC)

αF − 2

αF + αM − 2

)
then

∂bF 2

NORM

∂αM
< 0

requires

1

1− 1
CαM

αF
αF+αM

(
1

CαM

αF − 2

(αF + αM − 2)2
+

1

CαM
(lnC)

αF − 2

αF + αM − 2

)

<

(
1− 1

CαM
αF−2

αF+αM−2

)
(

1
CαM

αF
αF+αM

− 1
) (

1

CαM

αF

(αF + αM)2
+

1

CαM
αF

lnC

αF + αM

)

which is equivalent to

1(
1− 1

CαM
αF−2

αF+αM−2

) ( αF − 2

(αF + αM − 2)2
+ (lnC)

αF − 2

αF + αM − 2

)

<
1

1− 1
CαM

αF
αF+αM

(
αF

(αF + αM)2
+ αF

lnC

αF + αM

)

Clearly this is true as αF/ (αF + αM)2 , αF/ (αF + αM) and 1/
(

1− 1
CαM

αF
αF+αM

)
all

increase in αF
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