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Abstract

Rubinstein and Wolinsky (1990b) consider a simple decentralized market in
which agents either meet randomly or choose their partners volunatarily and
bargain over the terms on which they are willing to trade. Intuition suggests
that if there are no transaction costs, the outcome of this matching and bargain-
ing game should be the unique competitive equilibrium. This does not happen.
In fact, Rubinstein and Wolinsky show that any price can be sustained as a
sequential equilibrium of this game. In this paper, I consider Rubinstein and
Wolinsky's model and show that if the complexity costs of implementing strate-
gies enter players' preferences, together with the standard payo® in the game,
then the only equilibrium that survives is the unique competitive outcome. This
is done both for the random matching and for the voluntary matching models.
Thus, the paper demonstrates that complexity costs might have a role in pro-
viding a justi¯cation for the competitive outcome.
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1. Introduction

In a competitive market agents take prices parametrically. This is usually justi¯ed by
saying that agents are `negligible'. In a dynamic game-theoretic context this can some-
times be formalized by assuming that there is a continuum of anonymous agents. The
equilibria of these models can be shown to coincide with their competitive equilibria
under some regularity conditions. On the other hand, the equilibria of dynamic games
with a (large but) ¯nite number of players can be shown to be radically di®erent from
those in a model with a continuum of players (see Gale (2000)) While this paradox
may seem narrow, the issue has broad economic signi¯cance. The rationale for the
continuum economy is that it is useful idealization for an economy with a large but
¯nite number of agents. Clearly this idealization is of limited value if the equilibria of
¯nite economies are radically di®erent from those of the continuum case.
The reason for this paradox in dynamic games with a ¯nite number of players is

that players can choose history-dependent strategies. The possibility of conditioning
behaviour on histories induces di®erent expectations for future play depending on the
history preceding the play. This allows one to construct a large number of (history-
dependent) equilibria in which a single agent has a large e®ect. The best example of
this is the Folk Theorem of the repeated game, which holds for an arbitrary number
of players.1 In these dynamic games a player has to consider the possible reaction
of others. As a result, these equilibria will depart from the competitive outcome
even in a frictionless market with a large but ¯nite number of players. Thus, even in
environments in which the competitive outcome might appear as the natural outcome
(e.g. the case of one seller of an indivisible good who faces two buyers who bid for
the unit), one can show that in general non-competitive outcomes might emerge as
equilibria if the environment is modelled as a dynamic game.
Considering explicitly bounds on or costs of computation and memory (bounded

rationality) is one research strategy for dealing with the large number of equilibria
in dynamic games. (For example, see Kalai (1990) for a survey of the literature on
modelling players as automata in 2-player repeated games.) Such bounds and or costs
induce natural restrictions on the way strategies depend on past history.
In this paper, I investigate the e®ect of introducing complexity costs in the dynamic

matching and bargaining games. In particular, I will show that complexity considera-
tions (some elements of `bounded rationality') can provide a game-theoretic foundation
for the competitive behaviour in decentralized markets with a ¯nite number of agents.

1With a continuum of players, the Folk Theorem remains valid if the game is non-anonymous.
With a ¯nite number of players, Folk Theorem type results can survive even with anonymity. One
needs noise (in strong form) and some form of anonymity to eliminate history-dependent equilibria
in repeated games with a large but ¯nite number of players (see Green (1980), Sabourian (1989),
Levine and Pesendorfer (1995), Gale (2000) and Al-Najjar and Smordinsky (1999)).
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Also, I will show that in these models the introduction of complexity costs into players'
preferences ensures that in equilibrium players choose history-independent (sometimes
referred to as stationary or Markov) strategies.

There is already a large literature on dynamic matching models with explicit non-
cooperative bargaining. (See for example Rubinstein and Wolinsky (1985), Binmore
and Herrero (1988a,b), Gale (1986a,b and 1987), Mclennan and Sonnenschein (1991);
also see the texts by Osborne and Rubinstein (1990a) and by Gale (2000)). By as-
suming a continuum of agents and/or by restricting the strategy sets to the stationary
ones, such models have been used to provide a game-theoretic foundation for the
competitive equilibrium .

One of the few papers that deals with bargaining and matching with a ¯nite num-
ber of players and with an unrestricted set of strategies, is that of Rubinstein and
Wolinsky (1990b) - henceforth referred to as RW. This paper considers a simple de-
centralized market in which agents either meet randomly or choose their partners
voluntarily and bargain over the terms on which they are willing to trade. Intuition
suggests that if there are no transaction costs, the outcome of bargaining should be
the competitive equilibrium. This intuition turns out to valid if players are restricted
to choosing history-independent strategies. However, RW demonstrate that if there
are no restrictions on the set of strategies and players can condition their behaviour
on past history of plays, then a continuum of non-competitive sequential equilibria
emerges. With random matching, this result is only established for the case of zero
discounting. However, RW argue convincingly that with random matching zero dis-
counting is the appropriate way to model frictionless markets; otherwise staying with
one's partner could be very costly. Thus, they argue that in a model with discounting
agents should be able to choose their partners. In such a model, with voluntary match-
ing, they also demonstrate the continuum result even for the case in which players
discount the future.

In sections 2 and ?? below, I will consider RW's models and discuss how their
predictions di®er from that of the competitive behaviour. I shall then show that
in RW's models if players attach some arbitrarily small weight to the complexity of
their strategies then the only perfect Bayesian equilibrium outcome that survives is
the competitive one, and that these equilibrium strategies are unique and stationary.
This will be done both for the random matching (Section 2) and for the voluntary
matching (Section ??) models of RW. The equilibrium concept I use in sections 2 and
?? is such that, in considering complexity, agents ignore any consideration of payo®s
o®-the-equilibrium path. Section 4 extends the selection results to weaker equilibrium
concepts in which complexity is less important than the o®-the-equilibrium payo®.
Section 5 contains some concluding remarks. Most of the proofs are in Appendices
A1, A2 and B.

In the literature on dynamic games, the strategy of concentrating on the history-
independent/stationary/Markov equilibria is very common. Very little justi¯cation is
usually provided for this approach. Sometimes these Markov equilibria are proposed
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as \focal" points. Intuitively, one might argue that a player concerned with the cost of
implementing complex strategies would choose a stationary strategy, where behaviour
in each period is independent of payo®-irrelevant past history.2 This paper, in addition
to providing a justi¯cation for the competitive outcomes, attempts to formalise this
intuition, in the context of dynamic matching and bargaining.

In this paper, complexity costs are introduced with the standard payo® into the
players' preference ordering as in Rubinstein (1986), Abreu and Rubinstein (1988),
Piccione and Rubinstein (1993) and others. In these papers, players are modelled as
¯nite-state automata involved in a two-player repeated game. Complexity is measured
by the (arbitrarily small) cost of maintaining an additional \machine" state.

Here, I will also focus on the complexity of implementation3 rather than on compu-
tational complexity (see Papadimitriou, 1992). But, because of the asymmetric nature
of bargaining, my notion of complexity of strategies is somewhat di®erent from that
in the above literature. Informally, the measure of complexity adopted in the random
matching model has the following property: if two strategies are otherwise identical ex-
cept that in some instance the ¯rst strategy uses more information than that available
in the current period of bargaining and the second uses only the information available
in the current period, then the ¯rst strategy is more complex than the second. This
notion of complexity is a very weak measure of the complexity of response rules within
a period. Thus, I shall refer to it as response-complexity. Chatterjee and Sabourian
(1999, 2000) also use a similar complexity criterion to justify stationary equilibrium in
alternating n-player bargaining games. This notion of complexity neither implies nor
is implied by the `counting states' notion of complexity. In the voluntary matching
model of section 4, I shall use both the counting states measure together with the
response-complexity to select uniquely the competitive outcome.

RW's dynamic matching and bargaining game is rather special. Other games
might give di®erent results. The point, here, is not that there is a right way of
modelling competitive behaviour but to give an example of what it takes, in terms of
the primitives of the model, to obtain the competitive outcome. In particular, this
paper demonstrates that complexity costs might have a role in providing a justi¯cation
for a competitive equilibrium.

Gale (2000) also discusses how the introduction of `bounded rationality' can provide
a justi¯cation for the competitive equilibrium in RW's model. He obtains his results
by either putting a bound on the complexity of the strategy pro¯les or by introducing
noise in the implementation of the strategies. Our motivation is similar to that of
Gale; however the approach taken in this paper is somewhat di®erent from his.

2Osborne and Rubinstein (1994) have, however, provided arguments against such intuition. They
argue that if equilibrium strategies are thought of as equilibrium in beliefs then it is not clear why
players should believe that other players follow the same actions after histories which have involved
highly non-stationary past plays.

3Other examples involving complexity of implementation include Baskar and Vega-Redonda (2000)
Binmore et al (1988) Banks and Sundrum (1990), Neme and Quintas (1995).
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2. Random matching model

RW has a model of a market with B identical buyers and S identical sellers. Let B
denote the set of buyers and S denote the set of sellers. Each seller has one unit of
an indivisible good. Each buyer wants to buy at most one unit of the good. The
valuations of the buyers and the sellers for one unit of the good are one and zero
respectively. Throughout this paper, I assume that

B > S:

Time is discrete and each player has a discount factor ± 2 [0; 1]: Thus, if a seller sells
one unit of the commodity to a buyer at a price p in any period t = 0; 1; 2::; the payo®
of the seller and that of the buyer are given by ±tp and ±t(1¡ p); respectively.
At each period t ¸ 1; the agents remaining in the market are randomly matched in

pairs of one seller and one buyer (all possible matches are equally likely). One member
of each matched pair is then randomly chosen (with probability 1=2) to propose a price
p 2 [0; 1]. Then the other agent accepts (A) or rejects (R) the o®er. I shall denote
such a match between a seller s and a buyer b with s as the proposer by the ordered
pair (s; b) and a match between s and b with b as the proposer by the ordered pair
(b; s): If a proposal is accepted by the responder, the parties implement it and leave
the market. Rejection dissolves the match, in which case the agents proceed to the
next matching stage. Any unmatched buyers are forced to remain inactive for the
period.
The game is such that Nature e®ectively chooses the matching and the choice of

proposer and responder. Thus, at any period a typical choice of Nature consists of a
one-to-one function q : S ! B assigning to each seller s a buyer q(s) together with
the identity of the proposer and the responder when s is matched with q(s):
At each period t each agent has perfect information about all the past events of

the game, including all the past play in matches in which he did not participate. In
addition, at each period t; each proposer in a match knows the identity of his opponent
in that match and each responder knows both the identity of the proposer in his match
and the actual price on o®er. However, when the agents choose their actions in any
period they do not know the identity of the other matches in that period and what
actions are being simultaneously chosen by other agents.

2.1. RW's equilibrium characterisation with random matching for the case
of ± = 1:

The competitive model corresponds to the case in which the frictions and the transac-
tion costs in the market are negligible. In RW's model this corresponds to the case in
which the players do not discount the future. The main equilibrium characterisation
result of RW corresponds to this case.
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Theorem 2.1. (See RW) If ± = 1 then for any price p 2 [0; 1] and for every one-to-
one function q : S ! B there exists a perfect Bayesian equilibrium in which each seller
s sells one unit of the good to buyer q(s) for a price p:4'5

Thus, there is a continuum of prices that can be sustained as a perfect Bayesian
equilibria. On the other hand, in a competitive equilibrium all goods are sold at the
unique price of 1 because B > S. Therefore, the competitive outcome is not the
unique perfect Bayesian equilibria of the matching and bargaining game with a ¯nite
number of agents (irrespective of the numbers B and S):

For the case of a single seller s, the intuition for the proof of Theorem 2.1 is as
follows. Construct an equilibrium strategy pro¯le such that at the beginning of the
game a distinguished buyer b has the `privilege' to buy the good of s at p: Having such
a `privilege' has the following meaning: (i) whenever s meets the distinguished buyer
b an agreement at p is reached and (ii) whenever s meets a buyer b 6= b, no agreement
is reached.

Clearly, the outcome of such a relationship is that the seller eventually sells the
good to b at p. Moreover, to deter deviations the equilibrium strategy pro¯le speci¯es
the following reward and punishment scheme. If at any stage player i proposes a
di®erent price to some player j from that speci¯ed by the equilibrium strategy pro¯le
then the responder j rejects and subsequently j receives the entire surplus. If j is
a buyer this is achieved by the continuation strategy pro¯le giving j the `privilege'
to buy the good at the price of 0 and if j is the seller then this is obtained by the
continuation strategy pro¯le giving some buyer the `privilege' to buy the good at the
price of 1.

The above reward and punishment scheme clearly deters any deviation. It does not
pay any proposer to deviate given that the responder rejects and receives the entire
surplus . Moreover, it is optimal for any responder j to reject any proposed deviation
because he obtains the entire surplus following the rejection.

Notice that the above strategies are quite complicated and the behaviour of each
agent at any period depends on the history play up to that period - there are potentially
an inde¯nite number of potential deviations and for each deviation the above strategy
pro¯le speci¯es a tailor-made response in order to deter the deviation. Thus the agents

4Here, a perfect Bayesian equilibrium refers to a pro¯le of strategies such that, at every information
set; each player's strategy maximizes his expected continuation payo® given the strategies of the
others, where expectation is with respect the choice of Nature. Of course, in this randon matching
game, with symmetric uncertainty over the choice of nature, perfect Bayesian equilibrium is equivalent
to sequential equilibrium; however, I shall use the former concept because it is easier to de¯ne. (RW,
however, state their Theorems in terms of the latter concept.)

5Note that when the number of the sellers exceeds one, the above game is one of imperfect
information ( there is more than one match per period) and the appropriate equilibrium concept is
perfect Bayesian equilibrium (or sequential equilibrium). When there is only one seller, the game has
perfect information and the set of perfect Bayesian equilibrium coincides with the set of subgame
perfect equilibrium.
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need a large amount of information to implement the above strategy pro¯le.6

If, on the other hand, one assumes that at any period the agents cannot condition
their behaviour on the previous history of plays, then it is not possible to implement the
above strategies. In particular, if a proposer deviates then it is not possible to reward
the responder for rejecting the deviation; this is simply because the initial deviation
by the proposer is not remembered. RW go further and establish the following.

Theorem 2.2. (See RW) If at any period t each player can condition its behaviour
only on the set of players that are present in the market at t and on t itself then the
unique perfect Bayesian equilibrium price is the competitive price of 1.

2.2. Complexity and equilibrium

Before introducing the notion of complexity used in this paper, I need some further
notation.
An outcome of a match at any period is described by an ordered four-tuple (i; j; p; l)

where i 2 B [ S is the proposer in this match, j 2 B [ S is the responder, p 2 [0; 1]
is the proposal by i and l 2 fA;Rg is the response by j: I also denote a history of
outcomes in a period of the game by e: Thus e consists of outcomes of at most S
di®erent matches, one for each seller; it describes everything that happens at a period
of the game. For example e could be fq(s);m(s); r(s); p(s); l(s)gs2S ; namely that each
seller s was matched with buyer q(s) and the proposer, the responder, the price o®er
and the response in this match involving s were m(s) 2 fs; q(s)g; r(s) 2 fs; q(s)g;
p(s) 2 [0; 1] and l(s) 2 fA;Rg; respectively. Let E be the set of such outcomes.
The history of outcome at any time t is denoted by et 2 E and the history of

outcomes of the game up to and including period t consists of a sequence of outcomes
ht = (e1; :::; et): I shall denote the set of such t-period history of outcomes by Ht: Also,
let H1 = [1t=0Ht be the set of all possible ¯nite histories of periods. (H0 is assumed
to be the null set).
At each date t; in addition to the history of the outcomes ht of the preceding

periods, players also receive information about the preceding moves by Nature and/or
other players during the current period. I also need notation to describe these partial
descriptions of outcomes (partial history) a player receives within a bargaining period.
I shall denote such a partial history by d and the set of such partial histories by D:
Thus d 2 D is either the ordered pair (i; j) describing the match between player i and
j with i as the proposer, or the ordered triplet (i; j; p) describing the match between
players i and j followed by a price o®er p by i. If d =(i; j) the bargaining is just
beginning and an o®er has yet to be made by i to j; and if d =(i; j; p) it is player
j0s turn to respond to an o®er price of p by player i. Also, I shall denote the set of

6To implement the above strategies the agents need to observe past outcomes of all matches
including those in which they did not participate. However, RW also show that Theorem 2.1 is still
valid in the case in which the players only observe their own personal history.

7



information about the preceding moves by Nature and/or other players during the any
period that player i receives (the sets of partial histories for i) by Di: Thus

Di ´ fd 2 D j it is i0s turn to play after dg

Let
C = [0; 1] [A [R [?;

where ? is the null set. Denote the set of choices available to player i; given a partial
description d²Di; by Ci(d). Thus

Ci(d) =

½
[0; 1] if d is such that i is the proposer
fA; Rg if d is such that i is the responder to some o®er p:

Now a strategy for player i is described by a function fi : H
1 £ Di ¡! C; such

that for any (h; d) 2 H1£Di; fi(h; d) 2 Ci(d) for any h 2 H t such that i has not left
the market and fi(h; d) = ?, otherwise.
I shall denote the set of strategies for player i by Fi: Also, f¡i refers to the strategy

of all players other than that of player i: And ¯nally, for any strategy fi and for any
history h 2 H1; I shall de¯ne the strategy induced by fi after h by hfi j hi 2 Fi:
Thus, for any h 2 H1

hfi j hi(h0; d) = fi(h; h0; d) for all h0 2 H1 and d 2 Di
Similarly, the strategy induced by fi after any (h; d) is denoted by hfi j h; di:

2.2.1. Automata and Complexity

The de¯nitions of complexity used in this paper will be de¯ned directly in terms of
strategies used by the players in the game. However, in this section, I shall ¯rst discuss
complexity in terms of automata that implement strategies in order to facilitate
comparisons with the existing literature on complexity in games.
Any strategy in the game can be implemented by an automaton (machine) con-

sisting of a set of states (not necessarily ¯nite), an initial state, a terminal state, an
output function describing the output of the machine as a function of its current state
(and its current input) and a transition function determining the next state of the ma-
chine as a function of its current state and current input (the outcome in the current
period).

In the literature on automata in repeated one-shot games, there is a natural speci-
¯cation of a machine. Here, I am dealing with a repeated extensive form game. More-
over, since each player has to play a di®erent role (of a proposer and a responder)
the extensive form bargaining game in each period has a certain degree of asymmetry
built in. As a result, one can specify a machine to implement a particular strategy in
several di®erent ways. For example, one could assume
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(i) the states of the machine do not change during each period of the game and
transitions from a state to another state in the same player's machine take place at
the end of a period;

(ii) each state of the machine for player i would specify an action for every d 2 Di
- the partial history of the period.
A referee (called "Master of the Game" by Piccione and Rubinstein, (1993)) would

activate each player's machine when needed.

The formal de¯nition of such a speci¯cation would be the following.

De¯nition 1. A machine Mi is a ¯ve-tuple (Qi; q
1
i ; T; ¸i; ¹i ) , where

Qi is a set of states;
q1i 2 Qi is a distinguished initial state;
T =2 Qi is a distinguished terminal state such that if the machine enters this state

it shuts o®;
¸i : Qi £Di ! C, describes the output function of the machine given the state of

the machine and given the partial history that has occurred during the current period
of the game before i0s move, such that ¸i(qi; d) 2 Ci(d) , 8qi 2 Qi and 8d ² Di;
¹i : Qi£E ! Qi [T is the transition function, specifying the state of the machine

in the next period of the game as a function of the current state and the realised history
of the current period.7

Remark 1. If we denote the set of strategies for i in any period of the game by

Gi ´ fg : Di ! C jg(d) 2 Ci(d) 8d 2 Dig

then the output function ¸i in De¯nition 1 can be thought of as a mapping ȩi : Qi ! Gi
where ȩi(qi)(d) = ¸i(qi; d). Thus each qi speci¯es a mapping ȩi(qi) 2 Gi from the
information set within a period to the set of choices.

The fact that the game is identical at the beginning of each period (though be-
haviour could be di®erent depending on past histories as encapsulated in the state)
provides the basic rationale for using this speci¯cation of a machine. Thus, the nature
of the output and transition functions remain the same in each period. There are
other possible speci¯cations: for example the state of the machine changes before a
player has to move or each player has di®erent sub-automaton to play the di®erent
roles of a proposer and a responder. However, these alternative speci¯cations do not
have the \game-stationarity" features that the above speci¯cation does.

Next I need to de¯ne the strategy that is implemented by a given machine.
Before addressing this, with some abuse of notation, denote the state of machine

7Henceforth, I shall not always explicitly refer to the terminal state T . I am assuming that if an
o®er is accepted then the machine of each participant to this agreement enters state T and shuts o®.
Thus ¹k (q; i; j; p;A) = T for any player k = i; j; any state q 2 Qk; and any price p: Also, I shall
simply refer to the members of the set Qi as the states of the machine.
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Mi =(Qi; q
1
i ; T; ¸i; ¹i ) after any history h = (e

1; :::; et) by ¹i(q
1
i ; h): Thus ¹i(q

1
i ; h) can

be de¯ned iteratively by

¹i(q
1
i ; e

1; :::; e¿ ) = ¹i(¹i(q
1
i ; e

1; :::; e¿¡1); e¿ )) for any 1 < ¿ · t (2.1)

De¯nition 2. Machine Mi =(Qi; q
1
i ; T; ¸i; ¹i ) implements strategy fi 2 Fi if

fi(h; d) = ¸i(¹i(q
1
i ; h); d) for all h 2 H1 and for all d 2 Di

The complexity of a machine (or of a strategy) can be measured in many di®erent
ways. In the literature on repeated games played by automata the number of states
of the machine is often used as a measure of complexity. Henceforth, I shall refer to
this measure of complexity by state-complexity (or simply by s-complexity). This is
because the set of states of the machine can be regarded as a partition of possible
histories. (See footnote 7 below and Kalai and Stanford 1989)

De¯nition 3. (State-complexity) A machineMi = (Qi; q
1
i ; T; ¸i; ¹i ) is more s-complex

than another machine M 0
i =(Q

0
i; q

10
i ; T; ¸

0
i; ¹

0
i ); denoted by Mi Âs M 0

i ; if jQij > jQ0ij ;
where, for any set W; jW j refers to the cardinality of the set W:

Now it can be shown for any strategy fi 2 Fi the size (number of states) of the
smallest (in terms of the number of states) machine that implements fi is equal to the
number of strategies jfhfi j hi jh 2 H1gj induced by fi after di®erent histories. (See
Kalai and Stanford (1989).) Thus, I could also de¯ne s-complexity in terms of the
underlying strategies in the game as follows.

De¯nition 4. S-complexity of any strategy fi is de¯ned to be the number of induced
strategies fhfi j hi jh 2 H1g after di®erent histories.8 Thus a strategy fi is more
s-complex than f 0i , denoted by fi Âs f 0i , if

jfhfi j hi jh 2 H1gj > jfhf 0i j hi jh 2 H1gj

Next I de¯ne ¯nite machines and ¯nite strategies.

De¯nition 5. An automatonMi is ¯nite if it has a ¯nite number of states. A strategy
fi is ¯nite if it can be implemented by a ¯nite machine or equivalently if it has a ¯nite
number of induced strategies fhfi j hi jh 2 H1g : A pro¯le of machines (strategies) is
¯nite if each of its components is ¯nite.

8Any fi de¯nes a partition (call it s-partition) on H
1 given by an equivalence relation

h »fi h0 if and only if fi j hhi = fi j hh0i

S-complexity simply re°ects the size of these partitions.
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Counting the number of states does not fully measure the complexity of the ma-
chine (strategy) during a period, speci¯cally the complexity of di®erent choices fol-
lowing the same partial history. This is because the states of a machine do not change
during a period of the game. More formally, s-complexity is a measure of the com-
plexity of the domain of ¸i(:; d) for each d (the cardinality of the domain of ȩi(:)) but
it does not capture the complexity of the range of the mapping ¸i(:; d): The following
examples illustrate the point further.

Example 1. There are two machines Mi and M
0
i : Both machines have two states q

1
i

and q2i : Both are in state q
1
i in the odd periods and in state q

2
i in the even periods (thus

they have the same transition functions). Also as a proposer, in state qli (l = 1; 2);
both machines o®er price pli to any player j: As a responder, M

0
i always rejects all

o®ers. Machine Mi, on the other hand, responds di®erently to the same proposal by
any player j (by conditioning on the two states q1i and q

2
i ): In particular, for any o®er

p by j; Mi rejects p in the odd periods and accepts p in the even periods.

Example 2. There are two machines Mi and M
0
i : Both machines have two states q

A
i

and qRi : Both are in state q
A
i in the odd periods and in state q

R
i in the even periods

(thus they have the same transition functions). Also as a responder, in state qAi both
machines accept any price o®er and in state qRi both machines reject any price o®er:
As a proposer, M 0

i always o®ers a price p. Machine Mi, on the other hand, makes
di®erent proposal to any player j (by conditioning on the two states qAi and q

R
i ): In

particular, Mi proposes p in the odd periods and p
0 in the even periods.

According to s-complexity Mi and M
0
i are of equal complexity in both examples,

despite the fact that in the ¯rst example the strategy that machineMi implements has
the additional complexity of di®erent responses to the same o®er and in the second
example the strategy that machine Mi implements has the additional complexity of
making di®erent proposals in di®erent periods. This is not a desirable property.
A plausible (and minimal) way of capturing the complexity of strategy during a

period - complexity of di®erent behaviour after the same partial history - is to assume
that the complexity criterion satis¯es the following two conditions.
(i) If two machines (and therefore two strategies )Mi andM

0
i are otherwise identical

except that as a responder to some price o®er p by some player j; M 0
i always responds

the same way (always accepts or always rejects) whereas Mi sometimes accepts and
sometimes rejects the o®er p by j, thenMi should be considered as being more complex
than M 0

i :

(ii) IfMi makes at least two di®erent proposals p and p
0 to some player j depending

on the history of actions before the current period and if M 0
i is otherwise identical to

Mi except that as a proposer to player j it drops the o®er p
0 in favour of p (after all

histories at which Mi proposes p
0 to j M 0

i proposes p) , then Mi should be considered
as being more complex than M 0

i :

11



I call such notion of complexity response-complexity (r-complexity). A similar
de¯nition can be found in Chatterjee and Sabourian (1999, 2000). The formal de¯ni-
tion of r-complexity consists of a partial order (the weakest) that captures (i) and (ii)
above. Such a partial order can be de¯ned either on the set of machines or on the set
of strategies.

De¯nition 6. (Response complexity) A machine Mi = fQi; q1i ; T; ¸i; ¹ig is more r-
complex than another machine M 0

i =
©
Q0i; q

10
i ; T; ¸

0
i; ¹

0
i

ª
; denoted by Mi Âr M 0

i ; if the

machines Mi and M
0
i are otherwise identical except that in response to some partial

history d0 2 Di machine M 0
i (strategy f

0
i) is conditioning less on history than machine

Mi: Formally,Mi Âr M 0
i if Qi = Q

0
i; q

1
i = q

10
i , ¹i = ¹

0
i and there exists a partial history

d0 2 Di and a set of states Qi ½ Qi(= Q0i) such that
¸i(qi; d) = ¸

0
i(qi; d) if d 6= d0 or if qi =2 Qi

¸0i(qi; d
0) = ¸0i(q

0
i; d

0) 8qi; q0i 2 Qi;
¸i(qi; d

0) 6= ¸i(q0i; d0) for some qi; q
0
i 2 Qi

¸i(qi; d
0) 6= ¸i(q0i; d0) 8qi 2 Qi=Qi and 8q0i 2 Qi

9>>=>>; (2.2)

The ¯rst three conditions in (2.2) capture precisely the idea that Mi and M
0
i are

everywhere identical except in response to some d0; M 0
i always takes the same action

in all states q
0
i 2 Qi whereas Mi does not. The fourth condition is imposed so that

the partial order Âr is asymmetric. The fourth condition in (2.2) guarantees that we
cannot have both Mi Âr M 0

i and M
0
i Âr Mi:

Since states of a machine encapsulate past history, I could also de¯ne r-complexity
directly in terms of the underlying strategies in the game.

De¯nition 7. A strategy fi is more r-complex than f
0
i ; denoted by fi Âr f 0i ; if there

exists a partial history d0 2 Di and a set of histories H ½ H1 such that

fi(h; d) = f
0
i(h; d) if d 6= d0 or if h =2 H

f 0i(h; d
0) = f 0i(h; d

0) 8h; h0 2 H;
fi(h; d

0) 6= fi(h0; d0) for some h; h0 2 H
fi(h; d

0) 6= fi(h0; d0) 8h 2 H1=H and 8h0 2 H

9>>=>>; (2.3)

The four conditions de¯ned in (2.3) are anaologous to those in (2.2), de¯ned in
terms of strategies.

Remark 2. Clearly, conditions (2.2) and (2.3) above imply respectively that

¸i(qi; d) = ¸
0
i(qi; d) 8qi and 8d 6= d0

¸0i(Qi; d
0) ½ ¸i(Q0i; d0)

¾
(2.4)

fi(h; d) = f
0
i(h; d) 8h and 8d 6= d0

f 0i(H
1; d0) ½ fi(H1; d0)

¾
(2.5)
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where ¸i(Qi; d
0), ¸0i(Q

0
i; d

0);fi(H1; d0) and f 0i(H
1; d0) refer to the ranges of the func-

tions ¸i(:; d
0); ¸0i(:; d

0); fi(:; d0) and f 0i(:; d
0) respectively. The results of this paper

on equilibrium selection remain valid if in the de¯nition of r-complexity we use the
stronger conditions (2.4) and (2.5) instead of conditions (2.2) and (2.3), respectively.

The r-complexity de¯nition is a very weak local (partial) concept - local in the sense
that Mi and M

0
i in De¯nition 6 (fi and f

0
i in De¯nition 7) are everywhere identical

except in response to some d0; machine M 0
i (strategy f

0
i) always takes the same action

in all states q
0
i 2 Qi (after any history h0 2 H) whereas machine Mi (strategy fi) does

not. In other words, Mi Âr M 0
i (fi Âr f 0i) if the behaviour of machine Mi (strategy

fi) and machine M
0
i ( strategy f

0
i) are everywhere identical except that, given some

d0; the response of M 0
i to d

0 is simpler than that of Mi

Notice that, given the speci¯cation of automata adopted here and given that we are
dealing with a repeated extensive form game, s-complexity and r-complexity measure
the complexity of di®erent aspects of behaviour - the number of induced strategies at
the beginning of each period versus the complexity of behaviour within a period.

For the results in this section with random matching, I only need to introduce this
minimal notion of r-complexity into the standard game-theoretic set-up. In section 4
with voluntary matching, I use both r-complexity and s-complexity.

2.2.2. Equilibrium with complexity costs

I could de¯ne equilibrium with complexity costs either in terms of the underlying
strategies and use the complexity criteria de¯ned over the strategy sets, as in De¯ni-
tions 4 and 7 or in terms of machines and use the complexity criteria de¯ned on the
set of machines, as in De¯nitions 3 and 6. For ease of exposition, henceforth, I will
refer to complexity costs de¯ned over the set of strategies rather than over the set of
machines, and de¯ne the equilibrium concepts also in terms of the former.

Note that any strategy pro¯le f = ffigi2B[S induces a random outcome path
because of Nature's moves (the random matching and random choice of proposers). I
shall denote the expected payo® to each player i if strategy pro¯le f = ffigi2B[S is
chosen by ¼i(f): Since I only allow for pure strategies the expectation is with respect
to the moves of Nature.9

De¯nition 8. For any ² ¸ 0; a strategy fi is said to be a ²-best response to f¡i if

¼i(fi; f¡i) + ² ¸ ¼i(f 0i ; f¡i) for all f 0i 2 Fi

A strategy is a best response if it is a 0-best response.

9Formally, one needs to de¯ne an underlying probability space and expectation is taken with
respect to the appropriate probability measure.
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Now, I would like de¯ne the Nash equilibrium for the game in which each player's
preference depends both on the player's actual payo® and on the complexity of the
strategy adopted. Clearly, if the complexity costs are a great deal more important than
the actual payo®s then it is easy to discard highly complex (non-stationary) strategies
as candidate equilibrium. To make the framework most amenable to indeterminacy
type results, as well as to keep the equilibrium concepts as close as possible to the
standard ones, I will consider equilibrium concepts in which complexity has arbitrarily
small weight. One way of doing this is the following.

De¯nition 9. A strategy pro¯le f = f = ffigi2B[S constitutes a Nash equilibrium
with lexicographic l¡complexity cost (for l = r; s) if for each player i the following
two conditions hold

fi is a best response to f¡i (2.6)

@ f 0i 2 Fi such that f 0i is a best response to f¡i and fi Âl f 0i : (2.7)

Complexity costs are treated lexicographically in the above de¯nition of equilib-
rium. I could also have introduced complexity as a small ¯xed cost of choosing a
more complex strategy and de¯ned a Nash Equilibrium with a ¯xed complexity cost
as follows.

De¯nition 10. A strategy pro¯le f = ffigi2B[S constitutes a Nash equilibrium with
a (small) ¯xed l¡complexity cost (l = r; s) c ¸ 0, denoted by NECl(c); if for each
player i the following two conditions hold

fi is a best response to f¡i (2.8)

@ f 0i 2 Fi such that f 0i is a c-best response to f»i and fi Âl f 0i : (2.9)

Remark 3. Notice that a NECl(c) pro¯le refers to a Nash equilibrium with lexi-
cograhic l-complexity cost (De¯nition 10 is identical to De¯nition 9) if and only if
c = 0 and it refers to a Nash equilibrium with positive ¯xed costs if and only if
c > 0: Clearly, positive ¯xed complexity costs induce at least as much economy as the
lexicographic criterion and thus any NECl(c) strategy pro¯le is also a NECl(0) pro¯le.

NECl(c) strategy (machine) pro¯les are not necessarily `credible' for the usual
reasons. To ensure credibility, I could, as in Chatterjee and Sabourian (1999, 2000),
introduce noise into the system and consider the limit of extensive form trembling
hand equilibrium (Nash equilibrium with independent trembles at each information
set) with complexity costs as the trembles become small. The trembles will ensure
that strategies are optimal (allowing for complexity) after all histories that occur with
a positive probability. However, any precise characterisation of such an equilibrium
may depend on the order in which complexity costs and trembles enter the limiting
arguments (more on this later).
A more direct, and simpler, approach of introducing credibility would be to con-

sider NECl(c) strategy pro¯les that are perfect Bayesian equilibria (subgame perfect
equilibrium for the case of a single seller) of the game without complexity costs.
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De¯nition 11. A pro¯le f constitutes a perfect Bayesian equilibrium strategy pro¯le
with a (small) ¯xed l-complexity cost c ¸ 0; denoted by PECl(c); if f is both a NECl(c)
strategy pro¯le and a perfect Bayesian equilibrium of the underlying game.

Thus, it follows from the above de¯nition that a pro¯le f is a PECl(c) if and only
if it is a perfect Bayesian equilibrium of the underlying game and it satis¯es condition
(2.9).
The selection result in this section holds for the case of PECr(0) with lexicographic

r-complexity costs. Trivially, since any PECr(c) strategy pro¯le is also a PECr(0);
the selection result of this section applies equally to the case of any ¯xed r-complexity
cost c ¸ 0. In the next section with voluntary matching, the selection result is
established only for equilibria where, in addition to r-complexity, s-complexity enters
players prefences as a ¯xed positive cost.

2.3. The selection result

Before stating the results of this section, I shall formally de¯ne stationary behaviour.

De¯nition 12. A strategy fi is stationary if and only if fi(h; d) = fi(h
0; d) 8 h,h0 2

H1 and 8 d 2 Di: Also, a pro¯le f = ffigi2B[S is stationary if fi is stationary 8i:

Thus the behaviour of such strategies at any time may depend on the information
(partial history) in the current period but not on the previous history of the game
before the current period.

Remark 4. A strategy is stationary if and only if it has a minimal l-complexity (l =
r or s). Formally:

fi is stationary if and only if @ f 0i such that fi Âl f 0i
Thus, a stationary Nash (perfect Bayesian) equilibrium strategy pro¯le of the under-
lying game is a NECl(c) (PECl(c))of the game with complexity cost.

Clearly, for any c ¸ 0; a stationary PECl(c) (l = r; s) strategy pro¯le exists. Con-
sider the following stationary pro¯le of strategies: all players always o®er 1, each seller
accepts an o®er if and only if the o®er is 1 and buyers accept all o®ers. This pro-
¯le induces the competitive outcome. Trivially, it also constitutes a perfect Bayesian
equilibrium and is stationary (has minimal l-complexity). Therefore this pro¯le is a
PECl(c).
Notice, however, that the strategies used by RW in the proof of Theorem 2.1,

to support non-competitive outcomes trivially cannot constitute a PECl(c) - or even
a NECl(c) - for any c ¸ 0: This is because these strategies are non-stationary. In
particular, all those buyers who do not have any `privileges' with respect to any of
the goods (buyers who do not end up buying the goods on the equilibrium path
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constructed in the proof of Theorem 2.1) also follow non-stationary strategies. But
such buyers receive zero payo® on the equilibrium path. Thus, these strategies could
not be a NECl(c) because each such buyer could always obtain at least a zero payo®
by following a less complex strategy than the non-stationary one speci¯ed in RW's
construction (this is always possible because non-stationary strategies do not have
minimal l-complexity).

The next Theorem is the main result of this section. It demonstrates that all
credible equilibria of the game with r-complexity costs are stationary and induce the
unique competitive outcome.

Theorem 2.3. Consider any c ¸ 0 and any PECr(c) strategy pro¯le f = ffigi2B[S .
If f is ¯nite then ¼s(hf j hi) = 1 and ¼b(hf j hi) = 0 for all h, for all s and for all b,
the unique induced price is the competitive price of 1 and f is stationary.

Remark 5. The assumption that each PECr(c) f is ¯nite in the above Theorem is
only needed for the case in which r-complexity costs enters the players' preferences
lexicographically (c = 0): If ¯xed positive r-complexity cost (c > 0) is assumed then
it can be shown that the above Theorem holds without making such an assumption
(¯niteness) on the set of PECr(c) strategy pro¯les. For ease of exposition, I will not
demonstrate this more general result and refer the reader to footnote 10 and Sabourian
(2001a).

Remark 6. If one uses s-complexity (instead of r-complexity) as the complexity cri-
terion, then the selection result in Theorem 2.3 does not hold and RW's continuum
result remains valid . In particular, it can be shown that for any price 1 ¸ p > 0;
there exists a ¯nite NECs(0) strategy pro¯le such that each seller ends up selling his
commodity to some buyer at p: To keep the paper no longer than it actually is, I shall
omit this result - see Sabourian (2001a) for the proof of this result for the case of a
market with a single seller.

Next, I turn to the formal proof of Theorem 2.3. The next two Lemmas characterise
some crucial properties of NECr(c) strategy pro¯les.10

Lemma 1. For any c ¸ 0; any NECr(c) pro¯le of strategies f = (ffigi2B[S , any buyer
b 2 B and any seller s 2 S the following holds:

fb(h; s; b; 1) = fb(h
0; s; b; 1) for all h and h0 2 H1 (2.10)

fs(h; b; s; 1) = fs(h
0; b; s; 1) for all h and h0 2 H1 (2.11)

10These properties do not hold in general for Nash equilibrium pro¯les.
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Proof. To show that condition (2.10), suppose otherwise. Then there exist a seller
s; a buyer b, and histories h and h0 such that

fb(h; s; b; 1) = A and fb(h
0; s; b; 1) = R

Now consider another strategy f 0b for player b such that for all (h
00; d) 2 (H1£Db)

f 0b(h
00; d) = R if d = (s; b; 1)

f 0b(h
00; d) = fb(h00; d) if d 6= (s; b; 1)

Clearly, the only di®erence between f 0b and fb is that f
0
b always rejects an o®er of

1 by s and f 0b does not. Thus, f
0
b induces at least the same payo® as fb and moreover

it is less r-complex than fb according to De¯nition 7. But this contradicts f being a
NECr(c): Thus condition (2.10) holds.
Using a similar reasoning as above, I now show that condition (2.11) holds. Suppose

not; then for some s; for some b; for some h and for some h0 the following holds

fs(h; b; s; 1) = A and fs(h
0; b; s; 1) = R

Now consider another strategy f 0s for player s such that for all (h
00; d) 2 (H1£Ds)

f 0s(h
00; d) = A if d = (b; s; 1)

f 0s(h
00; d) = fs(h00; d) if d 6= (b; s; 1)

Clearly, the only di®erence between f 0s and fs is that f
0
s always accepts an o®er of

1 by b and fs does not. Thus, f
0
s induces at least the same payo® as fs and moreover

it is less r-complex than fs according to De¯nition 7. But this contradicts f being a
NECr(c): Thus condition (2.11) holds.

Lemma 2. For any c ¸ 0; any NECr(c) pro¯le of strategies f = (ffigi2B[S , any buyer
b 2 B and any seller s 2 S the following holds:
if fs(h; b; s; 1) = A for some h then 8 h either fb(h; b; s) = 1 or fb(h; b; s) 6= 1 (2.12)
Proof. Suppose not; then there exist a buyer b and a seller s such that fs(h; b; s; 1) =
A for some h; fb(h

0; s; b) = p 6= 1 for some h0 and fs(h00; s; b) = 1 for some h00: Since
fs(h; b; s; p) = A for some h; by Lemma 1, we have

fs(h; s; b; p) = A for all h (2.13)

Now consider a strategy f 0b such that

f
0
b(h; d) = p for all (h; d) such that d = (b; s) and fb(h; d) = 1
f 0b(h; d) = fb(h; d) otherwise

Clearly, the only di®erence between fb and f
0
b is that in some instance fb proposes

an o®er of 1 and f 0b does not. Thus,
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² f 0b induces at least the same payo® as fb (this is because by (2.13), s always
accepts a price o®er of 1 by b)

² f 0b is less r-complex than fb according to De¯nition 7.

But this contradicts f being a NECr(c):
Since any PECr(c) is a NECr(c) it follows that any PECr(c) also satis¯es the

above properties of NECr(c) given in Lemmas 1 and 2. In fact, these properties are
so critical for establishing the selection result of this section11 that I will refer to a
perfect Bayesian equilibrium strategy pro¯le that satis¯es condition (2.10) of Lemma
1 and condition (2.12) of Lemma 2 by Pr*.

De¯nition 13. A strategy pro¯le f is a Pr* if f is both a perfect Bayesian equilibrium
and it satis¯es the following conditions:

fb(h; s; b; 1) = fb(h
0; s; b; 1) for all h and h0 2 H1 (2.17)

if fs(h; b; s; 1) = A for some h then for all h
either fb(h; b; s) = 1 or fb(h; b; s) 6= 1

¾
(2.18)

Clearly, by Lemmas 1 and 2, any PECr(c) strategy pro¯le is also a Pr*.
Next I shall state a selection result in which the sellers receive the entire surplus

(the competitive outcome) after every history with the weaker solution concept of Pr*.
This result is then used to establish Theorem 2.3.

Theorem 2.4. Consider any Pr* strategy pro¯le f = ffigi2B[S . If f is ¯nite; then
¼s(hf j hi) = 1 for all h and for all s:

To provide some basic intuition for this result, notice that the strategies used by
RW in the proof of Theorem 2.1, to support non-competitive outcomes trivially cannot
constitute a Pr* either. This is because these strategies require any buyer b to accept a
price o®er of 1 (or to propose a price of 1) after histories at which he has the `privilege'
to buy the good at a price o®er of 1 and to reject a price o®er of 1 (or to propose a

11In Remark 5, I mentioned that Theorem 2.3 remains valid for the case of positive ¯xed cost c > 0
even without assuming that the PECr(c) strategy pro¯le is ¯nite. This is because for the case of
c > 0; the critical conditions (2.10), (2.11) and (2.12) described in the previous two Lemmas, can be,
respectively, strengthened to show that for any p > 1¡ c

fb(h; s; b; p) = fb(h
0; s; b; p) for all h and h0 2 H1 (2.14)

fs(h; b; s; p) = fs(h
0; b; s; p) for all h and h0 2 H1 (2.15)

if fs(h; b; s; p) = A for some h then either fb(h; b; s) = p 8 h or fb(h; b; s) 6= p 8 h (2.16)

With these stronger condition, one does not need to make the assumption of ¯niteness.(See Sabourian
(2001) for details.)
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price other than 1) otherwise. But this contradicts condition (2.17) (condition (2.18))
in the de¯nition of Pr*.
The actual proof of Theorem 2.4 is based on generalising this intuition. In partic-

ular, it turns out that any non-competitive Pr* pro¯le cannot result in an agreement
at a price of 1 after any history: This feature of any Pr* is su±cient to obtain the
selection result.
The proof of the Theorem 2.4 for the case of a market with one seller can be found

in Appendix A1. The proof for the general case with an arbitrary number of sellers is
by induction on the number of sellers and it can be found in Appendix A2.12 In the
next subsection, I will provide a sketch of the proof of Theorem 2.4.
Next, I will explain how the main result of this section - Theorem 2.3 - follows

from Theorem 2.4.

Proof of Theorem 2.3: Since any PECr(c) strategy pro¯le is a Pr*, it follows
from Theorem 2.4 that for any ¯nite PECr(c) pro¯le f , ¼s(hf j hi) = 1 for all h and for
all s: This implies that pro¯le f is such that after any h; with probability 1 the seller s
reaches an agreement at p = 1 with some buyer and ¼b(hf j hi) = 0 for all h and for all
b: Therefore, fb is stationary for all b; otherwise, b could economize on r-complexity by
playing a simpler strategy and obtain at least a zero payo®. (Non-stationary strategies
are not of minimal r-complexity).
Last, I need to show that fs is stationary for all s: Consider any s and any b: Since

¼s(hf j hi) = 1 and ¼b(hf j hi) = 0 for all h; it follows that

fs(h; s; b) = 1 for any h (2.19)

fs(h; b; s; p) = R for any (h; b; s)and 8 p < 1 (2.20)

Condition (??) holds because if s o®ers a price less than 1 to b after any h it will
be accepted (rejection would result in a zero continuation payo® for b); but then s
would receive a continuation payo® that is less than 1; a contradiction. Condition
(??) follows because if b o®ers a price less than 1 after any h and if s accepts then s
would receive a continuation payo® that is less than 1; a contradiction.
Also, by Lemma 1, we have that fs(h; b; s; 1) = fs(h; b; s; 1) for all h and h

0: Thus
fs is stationary.

2.4. Sketch of the steps of Theorem 2.4

Market with a single seller s
The proof of this result in this case basically consists of establishing the following

three steps.

12It turns out that the induction argument on the number of sellers, applied to the concept of Pr*
in Appendix A2, cannot be applied directly to the concept of PBECr(c). It is for this reason that the
selection result is ¯rst established for the weaker concept of Pr*. (See the sketch of this induction
argument in the next subsection.)
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Step 1 (see Lemma ??, ??): If any Pr* strategy pro¯le f is such that ¼s(hf j hi) < 1
for some history h (the outcome is non-competitive after h), then there does not exist
a history after which the seller reaches an agreement at a price of 1 with some buyer.

This step follows from from conditions (2.17) and (2.18).

Step 2 (see Lemma ??): If any Pr* strategy pro¯le f is such that ¼s(hf j hi) < 1
for some history h (the outcome is non-competitive after h), then for any buyer b
and for any history h the continuation payo® to b after the ordered triple (h; b; s) is
positive.

The intuition for this step is as follows. Since there is no agreement at a price of
1 (Step 1), it follows that the continuation payo® to the seller is always less than 1
(Lemma ??). This, together with the ¯niteness of the Pr* strategy pro¯le, imply that,
after any history, if a buyer has the opportunity to make an o®er to the seller he can
obtain a positive payo® by o®ering a price that is both less than 1 and more than the
continuation payo® of the seller.

Step 3 (see Lemma ??): This involves showing that for any ¯nite perfect Bayesian
equilibrium, there exists a buyer b and a history h such that b's continuation payo®
after (h; b; s) is zero.

This step follows from considering histories at which the continuation payo® of the
seller is minimised. At such histories, competition between buyers ensures that the
continuation payo® of at least one buyer is zero.

Steps 2 and 3 contradict each other unless the Pr* strategy pro¯le results in a
continuation payo® of 1 for the seller after any history. This establishes the result.

Market with an arbitrary number of sellers

The proof for the case of more than one seller is by induction on the number of
sellers S in the market. Given that the result for the case of S = 1; to complete the
proof of Theorem 2.4 with an arbitrary number of sellers, I need to show that if any
Pr* pro¯le for a market with S 0 < S sellers results in continuation payo®s of 1, after
all histories, for each of the S 0 sellers, then any Pr* pro¯le for a market with S sellers
also results in continuation payo®s of 1, after all histories, for each of the S sellers.
This is done by establishing the following four steps:

Step1 (Lemma ??):If a strategy pro¯le is a Pr* then after any history it is also a
Pr* in the continuation game.

This step follows immediately from the de¯nition of a Pr* pro¯le. Note also that
this step is not necessarily valid if we replace the concept Pr* by PECr (see footnote
11).

Step 2 (Lemmas ?? and ??): If Theorem 2.4 holds when the number of sellers is
less than S then for any Pr* pro¯le f in a market with exactly S sellers the following
holds: if ¼s(hf j hi) < 1 for some history h (the outcome is non-competitive after h),
then f does not result in an agreement at a price of 1 in any match between a seller
and a buyer after any history.

The step is proved by appealing to Step 1 and by repeating some of the arguments
used for the case of S = 1:
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Step 3 (Lemma ??): If Theorem 2.4 holds when the number of sellers is less than
S then for any Pr* pro¯le f in a market with exactly S sellers the following holds

if ¼s(hf j hi) < 1 for some s and for some h then ¼s(hf j hi) < 1 for all h (2.21)

This step follows immediately from Step 2.
Step 4 (Lemma ??): If Theorem 2.4 holds when the number of sellers is less than S;

then for any Pr* pro¯le with S sellers there exits a history such that the continuation
payo® of some seller s is one.
Intuitively, this is because if at some point a pair of buyers and sellers, excluding s;

leave the market then by Step 1 the continuation strategy is also a Pr* for the smaller
market. But then, by assumption, the remaining sellers will receive a continuation
payo® of 1.
But Step 4 contradicts Step 3 unless the Pr* strategy pro¯le results in a contin-

uation payo® of 1, after any history and for each of the S sellers. Thus if Theorem
2.4 holds when the number of the sellers is less than S it also holds when there are
exactly S sellers.

3. Voluntary matching with endogenous choice of partners, dis-
counting and complexity

The no discounting assumption is important in establishing the existence a of con-
tinuum of perfect Bayesian equilibrium prices in Theorem 2.1. This Theorem works
because after any history there are special `relationships' between buyers and sellers -
after every history, for each unit of the good of a seller, a buyer has the `privilege' to
buy it at a particular price. Each deviation from the equilibrium strategies is deterred
by the creation of a new relationship. With random matching, with probability one,
the two sides of the new relationship will meet in a ¯nite time. With no discounting,
the length of the period it will take for the two sides to meet is unimportant. How-
ever, with discounting the cost of maintaining these relationships may be high if it
takes a long time for the designated buyers and sellers to meet each other. Thus, with
discounting it may not be optimal for players to play the appropriate punishments
needed to support the equilibria in Theorem 2.1. Therefore, discounting eliminates a
large number of equilibria. For the one seller model, RW have the following result.

Theorem 3.1. (See RW) Suppose that S = 1 and ± 2 (0; 1): Then there exists a
unique subgame perfect equilibrium in which trade takes place at t = 1. Moreover, as
B !1 or as ± ! 1 the unique equilibrium converges to the competitive price of 1.

There is no known equivalent result to the above Theorem for the case of more
than one seller. Nevertheless, Theorem ?? (in particular the part on convergence
of the equilibrium prices to the competitive one as ± ! 1) seems to throw some
doubt on the multiplicity result in Theorem 2.1. However, RW argue that discounting
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imposes a cost on having a relationship because the formation and the termination
of matches are random. But staying with one's current partner should not be costly.
Thus, they consider a voluntary matching model with an endogenous choice of partner
that is otherwise identical to the random matching model except that in each period
the sellers (the short side of the market) choose the buyers with whom they wish to
bargain. For this matching model, they demonstrate the existence of a large number
of (non-competitive) equilibria even for the case in which ± < 1:

Theorem 3.2. (See RW) If S = 1 and the seller can choose in each period the buyer
with whom he wishes to bargain then for each buyer b and any price 1

1+±
· p · 1

there exists a subgame perfect equilibrium in which b receives the good at the price
equal to either p or ±p

2¡± , according to whether the seller or the buyer b is the proposer
in their ¯rst encounter.

Thus the indeterminacy and non-competitive outcomes are present in the model
with discounting as well, irrespective of the number of buyers.13 But the strategies
needed to implement the above equilibria for any p < 1 turn out to be unnecessarily
complex. To establish Theorem ??, for any price 1

1+±
· p · 1; RW construct the

following subgame perfect equilibrium strategy pro¯le. The seller s always o®ers p
and agrees to accept ±p

2¡± or more. A buyer always o®ers
±p
2¡± and accepts p or less. In

the ¯rst period s picks buyer b and in the case of disagreement s continues with the
same buyer only if the same buyer did not deviate. If a buyer deviates at any period
from the above strategy the seller discontinues the bargaining with him and picks a
new buyer.
The above strategy, clearly, results in an agreement between the seller and buyer

b at price p in the ¯rst period: But then why should the seller choose a strategy
that involves selecting di®erent partners depending on the previous history of moves?
Consider a simpler strategy for the seller that always chooses buyer b; always o®ers p
to b and agrees to an o®er if and only if the o®er is ±p

2¡± . Clearly, if all buyers follow the
above strategies, this simple strategy for the seller results in the same payo® (after all
histories) as before but with less complexity (in terms of choosing the same partner
irrespective of past history).
In this section, I extend the result of the previous section by showing that with

complexity costs the only perfect Bayesian equilibrium of the above game with endoge-
nous choice of partners is also the competitive outcome. However, as was mentioned
before, I obtain this result

² by using s-complexity (for the sellers) in addition to r-complexity
² by assuming a positive ¯xed cost of s-complexity rather than s-complexity costs
introduced lexicographically.

13RW state that Theorem ?? can be extended to the case in which there are more than one seller.
However, in the case of more than one seller, one has to specify further the precise description of the
matching process - see below.
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Before, describing the result, notice that although with one seller the voluntary
matching is well de¯ned (at the beginning of each period the seller chooses the buyer
with whom he wishes to bargain with for that period), with more than one seller there
are several di®erent ways of describing a voluntary matching model. For example, one
could have at every period each seller simultaneously choosing the buyer with whom
he wishes to bargain and if more than one seller choose the same buyer in a given
period then the buyer is matched to one of the sellers according to some exogenous
(possibly random) mechanism. Or alternatively, one could have sellers choosing their
partners sequentially. In this case at every period there is only one match, with a single
seller selected according to some exogenous (possibly random) mechanism amongst the
remaining sellers. The chosen seller then chooses the buyer with whom he wishes to
bargain at that period. In this latter approach, a unit of time could represent the
time it takes for a pair of a buyer and a seller to be matched with the actual round of
baragining taking place almost instantaneously. At this stage I will not describe the
precise formualtion of the voluntary matching model for the case of more than one
seller and instead return to this issue below.

The notation in this section is the same as in the previous section. In particular, h
and d refer respectively to a ¯nite history of outcomes and a partial history of actions
within a period. The de¯nition of strategy in this section is the same as that in the
case of random matching case except that here, with an endogenous choice of partners,
a seller has to choose a partner at the beginning of each period. Formally, I represent
the beginning of each period at which the seller s has to choose a buyer by ': Also,
denote the buyers left in the market after any history h by Bh: Now, I de¯ne a strategy
for seller s by a function

fs : H
1 £ (Ds [ ')! C [ B

such that for any h 2 H1 and for any d 2 Ds; fs(h; d) 2 Cs(d) and fs(h;') 2 Bh if h is
such that s has not left the market and fs(h; d) = ? and fs(h; ') = ? otherwise:14'15
The two de¯nitions of complexity (both r-complexity and s-complexity) in this sec-

tion with voluntary matching are also identical to those in the previous section with
random matching (De¯nitions 4 and 7). In the latter, however, r-complexity (measur-
ing the complexity of responses during a period) was su±cient to select uniquely the
competitive outcome. In this section, we have an additional element of complexity of
behaviour - the complexity of each seller's decision at the beginning of each period at
which he has to choose a buyer: I need to strengthen the de¯nition of complexity to

14Similarly, one can de¯ne the automaton representing a seller's strategy Ms = fQs; q1s ; T; ¸s; ¹sg
in the same way as before except that the output function of any seller is now de¯ned by

¸s : Qs £ (Ds [ ')! C [ B

where ¸s(qi; d) 2 Cs(d) and ¸s(qs; ') 2 B for any qs 2 Qs and for any d 2 Ds:
15Clearly, the strategy (machine) of a buyer is de¯ned in the same way as in the previous section.
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capture the complexity of conditioning the choice of the buyer at any period on the
history of the game prior to that period.
One way of capturing the complexity, for each seller; of choosing a buyer at the

beginning of a period is to strengthen r-complexity de¯nition to allow for responses to
': Thus, in addition to r-complexity, I could require the complexity criterion to rank
strategies for seller s according to the following criterion.

De¯nition 14. Strategy fs is more choice-complex than strategy f
0
s; denoted by fs

Âc f 0s; if fs and f 0s are otherwise identical except that the choice of a buyer for f 0s at
the beginning of a period is independent of past history whereas f 0ss: choice depends
on the previous history of outcomes Formally, fs Â f 0s if there exists a set of histories
H ½ H such that

fs(h; ') = f
0
s(h; ') if h =2 H

f 0s(h; ') = f
0
s(h

0; ') 8h; h0 2 H;
fs(h;') 6= fs(h0; ') for some h; h0 2 H
fs(h;') 6= fs(h0; ') 8h 2 H=H and 8h0 2 H

9>>=>>; (3.1)

However, it turns out that r-complexity together with c-complexity are not su±-
cient to select the competitive outcome. (I have a counter-example demonstrating the
existence of a non-competitive outcome with this stronger complexity criterion16 for
the no discounting case.)
Another candidate for measuring the complexity of each seller's choice of partners

at the beginning of a period is s-complexity. Clearly, a seller's strategy (machine)
needs to have as many induced strategies (states) as the number of possible partners
he chooses in the game. Putting it di®erently, if two strategies (machines) for seller
s are otherwise identical except that the ¯rst chooses fewer partners than the second,
then the second strategy (machine) must have more induced strategies (states) than
the ¯rst.
I shall demonstrate below that s-complexity (a measure of the number of induced

rules at the beginning of each period) for the sellers together with r-complexity (a
measure of the complexity within a period) are su±cient to give us the selection result
in the voluntary matching model with endogenous choice of partners. As mentioned
before, this will be done for the case in which s-complexity enters the sellers' pref-
erences as a positive ¯xed cost. The formal de¯nition of equilibrium both NECr(c)
and PECr(c) with endogenous choice of partners is the same as those in the previous
section (see De¯nitions 9, 10 and 11).

De¯nition 15. A strategy pro¯le f = ffigi2B[S constitutes a Nash equilibrium with
r¡complexity cost c ¸ 0 and s-complexity cost c0 ¸ 0, denoted by NECr(c)s(c0); if
the following three conditions hold:

for each player i; fi is a best response to f¡i (3.2)

16This stronger de¯nition of complexity (r-complexity together with c-complexity) is used in Chat-
terjee and Sabourian (2000).
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for each player i; @ f 0i 2 Fi such that f 0i is a c-best response to f»i and fi Âr f 0i
(3.3)

@ f 0s2 Fs such that f 0s is a c0-best response to f»s and fs Âl f 0s: (3.4)

De¯nition 16. A strategy pro¯le f = ffigi2B[S constitutes a perfect Bayesian equi-
librium with r¡complexity cost c ¸ 0 and s-complexity cost c0 ¸ 0, denoted by
PECr(c)s(c0); if f is both a NECr(c)s(c0) and a perfect Bayesian equilibrium of the
underlying game.

Remark 7. It is clear from the above that a NECr(c)s(c0) (PECr(c)s(c0)) is simply a
NECr(c) (PECr(c)) that satis¯es condition (??). Also, notice that this condition (and
thus both de¯nitions of NECr(c)s(c0) and PECr(c)s(c0) ) refers only to the s-complexity
of the sellers' strategies.

Next, I state the result of this section for the set of PECr(c)s(c0) pro¯les with
c ¸ 0 and c0 > 0:17 This selection result, however, is stated for the no discounting case
since this appears to be most amenable to indeterminacy type results.

Theorem 3.3. Suppose S = 1 and the seller can choose in each period the buyer
with whom he wishes to bargain (voluntary matching) and ± = 1. Then consider any
c ¸ 0, any c0 > 0 and any PECr(c)s(c0) strategy pro¯le f = ffigi2B[S If f is ¯nite
then ¼s(hf j hi) = 1 and ¼b(hf j hi) = 0 for all s; b and h; the unique induced price is
the competitive price of 1 and f is stationary.

Remark 8. As in the proof of Theorem 2.3, the assumption that f is ¯nite in Theorem
?? is only needed for the case in which r-complexity enters the players preference
lexicographically (c = 0). If positive ¯xed r-complexity cost (c > 0) is assumed then
it can be shown that Theorem ?? holds without assuming that f is ¯nite. For ease
of exposition, I will not demonstrate this result and refer the reader to Sabourian
(2001a).

The proof of the Theorem ?? can be found in Appendix B. In the rest of this
section, I will provide a brief sketch of the proof of Theorem ?? and then discuss an
extention of Theorem ?? to the case in which there is more than one seller.
A brief sketch of the proof of Theorem ??: Consider any pro¯le f: For any

b; let
z(b) = max

h
¼b(hf j hi):

First, it is shown that z(b) is the same for all b (this is because the seller selects a
buyer at each period). Denote z(b) by z and consider the set of histories

H(b) ´ fh 2 H1 j ¼b(hf j hi) = zg:
17I do not have any equivalent result for the case in which s¡complexity enters the sellers' prefer-

ences lexicographically (c0 = 0).
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Next, de¯ne the following property. A strategy pro¯le f is said to satisfy property ®
if

there exists b; b0 6= b and hb 2 H(b) such that the probability
that the seller chooses b0 at some point after hb is postive.

(3.5)

Also, de¯ne a Pr* strategy pro¯le as in the previous section and note that any PECr(c)
is a Pr* pro¯le.

The rest of the proof is divided into two steps:

Step 1: Consider any c0 > 0: Then every PECr(c)s(c0) (in fact any perfect Bayesian
equilibrium that satis¯es condition (??)), satis¯es property ®:

Step 2: If f is a Pr* and it satis¯es property ® then ¼s(hf j hi) = 1 for all h:
Since any PECr(c)s(c0) strategy pro¯le is a Pr*, the two steps together establish

that for any c0 > 0 and any PBECr(c)s(c) pro¯le f we have ¼s(hf j hi) = 1 for all h:
This is su±cient to complete the proof of the Theorem.

If f satis¯es property ® then after any hb de¯ned in condition (??) - there is a
positive probability of choosing another buyer b0 6= b: Therefore, after hb; the game is
e®ectively similar to the random matching model and thus the proof of the statement
in Step 2 is similar to that of Theorem 2.3 in Appendix A.1.

To demonstrate Step 1, I assume otherwise. Then, I show that there exists another
strategy f 0s such that the following two conditions hold

¼s(hf j hi)¡ ¼s(hf 0s; f¡s j hi) · ² < c 8h (3.6)

fs Âs f 0s (3.7)

But then f does not satisfy condition (??); a contradiction.

Strategy f 0s; mentioned in the previous paragraph, is constructed such that it is
otherwise identical to the equilibrium strategy fs except that the continuation strate-
gies fhfs j hbi jhb 2 [bH(b)gg of fs are replaced by a single continuation strategy f 00s
that always chooses buyer b; always o®ers 1 ¡ z ¡ ² for some 0 < ² < c and always
accepts an o®er if and only if the o®er is not less than 1¡ z¡ ²: This construction to-
gether with the assumption that f does not satisfy property ® ensures that condition
(??) holds.

To demonstrate condition (??), note that the only di®erence between fs and f
0
s is

that the continuation strategies fhfs j hbi jhb 2 [bH(b)gg of the former are replaced
by a single continuation strategy f 00s : Since, by assumption, f does not satisfy property
®; it follows that the continuation strategies fhfs j hbi jhb 2 [bH(b)gg of fs are not
singleton (this is because for all b and for all hb 2 H(b) the probability that the seller
s chooses another buyer b0 6= b at some point after hb is zero.) But this implies that
fs is more s-complex than f

0
s:

Extension of Theorem ?? with more than one seller. When S > 1; as
was mentioned before, there are several di®erent ways to model voluntary matching
with endogenous choice of partners. It can be shown that Theorem ?? remains valid
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with more than one seller if one adopts the following sequential speci¯cation of the
voluntary matching.
At each period there is only one match per period. (With this speci¯cation of

volunatary matching, a period e®ectively refers to the time it takes for a match to be
consumated.) Thus at any time t; one seller s is chosen according to some exogeneous
mechanism; and this seller chooses the buyer b with whom he wishes to bargain at
t: The bargaining between s and b is as before with the choice of the proposer being
random. The mechanism for selecting the seller at each period may even be random
and may also be time-dependent (we could even allow for the selection of the seller at
any time to depend on the history of outcomes). The only assumption I impose on
any such selection mechanism is that for each seller s; the probability that s is selected
after some ¯nite time is one.
The proof of the extension of Theorem ?? to the case of more than one seller with

the above voluntary matching speci¯cation involves proving the two steps described in
the sketch of Theorem ??. The proof of Step 1 with more than one seller is identical
to the one seller model. The proof of Step 2 with more than one seller is by induction
on the number of sellers in a similar fashion as in the proof of Theorem 2.4. In fact, as
was mentioned above, property ® is similar to the random matching model after any
hb de¯ned by condition (??). Therefore, given the conclusion of Theorem 2.4, it should
not be surprising that for any Pr* pro¯le f that satis¯es property ®; ¼s(hf j hi) = 1
for all h: To keep the length of the paper no longer than it is, I will not descibe the
proof of the extension of Theorem ?? to the case of more than one seller with the
above sequential voluntary matching speci¯cation and refer the reader to Sabourian
(2001a).
I do not have any result on the extension of Theorem ?? to the case of more than

one seller with simultaneous voluntary matching speci¯cation (where at each period
every seller chooses the buyer with whom he wishes to bargain with simultaneously).

4. An extension of the basic selection results: Complexity and
o®-the-equilibrium payo®

In Section 2, a NECr(c) (PECr(c)) was de¯ned as a pro¯le of strategies f = (fi)i2B[S
such that it is both a Nash (perfect Bayesian) equilibrium and is such that for all i

@ f 0i s.t. f 0i is a c-best responses to f and fi Âr f 0i
Thus in the de¯nitions of both NECr(c) and PBECr(c); equilibrium strategies are
supposed to be least r-complex among all the c¡best response strategies. Thus, for
example, a strategy pro¯le f = (fi)i2B[S is a NECr(0) (PECr(0)) if it is a it is both
a Nash (perfect Bayesian) equilibrium and, for all i; fi has minimal l¡complexity
amongst all strategies for i that are best responses to f¡i:
Both NECr(c) and PECr(c) de¯nitions can be criticised on the grounds that, in

considering complexity, players ignore any consideration of payo®s o®-the-equilibrium
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path. In other words, in the above de¯nitions, in comparing two strategies, the trade-
o® is between complexity of the two strategies and the payo®s of the two strategies
against the equilibrium strategies of the others. The trade o® between complexity
versus o®-the-equilibrium payo®s does not arise. Therefore, although complexity costs
may be small (negligible, in the lexicographic case), they take priority over optimal
behaviour after deviations. Hence, a pro¯le f = (fi; f¡i) does not constitute a NECr(c)
(PECr(c)); if there exists a strategy f 0i that is a c¡best response to f and is less
r¡complex than fi: This is the case irrespective of whether f 0i is optimal after histories
which are inconsistent with f (the candidate equilibrium):
On the other hand it may be argued that a player, in comparing two strategies

that give the same payo®, may prefer the more complex strategy because it generates
a higher payo® o®-the-equilibrium path than does the less complex one. This would
be the case if complexity were a less signi¯cant criterion than the o®-the-equilibrium
payo®.18 An alternative approach to PECr(c) (NECr(c)) that allows for this and
gives priority to the o®-the-equilibrium behaviour over the complexity costs is the
following weaker equilibrium concept (Kalai and Neme (1992) use a similar notion of
equilibrium).

De¯nition 17. A strategy pro¯le f is weakly perfect Bayesian equilibrium strategy
pro¯le with a ¯xed r-complexity cost c ¸ 0, denoted by WPECr(c); if it is both a
perfect Bayesian equilibrium and is such that for all i

@ f 0i s.t. 8 h 2 H1 and 8d 2 Di

hf 0i j h; di is a c-best responses to hf¡i j h; di
and fi Âr f 0i

In the above de¯nition, complexity costs impose a restriction only among strategies
that are c¡best responses at every information set. Notice that any PECr(c) strategy
pro¯le is a WPECr(c):19 Thus, any equilibrium concept with r¡complexity costs that
is optimal at every information set (credible) must satisfy WPECr irrespective of the
relative importance of complexity and o®-the equilibrium behaviour.
The selection result for the random matching model holds also for the weaker

de¯nition of WPECr(c):

Theorem 4.1. Consider any c ¸ 0 and anyWPECr(c) strategy pro¯le f = ffigi2B[S .
If f is ¯nite then ¼s(hf j hi) = 1 and ¼b(hf j hi) = 0 for all h, for all s and for all b,
the unique induced price is the competitive price of 1 and f is stationary.

18If one models credibility by introducing noise, the analogue of this issue (relative importance of
complexity and o®-the-equilibrium) is the relative importance of the trembles and complexity costs.
More on this later.
19The same is not true for NECl and WPBECl:
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Thus, the emergence of the competitive equilibrium as the only equilibrium out-
come of random matching game is independent of the relative importance of the
complexity costs and the o®-the equilibrium payo®.20

The proof of the above result is similar to that of Theorem 2.3. The ¯rst step is to
show that any WPECr(c) pro¯le is also a Pr* - satis¯es conditions (2.17) and (2.18).
The proof of this is almost identical to those of Lemmas 1 and 2. The rest of the proof
Theorem ?? follows exactly the same reasoning as that found in the Theorem 2.3.

In Section ?? with voluntary matching, the selection result was obtained for the set
of PECr(c)s(c') pro¯les; these are strategies that are PECr and satisfy the following
additional condition

@ f 0s s.t. f 0s is a c0 ¡ best responses to f¡s (4.1)

and fs Âs f 0s:
This additional condition was introduced to capture s-complexity of the sellers' strate-
gies. As in the case of the random matching model, one can strengthen the selection
result for the voluntary matching model by using a weaker concept than PECr(c)s(c')
that imposes less restriction on the relative importance of complexity and o®-the equi-
librium payo®.

De¯nition 18. A strategy pro¯le f is a weakly perfect Bayesian equilibrium strategy
pro¯le with r-complexity c ¸ 0 and s-complexity c0 ¸ 0, denoted by WPECr(c)s(c0);
if it is both a WPECr(c) and is such that

@ f 0s s.t. h 2 H1 and 8b
hf 0s j hi is a c-best responses to hf¡s j hi and
hf 0s j h; bi is a c-best responses to hf¡s j h; bi;

and fs Âs f 0s

9>>=>>; (4.2)

where (h; b) denotes history h followed by seller s choosing b:

Theorem 4.2. Suppose S = 1 and the seller can choose in each period the buyer
with whom he wishes to bargain (voluntary matching) and ± = 1. Then consider any
c ¸ 0, any c0 > 0 and any WPECr(c)s(c0) strategy pro¯le f = ffigi2B[S If f is ¯nite
then ¼s(hf j hi) = 1 and ¼b(hf j hi) = 0 for all s; b and h; the unique induced price is
the competitive price of 1 and f is stationary.

20The selection results in other dynamic models with complexity costs often depend on the relative
importance of the complexity costs and the o®-the-equilibrium payo®. For example, in contrast to
Abreu and Rubinstein's (1988) selection results with NECs(0) in 2-player repeated games, Kalai and
Neme (1992) demonstrate a Folk Theorem type result for the WPECs(0) strategies in the repeated
Prisoner's Dilemma.
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The proof of the above result is similar to that of Theorem ??. The ¯rst step, as
in the proof of Theorem ??, involves showing that that any WPECr(c) pro¯le is also
a Pr*. The rest of the proof Theorem ?? follows exactly the same reasoning as that
found in the Theorem ??. I shall omit the proof for reasons of space (see Sabourian
2001a).
Notice that in the de¯nition of WPECr(c)s(c0)

² r-complexity costs impose a restriction only among strategies that are c¡best
responses at every information set

² s-complexity costs impose a restriction only among strategies that are c¡best
responses after every history h and (h; b) - rather than at every information set.

Thus, Theorem ?? demostrates that the selection result with both r-complexity
together with s-complexity is valid irrespective of the relative importance of complexity
and o®-the equilibrium behaviour after di®erent histories h and (h; b).
An even weaker equilibrium concept than WPECr(c)s(c0) would be to replace (??)

in the de¯nition of WPECr(c)s(c') by

@ f 0s s.t. h 2 H1 and 8d 2 Di
hf 0s j hi is a c-best responses to hf¡s j hi and
hf 0s j h; di is a c-best responses to hf¡s j h; di;

and fs Âs f 0s

9>>=>>; (4.3)

This implies that s-complexity costs also impose a restriction only among strategies
that are c¡best responses at every information set. I do not have any result for this
weaker concept.

5. Concluding Remarks

Finally, I would like to conclude this paper with some remarks and conjectures on the
various ways of extending and expanding its results.

5.1. Equal number of buyers and sellers

The selection result in this paper shows that those on the short side of the market
(the sellers in the model presented) receive all the surplus generated by exchange in
any equilibrium with appropriate complexity costs. What if the number of buyers
equals the number of sellers? In this case, complexity considerations do not select
among the set of possible equilibrium prices. But notice that this is consistent with
the competitive outcome; when B = S; any price between 0 and 1 is a competitive
price.
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5.2. Complexity criterion and alternative machine speci¯cation

R-complexity used to obtain the competitive outcome in the random matching model
is a very weak concept. In the voluntary matching model, I use r-complexity together
with s-complexity. Clearly, this division between the two notions of complexity re°ects
the machine speci¯cation I have adopted in this paper. It is possible that with a
di®erent machine speci¯cation (e.g. states of the machines changing within a period)
one may be able to establish the selection results of this paper with a di®erent notion
of complexity.

5.3. Equilibrium concept

5.3.1. Noise and dominance

As I mentioned before, PECr(c) (and WPECr(c)) imposes the notion of credibility
directly on the set of NECr pro¯les. Another way of ensuring that NECr(c) strategy
pro¯les are credible is to allow strategies (machines) to tremble and consider the limit
of Nash equilibrium with trembles and r-complexity as the trembles become small.
This approach is adopted by Chatterjee and Sabourian (1999, 2000). Given that the
selection result for the random matching model in this paper extends to the concept
of WPECr(c) my conjecture is that this result remains valid with this alternative
formulation of credibility, irrespective of the order in which complexity costs and
trembles enter the limiting arguments. For the voluntary matching model, given the
discussion at the end of the last section, the selection result may depend on the relative
weight of the trembles and complexity costs.

5.3.2. Dominance

Another way of weakening the equilibrium concept in this paper is to use solution con-
cepts based on the notion of strict dominance rather than NECr(0) or PECr(0); which
are based on the idea of Nash equilibrium.21 For example, the set of NECr(0) strategy
pro¯les could be replaced by the set that survives iterative deletion of strictly domi-
nated strategies with r-complexity cost (denoted by ISDr), where the later concept.is
de¯ned as follows: a strategy fi is de¯ned to be strictly dominated with r-complexity
cost (denoted by SDr) if there exist a strategy f 0i such that for all f¡i

either ¼i(f
0
i ; f¡i) > ¼i(fi; f¡i)

or ¼i(fi; f¡i) = ¼i(f 0i ; f¡i) and fi Âr f 0i
I could also replace PECr(0) pro¯les with something like Pearce's(1984) extensive

form rationalizability together with r¡complexity (or with strategies that survive
21The equilibrium concepts based on the strict dominance criterion are more attractive than those

based on Nash equilibrium because it is easier to justify them in terms of either rationality arguments
or in terms of evolutionary/learning stories.
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iterated conditional dominance together with r¡complexity; see Fudenberg and Tirole
(1991) section 4.6 for the de¯nition of conditional dominance): It is my conjecture that
one may obtain some of the results of this paper with these weaker solution concepts.22

5.4. Richer models of trade

RW's model considered in this paper is very simple. It is my conjecture that the results
of this paper hold if one introduces a di®erent matching/bargaining arrangement into
RW's model. A more interesting issue would be to consider complexity costs in richer
models of exchange than that considered by RW. For example, one could address the
issues considered in this paper with a heterogeneous set of buyers and sellers and/or
in the context of a model in which trade decision is not restricted to a single unit of
a good. Or one could look at an exchange economy with many goods where agents
trade their endowments sequentially. (For example, Gale 1986a, 2000.) It is an open
question whether complexity costs also allow one to select the competitive outcomes
among the set of equilibria in these richer models of exchange.

5.5. Complexity and the properties of bargaining games

Chatterjee and Sabourian (1999,2000) and Sabourian (2001b) also use complexity
costs to select (uniquely) among the large number of equilibria in an n-person com-
plete information alternating bargaining game and in a 2-person one-sided incomplete
information bargaining game, respectively. In particular, these papers try to provide
a justi¯cation for stationary equilibria in these classes of dynamic games. Complexity
costs, however, do not always select a unique equilibrium or provide a justi¯cation
for stationary/Markov strategies in dynamic games (for example repeated games; see
Abreu and Rubinstein (1988) and Bloise (1998)). This paper, together with Chatterjee
and Sabourian (1999, 2000) and Sabourian (2001b) demonstrate that non-stationary
equilibria of the dynamic models involving bargaining are not always robust to the
introduction of complexity considerations. Bargaining games have the following two
properties:

(i) the (last) responder can always leave the game (the market) by accepting an
o®er;

(ii) the payo®s the players receive depend on the ¯nal agreement price (and if there
is discounting, on the time at which the agreement is reached ) and not on the history
of play up to the ¯nal agreement.

These two features give complexity considerations a role in selecting among a large
number of equilibria in these classes of dynamic games.

22In fact, it is reasonably easy to show that the crucial properties of NECr(c) pro¯le, described in
Lemmas 1 and 2, are equally satis¯ed by the set of ISDr strategy pro¯les:
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6. Appendix A1: Proof of Theorem 2.4 for the case of one
single seller s

Lemma 3. Suppose S = 1: Then for any Pr* strategy pro¯le f such that ¼s(hf j
hi) < 1 for some h 2 H1 we have fb(h; s; b; 1) = R for all b and for all h:

Proof. Suppose not; then fb(h; s; b; 1) = A for some b and for some h: Then, by
condition (2.17) in the de¯nition of Pr*, we have

fb(h; s; b; 1) = A for all h (6.1)

Now consider another strategy f 0s for s that always proposes 1 and rejects all o®ers:
Since after any history, the ordered pair (s; b) occurs with probability 1 in a ¯nite
time, it follows from (??) that f 0s can guarantee s a payo® of 1 after all histories; but
this is a contradiction.

Lemma 4. Suppose S = 1: Consider any Pr* strategy pro¯le f ; if f does not result

in a continuation payo® of 1 for the seller s after all histories then there does not exist
a buyer b and a history h such that the ordered pair (b; s) reaches an agreement at a
price of 1 after h: Formally; for any Pr* pro¯le f; if ¼s(hf j hi) < 1 for some h 2 H1

then for all b and for all h

either fb(h; b; s) 6= 1 or fs(h; b; s; 1) = R:

Proof. Suppose not; then there exists b and h such that fb(h; b; s) = 1 and fs(h; b; s; 1) =
A: Then, by condition (2.18) in the de¯nition of Pr*, we have

fb(h; b; s) = 1 for all h (6.2)

But then s could always obtain, after any history h, a continuation payo® of 1 by
following a strategy that, irrespective of the past, always proposes 1 and accepts an
o®er if and only if b o®ers a price of 1. This is because after h either some buyer accepts
the o®er of 1 by s or by the law of large numbers s will eventually be matched with
b and will receive an o®er of 1 from b (by (??)). But this contradicts ¼s(hf j hi) < 1
for some h 2 H1:

Lemma 5. Suppose S = 1: Then for any Pr* strategy pro¯le f such that ¼s(hf j
hi) < 1 for some h 2 H1; we have

¼s(hf j hi) < 1 for all h 2 H1

Proof. This follows from b never accepting an o®er of 1 (Lemma ??) and from
the ordered pair (b; s) never reaching an agreement at a price of 1 after any history
(Lemma ??).
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Lemma 6. Suppose S = 1: Then for any Pr* pro¯le f such that ¼s(hf j hi) < 1 for
some h 2 H1; we have

¼b(hf j h; b; si) > 0 for all h and for all b

Proof. Since ¼s(hf j hi) < 1 for some h 2 H1 we have, by Lemma ??, ¼s(hf j hi) < 1
for all h: Thus K; de¯ned by

K ´ max
h2H1 ¼s(hf j hi);

is less than 1 (K is well-de¯ned because f is ¯nite): Since f constitutes a perfect
Bayesian equilibrium, it follows that if, after any (h; b; s); buyer b o®ers a price K + ²
for some ² such that K + ² < 1; it will be accepted by s (otherwise s obtains at most
K): Thus b can always obtain at least 1¡K ¡ ² > 0: This establishes the result.
Now for any strategy pro¯le f let

mb
s(f) = minh2H1¼s(hf j h; s; bi)

mb
b(f) = minh2H1¼s(hf j h; b; si)
z(b; f) = maxh2H1¼b(hf j hi) (6.3)

b(f) ´ arg minb (m
b
b(f) +m

b
s(f)) (6.4)

Note that if f is ¯nite then z(b; f) and mb
i(f) are well de¯ned for i = b; s:

For the rest of this section, I ¯x a pro¯le f and refer to mb
s(f); m

b
b(f); z(b; f) and

b(f) by mb
s; m

b
b; z(b) and b respectively:

Lemma 7. Suppose S = 1: Then for any ¯nite perfect Bayesian (subgame perfect)

equilibrium strategy pro¯le f we have mb
b
¸ mb

s:

Proof. Suppose not; thenmb
b
< 1=2(mb

s+m
b
b
): Now it follows from the de¯nition ofmb

b

that there exists a history h such that mb
b
= ¼s(hf j h; b; si): Now suppose p is the o®er

of b after (h; b; s): Now if s rejects p after (h; b; s) he can get at least 1=2(mb
s+m

b
b
) in the

next period: But this exceeds mb
b
= ¼s(hf j h; b; si). This contradicts the supposition

that f is a perfect Bayesian equilibrium.

Lemma 8. Suppose S = 1: Then for any ¯nite perfect Bayesian equilibrium strategy
pro¯le f there exists a buyer b and a history h such that ¼b(hf j h; b; si) = 0:

Proof. Consider any perfect Bayesian equilibrium f and let b be de¯ned as in (??).
First, I establish that

mb
s ¸ 1¡ z(b) (6.5)
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To show this, suppose otherwise; then

mb
s < 1¡ z(b)¡ ² for some ² > 0: (6.6)

Now consider any history h and suppose that players s and b are matched and s
makes a price o®er of (1¡ z(b)¡ ²) to b after (h; s; b): By the de¯nition of z(b); given
in condition (??); this o®er will be accepted by b. Thus mb

s ¸ 1 ¡ z(b) ¡ ²: But this
contradicts condition (??). Therefore, condition (??) holds.
Now it follows from the de¯nition of z(b) that there exists a h such that ¼b(f j

h) = z(b): Therefore,

z(b) · 1
B

n
1=2(1¡mb

s) + 1=2(1¡mb
b
)
o
+
P

b 6=b
1
B

f1=2 [1¡ ¼s(hf j h; s; bi)¡ ¼b(hf j h; s; bi)] + 1=2 [1¡ ¼s(hf j h; b; si)¡ ¼b(hf j h; b; si)]g

(The expression in the RHS of the above inequality gives an upper bound on z(b):

The term 1=2(1¡mb
s) + 1=2(1¡mb

b
) bounds b's expected payo® in the event that he

meets the seller in the next period and it is weighted by the probability, 1=B, of that
event. The second term on the RHS of the last inequality is the weighted sum of the
maximum payo® b can receive in the event that in the next period the seller meets
one of the other buyers, weighted by the probability of each such event.) Therefore,
from the de¯nitions of mb

s and m
b
b we have

z(b) · 1
B

n
1=2(1¡mb

s) + 1=2(1¡mb
b
)
o
+P

b6=b
1
B

©
1=2(1¡mb

s ¡ ¼b(hf j h; s; bi)) + 1=2(1¡mb
b ¡ ¼b(hf j h; b; si))

ª
The last condition together with condition (??) imply that

mb
s ¸ 1¡z(b) ¸

1

2B

8<:(mb
s +m

b
b
) +

X
b6=b

£
(mb

s +m
b
b) + (¼b(hf j h; s; bi) + ¼b(hf j h; b; si)

¤9=;
But this together with the de¯nition of b imply that

mb
s ¸

1

2B

8<:B(mb
s +m

b
b
) +

X
b6=b
(¼b(hf j h; s; bi) + ¼b(hf j h; b; si))

9=;
Therefore, it follows from Lemma ?? that

mb
s ¸

1

2B

8<:2Bmb
s +

X
b6=b
(¼b(hf j h; s; bi) + ¼b(hf j h; b; si))

9=;
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Hence,

0 ¸ 1

2B

8<:X
b6=b
(¼b(hf j h; s; bi) + ¼b(hf j h; b; si)

9=;
Since the continuation payo®s are always non-negative, it follows from the previous
inequality that

¼b(hf j h; b; si) = 0 for all b 6= b (6.7)

This completes the proof of this Lemma.
Now, by Lemmas ?? and ??, we have for any Pr* pro¯le f

¼s(hf j hi) = 1 for all h 2 H1:

7. Appendix A2: Proof of Theorem 2.4 with an arbitrary num-
ber of sellers

The proof for the case of more than one seller is by induction on the number of sellers
S in the market. In Appendix A1, it was shown that the result holds for the case of
S = 1: To complete the proof of Theorem 2.4 with an arbitrary number of sellers, I
need to show that if for any S 0 < S; all Pr* pro¯les for a market with S 0 sellers results
in continuation payo®s of 1, after all histories, for each of the S 0 sellers, then any Pr*
pro¯le in a market with S sellers also results in continuation payo®s of 1, after all
histories, for each of the S sellers.

Lemma 9. Consider any Pr* strategy pro¯le f in a market with exactly S sellers. Let
h be any history after which there are less than S sellers left in the market. Denote,
respectively, the set of buyers and sellers left in the market after h by B0 ½ B and
S 0 ½ S: Then the strategy hf j hi; when restricted to the remaining agents (B0;S 0); is
also a Pr* for this smaller market.

Proof. Let H1(B0;S 0) be the set of ¯nite histories when there are (B0;S 0) agents in
the market. Next, consider any b 2 B0 and s 2 S 0 remaining in the market after h:
Since f is a Pr* strategy pro¯le and hfi j hi(h; d) = fi(h; h; d) for all i, for all h and
for all d, it follows, respectively, from conditions (2.17) and (2.18) in the de¯nition of
a Pr* that

hfb j hi(h; s; b; 1) = hfb j hi(h0; s; b; 1) for all h and h0 2 H1(B0;S 0) (7.1)

if hfs j hi(h; b; s; 1) = A for some h 2 H1(B0;S 0) then either
hfb j hi(h; b; s) = 1 8h 2 H1(B0;S 0) or hfb j hi(h; b; s) 6= 1 8h 2 H1(B0;S 0).

¾
(7.2)

Therefore, since any strategy induced by a perfect Bayesian equilibrium after any
history is also a perfect Bayesian equilibrium of the continuation game, it follows from
conditions (??) and (??) that hf j hi is a Pr*.
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Lemma 10. Suppose that for any positive integer S 0 < S all Pr* strategy pro¯les in
markets with S 0 sellers result in a continuation payo® of 1, after any history, for each
of the S0 seller. Then for any Pr* strategy pro¯le f in a market with exactly S sellers
the following holds: if ¼s(hf j hi) < 1 for some seller s and for some h then we have
fb(h; s; b; 1) = R for all h; for all s and for all b:

Proof. Suppose not; then fb(h; s; b; 1) = A for some h , for some s and for some b:
By condition (2.17) in the de¯nition of Pr*, this implies that

fb(h; s; b; 1) = A for all h (7.3)

Now consider strategy f 0s for s such that for any (h; d) 2 H1 £Ds

f 0s(h; d) =

8>><>>:
1 if h s.t. there are S sellers & d = (s; b0) for some b0

A if h is s.t. there are S sellers & d = (b0; s; 1) for some b0

R if h is s.t. there are S sellers, & d = (b0; s; p) for some b0 & p < 1
fs(h; d) otherwise.

Fix any history h at which there are still S sellers in the market. Next, notice that
if s chooses strategy f 0s and the other players choose the pro¯le (hf¡s j hi) then with
probability one some seller is going to reach an agreement with a buyer in ¯nite time.
Otherwise, by the law of large numbers, seller s will eventually be matched with buyer
b with s as the proposer; but then, by the de¯nition of f 0s and (??), s will make an
o®er of 1 and b will accept; but this is a contradiction.
Next, I would like to show that the expected payo® to s if (f 0s; hf¡s j hi) is chosen

is 1. This is done in several steps.

Step 1: ¼s(hf 0s; f¡s j hi) = 1 for any history of outcomes h = (e1; :::; et) such that

no agreement is reached before period t and
seller s reaches an agreement at period t with some buyer b0

¾
(7.4)

Given any h = (e1; :::; et) that satis¯es (??), there are still S sellers remaining
in the market after (e1; :::; et¡1): Therefore, it follows from the de¯nition of f 0s that
any agreement by s after (e1; :::; et¡1) must be at the price 1. Thus, in this case
¼s(hf 0s; f¡s j hi) = 1:

Step 2: ¼s(hf 0s; f¡s j hi) = 1 for any history of outcomes h = (e1; :::; et) such that

no agreement is reached before period t;
some seller s0 6= s reaches an agreement at period t with some buyer b0
and seller s does not reach an agreement at period t:

9=;
(7.5)
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Notice that after any history h = (e1; :::; et) that satis¯es (??), there are less than
S sellers in the market and seller s is one of the remaining sellers. Therefore, by the
de¯nition of f 0s; we have

(hf 0s; f¡s j hi) = (hfs j hi; hf¡s j hi) (7.6)

Moreover, since (fs; f¡s) constitutes a Pr*, it follows from Lemma ?? that (hfs; f¡s j
hi) constitutes a Pr* for the remaining agents. This, together with (??) imply that
(hf 0s; f¡s j hi) is also also a Pr* for the remaining agents. But since there are less than
S sellers in the market after h and s is one of the remaining sellers in the market after
h.; we have, by the supposition of the induction argument, ¼s(hf 0s; f¡s j hi) = 1: This
completes the proof of this step.

Step 3: ¼s(f
0
s; hf¡s j hi) = 1 for any history h at which there are still S sellers in the

market:

Since (f 0s; hf¡s j hi) results in an agreement between some pair of agents with
probability 1, it follows that any outcome path that (f 0s; hf¡s j hi) induces with a
positive probability must include a ¯nite history h satisfying either (??) or (??). But
in both cases the expected continuation payo® after h to s if (f 0s; hf¡s j hi) is chosen
is 1. This completes the proof of this step.

Finally, since the strategy pro¯le f is a perfect Bayesian equilibrium, it follows from
Step 3 that ¼s(hf j hi) = 1 for any history h at which there are still S sellers in the
market: But this, together with the induction assumption contradicts the hypothesis
that ¼s(hf j hi) < 1 for some h:
Suppose that for any positive integer S 0 < S all Pr* strategy pro¯les in markets

with S0 sellers result in a continuation payo® of 1, after any history, for each of the
S 0 sellers. Then for any Pr* strategy pro¯le f in a market with exactly S sellers the
following holds: if ¼s(hf j hi) < 1 for some seller s and for some h then we have for
all b and for all h

either fb(h; b; s) 6= 1 or fs(h; b; s; 1) = R:

Proof. Suppose not; then there exists a buyer b and a history h such that fb(h; b; s) =
1 and fs(h; b; s; 1) = A: By condition (2.18) in the de¯nition of Pr*, this implies that

fb(h; b; s) = 1 for all h (7.7)

Next consider any strategy f 0s for s de¯ned by

f 0s(h; d) =

8>><>>:
1 if h s.t. there are S sellers & d = (s; b0) for some b0

A if h is s.t. there are S sellers & d = (b0; s; 1) for some b0

R if h is s.t. there are S sellers, & d = (b0; s; p) for some b0 & p < 1
fs(h; d) otherwise.
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Now ¯x any history h at which there are still S sellers in the market. Notice that
if the players choose the pro¯le (f 0s; hf¡s j hi) then with probability one some seller
is going to reach an agreement with a buyer in ¯nite time. Otherwise, by the law of
large numbers, seller s will eventually be matched with buyer b with b as the proposer;
but then, by condition (??) and the de¯nition of f 0s; b will make an o®er of 1 and s
will accept; but this is a contradiction.
Now, by exactly the same arguments as in the previous Lemma (Steps1-3), it can

be shown that ¼s(hf 0s; hf¡s j hi) = 1 for any history h at which there are still S sellers
in the market. But since the strategy pro¯le f is a perfect Bayesian equilibrium it
follows that ¼s(hf j hi) = 1 for any such h: But this, together with the induction
assumption, contradict the hypothesis that ¼s(hf j hi) < 1 for some h:
Lemma 11. Suppose that for any positive integer S 0 < S all Pr* strategy pro¯les in
markets with less than S sellers result in a continuation payo® of 1, after any history,
for each of the S 0 sellers. Then for any Pr* strategy pro¯le f in a market with exactly
S sellers the following holds: if for some seller s; ¼s(hf j hi) < 1 for some h then
¼s(hf j hi) < 1 for all h:
Proof. This follows from no buyer accepting an o®er of 1 (Lemma ??) and from
the ordered pair (b; s) never reaching an agreement at a price of 1, for all b and all s
(Lemma ??).

Lemma 12. Suppose that all Pr* strategy pro¯les in markets with less than S(> 1)
sellers result in a continuation payo® of 1, after any history, for each seller. Then any
Pr* strategy pro¯le f in a market with exactly S sellers results in continuation payo®
of 1, after each history, for each seller.

Proof. Suppose not; then there exists a Pr* strategy pro¯le f in a market with
exactly S sellers such that for some seller s; ¼s(hf j hi) < 1 after some h. This implies,
by Lemma (??), that

¼s(hf j hi) < 1 for all h (7.8)

Now, consider any history of outcomes h = (e1; :::; et) such that
(i) seller s0 6= s and buyer b0 are matched and reach an agreement at some period

t0 · t;
(ii) no other pair of agents reach an agreement at any period t0 · t:
Therefore, after history h there are S ¡ 1 sellers in the market and seller s is one

of the remaining sellers. Now, since f is a Pr*, it follows from Lemma ?? and the
supposition of the induction argument that seller s has a continuation payo® of 1 after
h: This contradicts condition (??).
Now it follows from Lemma ??, the proof of Theorem 2.4 for the case of a single

seller (in Appendix A1) and by the induction on the number of sellers that for any
Pr* strategy pro¯le f; ¼s(hf j hi) = 1 for all s and all h:

39



8. Appendix B: Proof of Theorem 4.3 for the case of a single
seller s

Here with voluntary matching, I de¯ne a Pr* strategy pro¯le in exactly the same way
as with random matching - see De¯nition 13. Also, Lemmas 1, 2, ??, ??, ??, ??
hold for the voluntary matching model and the proofs of these Lemmas in this case
with endogenous matching arrangement are similar to those with random matching.
In fact, the proofs of Lemmas 1, 2, ?? and ?? are identical to those in Section ??
and Appendix A1 and I will not repeat the arguments. Here, I shall only provide the
proofs for Lemmas ?? and ?? when the trading arrangement is voluntary.
Proof of Lemma ?? for the voluntary matching model: Suppose not; then

fb(h; s; b; 1) = A for some b and for some h: This, together with condition (2.17) of
the de¯nition of Pr*, imply that

fb(h; s; b; 1) = A for all h (8.1)

Now consider any strategy f 0s for s that always chooses player b, always proposes 1
and always rejects all o®ers: Since, after any history, with probability 1, s will have
the opportunity to make a proposal to player b in ¯nite time, it follows from (??) that
f 0s can guarantee s a continuation payo® of 1 after any history; but this contradicts
the assumption that ¼s(hf j hi) < 1 for some h.
Proof of Lemma ?? for the voluntary matching model: Suppose not; then

there exists b and h such that fb(h; b; s) = 1 and fs(h; b; s; 1) = A: This, together with
condition (2.18) of the de¯nition of Pr*, imply that

fb(h; b; s) = 1 for all h (8.2)

But then, after any history h, s could always obtain 1 by following a stationary strategy
that irrespective of the past history always chooses b, always makes an o®er of 1 and
accepts an o®er p if and only if p = 1: (This is because after h this strategy results in
either b accepting the o®er of 1 by s or, by condition (??), in b making an o®er of 1
to s.) But this contradicts the assumption that ¼s(hf j hi) < 1 for some h.
Now, as in Appendix A1, for any f let

mb
s(f) = minh2H1¼s(hf j h; s; bi)

mb
b(f) = minh2H1¼s(hf j h; b; si)

b(f) ´ arg minb (m
b
b(f) +m

b
s(f)) (8.3)

z(b; f) = maxh2H1¼b(hf j hi)
H(b; f) = fh 2 H1 j¼b(hf j hi) = z(b; f)g

Note that since f is ¯nite, z(b; f) and mb
i(f) are well de¯ned for i = b; s; and H(b; f)

is not empty:
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Next, not that any strategy pro¯le f de¯nes a probability distribution on the set
of outcome paths in this game. From this, one can compute the probability of any
¯nite history h 2 H1; given that the players choose a given strategy pro¯le f: I shall
denote such a probability by µ(h; f): Also, with some abuse of notation, let

µ(h; d; f) = probability of (h; d) 2 H1 £D given that the players choose pro¯le f

µ(h; b; f) = probability of (h; b) given that the players choose pro¯le f

where (h; b) refers to history h followed by the seller s choosing b as the partner in the
next period. Finally, for any strategy pro¯le f; I denote the probability that s chooses
a buyer b for the ¯rst time after history h by ¯(h; b; f): Thus,

¯(h; b; f) =
X
h02§b

µ(h; h0; b; f)

where

§b =
©
h = (e1; :::; et) 2 H1 je¿ does not involve a match between s and b for all ¿ · tª

Henceforth, I ¯x a strategy pro¯le f and refer to mb
s(f); m

b
b(f); b(f); z(b; f);

H(b; f); µ(h; d; f) and ¯(h; b; f) bymb
s; m

b
b; b; z(b); H(b); µ(h; d) and ¯(h; b); respectively:

Lemma 13. Suppose S = 1: Then for any ¯nite perfect Bayesian equilibrium strategy
pro¯le f we have z(b) = z(b0) for all b and b0:

Proof. Suppose not; then
z(b0) > z(b) + ²

for some b; for some b0 and for some ² > 0:
Consider any hb0 2 H(b0): Since ¼b(hf j hb0i) = z(b0) it follows that

¼s(hf j hb0i) · 1¡ z(b0) < 1¡ z(b)¡ ² (8.4)

Now consider a strategy f 0s for s that always chooses buyer b, rejects all o®ers and
always makes the proposal 1¡z(b)¡²: Clearly, b always accepts the proposal 1¡z(b)¡²:
Therefore (f 0s; f¡s j hb0) guarantees seller s a payo® of 1¡ z(b)¡ ²: Since f is a perfect
Bayesian equilibrium we have ¼s(hf j hb0i) ¸ ¼s(hf 0s; f¡s j hb0i) ¸ 1¡ z(b)¡ ²: But this
contradicts condition (??).

Since for any ¯nite perfect Bayesian equilibrium f we have z(b) = z(b0) for all b
and b0 henceforth, I shall refer to z(b) by z:

De¯nition 19. A strategy pro¯le f is said to satisfy property ® if there exists a buyer
b and a history hb 2 H(b) such that the probability that s chooses some b0 6= b at some
point after hb is postive. Formally, f satis¯es property ® if 9 b and hb 2 H(b) s.t.

¯(hb; b
0) > 0 for some b0 6= b (8.5)
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Next, for any strategy fs de¯ne an equivalence relation »fs as follows:
h »fs h0 if and only if hfs j hi = hfs j h0i:23

Lemma 14. For any perfect Bayesian equilibrium f; for any b and for any hb 2 H(b)
we have

if f satis¯es does not satisfy property ® then ¼s(hf j hhi) · 1¡ z for any h »fs hb
(8.6)

Proof. Fix any b and any hb 2 H(b): Since f does not satisfy property ® the induced
strategy hfs j hbi always chooses buyer b after any history h0 such that µ(h0; hf j hbi) >
0: Therefore, since ¼b(hf j hbi) = z; it follows that hfb j hbi and hfs j hbi result in
a payo® of z for player b irrespective of the strategies adopted by the other players.
Thus,

¼b(hfb j hbi; hfs j hbi; f 0¡b;s) = z for all f 0¡b;s (8.7)

Now ¯x any h »fs hb: By the de¯nition of the equivalent relation »fs we have
hfs j hi = hfs j hbi (8.8)

Conditions (??) and (??) together imply

¼b(hfb j hbi; hf¡b j hi) = ¼b(hfb j hbi; hfs j hi; hf¡b;s j hi) =
¼b(hfb j hbi; hfs j hbi; hf¡b;s j hi) = z

¾
(8.9)

But since f is a perfect Bayesian equilibrium, it follows from (??) that

¼b(hf j hi) ¸ ¼b(hfb j hbi; hf¡b j hi) = z (8.10)

Therefore, ¼s(hf j hhi) · 1¡ z for any h »fs hb:

Lemma 15. Suppose S = 1: Then for any c0 > 0; every PECr(c)s(c0) (in fact any
perfect Bayesian equilibrium that satis¯es condition (??)) pro¯le f satis¯es property
®:

Proof. Suppose not; then for some c0 > 0 there exists a PECr(c)s(c0) (perfect
Bayesian equilibrium that satis¯es condition (??)) pro¯le f that does not satisfy prop-
erty ®:
Now, ¯x any ² > 0 such that

² < c0

and let
p0 = maxf0; 1¡ z ¡ ²g

23As mentioned in Section 2, the size of the partition on the set of histories H1 de¯ned by the
equivalence relation »fs is a measure of s-complexity of strategy fs:
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Next notice that since f does not satisfy property ®; fs(hb) = b for every buyer b:
Thus,

hfs j hbi 6= hfs j hb0i for all b0 6= b (8.11)

Now, de¯ne another machine f 0s for s that is otherwise identical to fs except that
the induced strategies fhfs j hbigb2B are replaced by a single induced strategy that
always chooses a single buyer b, always o®ers a price p0 and accepts a price o®er if and
only if the price o®er is no less than p0: Formally, leteH =

©
h 2 H1 ¯̄h »fs hb for some bª

H =
n
h 2 H1

¯̄̄
h = (h1; h2) for some h1 2 eH and h2 2 H1

o
Then, f

0
s is de¯ned as follows.

f 0s(h; ') =
½

b if h 2 H
fs(h; ') otherwise

f 0s(h; d) =

8>><>>:
p0 if h 2 H and d = (s; b) for some b
A if h 2 H and d = (b; s; p) for some b and p ¸ p0
R if h 2 H and d = (b; s; p) for some b and p < p0

fs(h; d) otherwise

By condition (??), eH has B > 1 elements. Moreover, by construction

hf 0s j hi = hf 0s j h0i for all h; h0 2 eH
Thus, fs is more s-complex than f

0
s:

Now, I demonstrate a contradiction by showing that ¼s(hfs; f¡s j hi)¡¼s(hf 0s; f¡s j
hi) < c for all h:
Since f does not satisfy property ®, by Lemma ??, we have

if h 2 eH then ¼s(hf j hi) · 1¡ z (8.12)

Now consider 2 cases.
Case 1: 1¡z = 0: Since hf 0s j hi guarantees at least a payo® of zero, it follows that

in this case
¼s(hf 0s j hi; hf¡s j hi) ¸ 1¡ z (8.13)

Case 2: 1¡z > 0: Since the continuation payo® of any buyer is at most z it follows
that any buyer accepts any price o®er less than 1 ¡ z: But since 1 ¡ z > 0 we have
p0 = maxf0; 1¡ z ¡ ²g < 1¡ z. Therefore, b always accepts p0: Thus,

if h 2 eH then ¼s(hf 0s j hi; hf¡s j hi) = p0 ¸ 1¡ z ¡ ²: (8.14)

(This is because f 0s always selects b; always o®ers p
0 < 1 ¡ z and always accepts an

o®er if the price o®er is no less than p0):
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Thus, in both cases we have

if h 2 eH then ¼s(hf 0s j hi; hf¡s j hi) ¸ 1¡ z ¡ ²: (8.15)

But this, together with condition (??) imply that

if h 2 eH then ¼s(hf j hi)¡ ¼s(hf 0s j hi; hf¡s j hi) · ² < c (8.16)

If, on the other hand , h is such that h =2 eH then by the de¯nition of f 0s the pro¯les
(fs; f¡s) and (f 0s; f¡s) behave in exactly the same way at any period following such h:
This, together with (??) imply that

¼s(hf 0s; f¡s j hi)¡ ¼s(hfs; f¡s j hi) · c for all h:

But this is a contradiction because f
0
s is less complex than fs and is a c-best response

to f¡s:

Lemma 16. Suppose S = 1: Then for any ¯nite perfect Bayesian equilibrium strategy
pro¯le f with voluntary matching we have mb

b
¸ mb

s:

Lemma ?? is a restatement of Lemma ?? for the voluntary matching model. The
steps of the proofs of the two Lemmas are identical and therefore I will omit stating
the proof of Lemma ??.

Lemma 17. Suppose S = 1: Then for any ¯nite Pr* strategy pro¯le f that satis¯es
Property ® we have ¼s(hf j hi) = 1 for all h:

Proof. Suppose not; then there exits a ¯nite Pr* strategy pro¯le f that satis¯es
Property ® and ¼s(hf j hi) < 1 for some h: Now let

² = min
b2B; h2H1 ¼b(hf j h; b; si) (8.17)

(Since f is ¯nite ² is well de¯ned). Then by Lemma ??, we have

² > 0:

Now since f satis¯es property ® there exists b; hb 2 H(b) and b0 6= b such that

¯(hb; b
0) > 0:

By the de¯nition of z(b) and Lemma ?? we have that z = z(b) = ¼b(hf j hbi):
Therefore, since the seller's minimum continuation payo® is at least 1=2(mb

s+m
b
b
); we

can write an upper bound for z as follows
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z · 1¡ 1=2(mb
s +m

b
b
)¡P

h2§b0 µ(hb; h; b
0)[1=2(¼b0(hf j hb; h; s; b0i) + 1=2¼b0(hf j hb; h; b0; si] (8.18)

(The third terms on the RHS of the last inequality is simply the sum of the expected
continuation payo® of b0 6= b after history hb:)
Therefore, it follows from (??)

z · 1¡ 1=2(mb
s +m

b
b
)¡ ²

2

X
h2§b0

µ(hb; h; b
0) (8.19)

Thus it follows from (??) and from the de¯nition of ¯(hb; b
0) that

z · 1¡ 1=2(mb
s +m

b
b
)¡ ²¯(hb; b

0)
2

(8.20)

Now, by the same argument as that which follows (??) in the proof of Lemma ??, I
show that

mb
s ¸ 1¡ z (8.21)

To show this, suppose otherwise; then

mb
s < 1¡ z ¡ ² for some ² > 0: (8.22)

Now consider any history h and suppose that s makes a price o®er of (1¡ z ¡ ²) to b
after (h; s; b): Since z = z(b) is the maximum continuation payo® of b; it follows that

this o®er will be accepted by b. Thus mb
s ¸ 1¡z(b)¡ ²: But this contradicts condition

(??). Therefore, condition (??) holds.
But (??), together with condition (??), imply that

mb
s ¸ 1=2(mb

s +m
b
b
) +

²¯(hb; b
0)

2

Therefore, it follows from Lemma ?? that

mb
s ¸ mb

s +
²¯(hb; b

0)
2

But since ² > 0 and ¯(hb; b
0) > 0 this is a contradiction. Therefore, ¼s(hf j hi) = 1

for all h:
Since any PECr(c)s(c0) is a PECr(c) strategy pro¯le and any PECr(c) is a Pr*,

it follows from Lemmas ?? and ?? that for any c > 0, any c0 > 0 and for any ¯nite
PECr(c)s(c0) strategy pro¯le f; ¼s(hf j hi) = 1 for all h: But this implies that for
any such f; ¼b(hf j hi) = 0 for all h and that the unique equilibrium price is one.
Moreover, by the same arguments as that in the proof of Theorem 2.3 in Section 2, fi
is stationary for all i.
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