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Abstract

Each one of several impatient agents has a job that needs to be processed by a
server. The server can process the jobs sequentially, one at a time. Agents are privately

informed about the realization of a random variable representing processing time. If
the cost of delay is represented by a concave function, the e±cient shortest processing

time ¯rst schedule arises in the equilibrium of a simple auction where agents bids for
slots in the queue. If the cost function is convex, the equilibrium yields the anti e±cient

longest processing time ¯rst schedule. The performance of the auction in this case (both
e±ciency and revenue) can be improved by capping bids from above. Finally, we show

that the mechanisms that minimize the expected total waiting cost cannot depend on
the private information available to the agents.

1 Introduction

Imagine that you arrive with a bulky package at the department's copier machine together

with one of your esteemed colleagues. He/She says to you: "I have only a few pages to copy.
May I do it ¯rst ?" Most of us usually agree to this request, and indeed this courtesy is
well-founded in economic theory: total waiting cost is minimized if shorter jobs are processed
before longer ones. Moreover, it seems intuitive that your colleague should be willing to pay
more than you for the right to be ¯rst since he/she can thus avoid a longer delay than you.
But sometimes the colleague's job turns out to be longer than the announced few pages ("I
just noticed that I also need this chapter"), and in other situations everyone claims to have
the shorter job... Are these announcements sincere ? Should we base the queue discipline
upon them? This paper is about the design of simple pricing mechanisms (e.g., auctions or
lotteries) for allocating slots in a queue among impatient, privately informed agents.

¤Kittsteiner: Nu±eld College, Oxford University; Moldovanu: Department of Economics, University of

Bonn
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Queueing theory1 was developed in order to provide models that predict the behavior of
systems providing service for randomly °uctuating customer demand. Besides a very large
and valuable theoretical literature, there are many practical applications to tra±c °ow (e.g.,
vehicles at toll booths, aircraft at airport landing or take-o® gates, network communication),
scheduling (e.g., patients in hospitals, jobs on machines, programs on computers) and facility
design (e.g., banks, post o±ces, amusement parks and fast-food restaurants). A standard
task for the queuing analyst is to determine an appropriate measure for system performance
(which depends of course on the customers' and system's characteristics) and to design an

"optimal system" according to such a measure.
A queuing system is generally described by several basic characteristics pertaining to the

stochastic arrival pattern of possibly impatient customers (e.g., interarrival times, the possi-
bility to balk before or renege after entering the queue, the possibility to jockey for position,
etc..) and to the pattern of service (e.g., system capacity, number of service channels, queue
discipline, etc...).

Practically the entire queueing literature views customers as non-strategic agents endowed
with some (possibly) random characteristics. The process generating these characteristics is
assumed to be common knowledge. In particular, the theory does not consider the interplay
between system design (e.g., queue discipline) and the strategic incentives to manipulate
accessible information arising from the desire to improve one's position in the queue and thus
to increase one's utility.

In this paper we consider the most basic scheduling problem with one server and with
impatient customers all arriving at the same time. Each customer has a job that needs to be
processed, and the server can sequentially process one job at a time2. The design problem
reduces to determining the allocation of slots in the waiting line. Each customer is privately
informed about her needed processing time, and agents incur costs of delay. From the point of
view of other agents, the processing time of a speci¯c agent is a random variable governed by
a common-knowledge distribution. The total waiting cost born by an agent i that is allocated
the j0th slot depends both on i0s privately known processing time and on the processing
times of the agents scheduled to slots 1; 2; ::j ¡ 1: Thus agent i0s utility depends both on
the allocation of slots to other agents and on information that is ex-ante available to other
agents. In the language of mechanism design, we obtain a setting with both allocative and
informational externalities. An important assumption that is implicit in our analysis is that
processing times are too costly to monitor ex-post or, equivalently, that no additional fees can

be imposed after processing times have been realized and service has been completed.
1see for example the recent textbook by Gross and Harris (1998).
2We assume here that all agents can be served, but our results do not qualitatively change if the number

of slots is less than the number of jobs to be processed.
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In the above framework we ¯rst consider a natural auction procedure in which agents bid
for slots: the highest bidder gets the ¯rst slot, the second-highest bidder gets the second slot,
and so on till all slots are allocated. All agents pay their own bid. It turns out that the
performance of this auction crucially depends on the form of the function describing the costs
of delay. If this function is concave, agents with a shorter processing time bid in a Bayes-Nash
equilibrium more than agents with a longer processing time and, for any realization of the
stochastic processing times, the auction implements the e±cient shortest processing time ¯rst
(SEPT) schedule. In contrast, if the cost function is convex, agents with longer processing

times bid in equilibrium more than agents with shorter times, and the auction implements the
"anti-e±cient" longest processing time ¯rst (LEPT) schedule.

Since the case of convex cost functions is the more pertinent one for most applications
(e.g., consider the ubiquitous exponential cost functions or the presence of deadlines) it makes
sense to inquire whether there are mechanisms that perform better than the auction in this
case. We ¯rst analyze auctions with bid caps, i.e., auctions where agents are constrained to
make bids that are lower than a pre-determined maximum. Since with convex cost functions
the high bids come from agents with long processing time, constraining such bidders to a
maximum bid implies that the allocation of slots among these bidders will contain a random
element. Such a lottery necessarily improves upon the welfare attained by the LEPT schedule
implemented by the unconstrained auction.

In many situations of interest the server is owned by an agent that needs to raise revenue
in order to maintain operation and/or to make a pro¯t (think about a data processing ¯rm
or an airport operator). At ¯rst sight it seems that, whenever revenue raising is important,
constraining the high bidders via a bid cap will lower expected revenue. But this intuition is
misleading since in the constrained auction there are in fact agents with low processing times
that bid higher than their respective bids in the unconstrained auction. While bid caps are
shown never to be revenue enhancing in an auction with concave cost functions, we ¯nd that
bid caps may raise revenue if the cost function is convex (in some cases it is even revenue
maximizing to impose an extremely low cap such that the auction degenerates to a pure
lottery where agents pay a ¯xed fee !) Thus, with convex cost functions, schedule auctions
constrained by bid caps may perform better than unconstrained auctions on both e±ciency
and revenue measures.

Since we found that we can enhance performance by using procedures that do not, or only
partially condition on privately available information (lotteries and capped auctions, respec-

tively) we are next interested to characterize mechanisms that achieve the highest possible
welfare for the customers (i.e., minimize total expect waiting costs) subject to the incentive
compatibility constraint (i.e., subject to the requirement that their outcome arises in the equi-
librium of a game played by strategic, privately informed agents). It turns out that, in a
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large class of mechanisms, lotteries are indeed optimal if the agents have the same expected
processing time. If more information about the respective distribution of processing time is
available (e.g, if it is known that one agent's distribution stochastically dominates another),
this information can be used to determine optimal schedules. Surprisingly, even if it is the case
that the individual distributions of processing times are stochastically ordered in the usual
sense, it is not necessarily the case that the random variable governing the total costs of delay
associated with the SEPT schedule (based on the expectations of processing times) stochasti-
cally dominates all other schedules. But such a result holds if the individual processing times

are ordered in the likelihood ratio sense.
The basic scheduling problem with interdependent costs has been introduced by Hain and

Mitra (2002)3. These authors show that concavity of the cost function is a necessary condition
for the implementability of the e±cient schedule in ex-post equilibria (note that any ex-post
equilibrium is Bayes-Nash). Their main result is that, for cost functions that are concave
polynomials of degree less than or equal to n ¡ 2 (where n is the number of agents and
slots), a generalized Clarke-Groves-Vickrey mechanism can be constructed4 that is e±cient
and budget balanced. Note that in our framework the auction's designer (who has no private
information) is a residual claimant and budget balancedness is satis¯ed per de¯nition.

Wellmann et. al. (2001) study private values scheduling problems without waiting costs:
agents derive the same utility if their jobs are completed early or late as long as this is done
before a deadline. These authors apply insights gained from the theory of matching markets.

Gavious, Moldovanu and Sela (2002) analyze a private value all-pay auction for a single
object (there are no externalities of any kind) where the seller can impose bid caps. While
a bid-cap is disadvantageous if the function describing the bid cost is linear or concave, it is
shown that a bid cap may increase revenue if this function is convex.

This paper is organized as follows: In Section 2 we describe the design problem arising
from a scheduling problem with waiting costs. In Section 3 we derive Bayes-Nash equilibria
of a multi-object auction that allocates slots in the queue based on the respective bids. In
Section 4 we study auctions with bid caps and analyze the e®ects of these on auction e±ciency
and revenue. In Section 5 we focus on the case of convex cost functions and show that the
welfare maximizing incentive compatible mechanism (which minimizes expected processing
time) does not condition on the agents' private information. Finally, we connect this result to
well-known insights about the application of stochastic orders to queueing problems.

3Mitra (2001) focuses on e±ciency and budget-balancedness for simpler scheduling problems with private

values.
4The construction of the CGV mechanism is based on general insights about e±cient implementation for

multi-object auctions with interdependent valuations due to Dasgupta and Maskin (2000) and Jehiel and

Moldovanu (2001).
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2 The Model

A processing unit (e.g., a computer, a landing/take-o® gate, a repair tool) is available to n
risk-neutral agents. Each agent needs to perform a task (or job), and the agents' jobs can
be processed sequentially, one job at a time. Each agent i has information about her own
needed processing time ti, which is the realization of a random variable with support [t; t]:
The distribution of ti is given by a strictly increasing and continuous distribution function F
with density f: F is common knowledge and the individual processing times are independently
distributed.

A schedule is a permutation ¾ 2 §n; ¾ = (¾ (1) ; : : : ; ¾ (n)) where §n is the set of all one to
one mappings ¾ : f1; : : : ; ng 7! f1; : : : ; ng: In particular, ¾ (1) is the index of the agent who is
served ¯rst, ¾ (2) the index of the agent served second, and so forth. All agents bear a cost of
waiting given by a strictly increasing function C : R+ 7! R+; i.e. an agent waiting for t time
units for her job to be ¯nished bears a cost C (t) : Given a schedule ¾ 2 §n; the cost borne by

an agent who is served j0th is given by C
³Pj

k=1 t¾(k)
´
;

All agents derive an utility V from the completion of their job (net of time costs). This
utility is assumed to be common knowledge. We assume that V ¸ E(t2;:::;tn)C

¡
t+

Pn
k=2 tk

¢

to ensure that expected waiting costs never exceed V .
Given a realization of types (t1; : : : ; tn) and a schedule ¾; the utility of an agent i with

¾ (i) = j is given by V ¡C
³Pj

k=1 t¾(k)
´
since her waiting time is given the sum of processing

times for all predecessors and her own processing time. Hence we have a model with inter-
dependent valuations : an agent's utility is directly in°uenced by private information available
only to other agents (the processing time of her predecessors in the queue).

Denote by ¦ (§n) the set of all probability distributions on §n: In a direct revelation mecha-
nism (Á; p) each agent i reports a processing time bti 2

£
t; t

¤
. Given reports bt =

¡bt1; : : : ;btn
¢
, the

designer implements a schedule ¾ 2 §n according to the scheduling rule Á :
£
t; t

¤n 7! ¦(§n) ;
and receives payments p = (p1; : : : ; pn) ,where pi

¡bt1; : : : ;btn
¢
denotes the payment of agent i .

A mechanism (Á; p) truthfully implements the rule Á if truth-telling is a Bayes-Nash equi-
librium in the game induced by (Á; p) and the agents' utility functions. Such a mechanism is
called incentive compatible (IC).

The interim utility of agent i given her type ti, her announcement bti and given truthtelling
of the other agents is given by:

Ui
¡
ti;bti

¢
: = Et¡i

£
ui

¡
ti;bti; t¡i

¢¤

: = V ¡ Et¡i

2
4 X

¾2§n
Á

¡bti; t¡i
¢
(¾)

2
4C

0
@
¾(i)X

k=1

t¾(k)

1
A

3
5 + pi

¡bti; t¡i
¢
3
5]:
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We use the following notation:

Ui (ti) := Ui (ti; ti) :

The overall performance of a mechanism (Á; p) is measured by the total expected cost due to
waiting, i.e. by

P (Á) = Et

2
4
nX

i=1

X

¾2§n
Á (ti; t¡i) (¾)

2
4C

0
@
¾(i)X

k=1

t¾(k)

1
A

3
5

3
5 :

We call an incentive compatible mechanism optimal if it minimizes P (Á) in the class of all
incentive compatible mechanisms. Note that, for a given and ¯xed vector of processing times,
total waiting cost is minimized by the well known shortest processing time ¯rst (SEPT) sched-
ule where agents with a shorter processing time are served before those with longer processing
time. A scheduling rule Á¤ is called ex-post e±cient if it yields the SEPT schedule for any
realization of the random vector of processing times. Obviously, an incentive compatible
mechanism that implements an ex-post e±cient allocation rule is optimal.

3 Auction-based queue disciplines

In this section we analyze the equilibrium schedules arising in the following auction: agents
simultaneously submit sealed bids; the highest bidder is served ¯rst, the second highest bidder
is served second, and so forth; ¯nally, each bidder has to pay his bid. This multi-object
auction for n slots constitutes a simple and natural way of implementing a schedule based on
the agents' information about processing times. Obviously, bidders do not making losses by
participating in this auction since they can assure themselves a positive payo® by bidding zero

and being queued last. The next result shows that equilibrium behavior crucially depends on
the structure of the cost function C:We use the following notation:

P1
j=2 tj = 0:

Theorem 1 De¯ne

C1 (x) : = C 1 (x) = C (2x) ¡ C (x) ;

Cl (x) : = E(t2 ;:::;tl)

"
C

Ã
2x+

lX

j=2

tj

!
¡ C

Ã
x+

lX

j=2

tj

!
j tj · x; j = 2; : : : ; l

#
; l ¸ 2;

Cl (x) : = E(t2 ;:::;tl)

"
C

Ã
2x+

lX

j=2

tj

!
¡ C

Ã
x+

lX

j=2

tj

!
j tj ¸ x; j = 2; : : : ; l

#
; l ¸ 2:

The unique symmetric equilibrium of the slot auction is given by the strictly decreasing function
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1.

bcave (t) = (n¡ 1)
n¡1X

l=1

µ
n¡ 2
l ¡ 1

¶Z t

t
(1 ¡ F (x))n¡l¡1 F l¡1 (x)Cl (x)f (x) dx (1)

if C is strictly concave, and by the strictly increasing function

2.

bvex (t) = (n¡ 1)
n¡1X

l=1

µ
n¡ 2
l ¡ 1

¶Z t

t
F (x)n¡l¡1 (1 ¡ F (x))l¡1Cl (x) f (x) dx

if C is strictly convex.

Proof. Assume ¯rst that C is concave and all agents other than agent 1 bid according to
a strictly decreasing function b. The expected utility of agent 1 with processing time t1 who
bids as if she were of type bt1 is given by

U
¡
t1;bt1

¢
= V ¡

nX

l=1

µ
n¡ 1
l¡ 1

¶ ¡
1¡ F

¡bt1
¢¢n¡l

F
¡bt1

¢l¡1

E(t2 ;:::;tl)

"
C

Ã
lX

j=1

tj

!
j tj · bt1; j = 2; : : : ; l

#
¡ b

¡bt1
¢
:

Di®erentiating with respect to bt1 and rearranging the terms yields

@U
¡
t1;bt1

¢

@bt1
= ¡ (n¡ 1)

n¡1X

l=1

µ
n¡ 2
l ¡ 1

¶¡
1¡ F

¡bt1
¢¢n¡l¡1F

¡bt1
¢l¡1 f

¡bt1
¢

E(t2;:::;tl)

"
C

Ã
bt1 +

lX

j=1

tj

!
¡ C

Ã
lX

j=1

tj

!
j tj · bt1; j = 2; : : : ; l

#
¡ db

¡bt1
¢

dbt1
:

The ¯rst order condition @U(t1;bt1)
@bt1

¯̄
¯̄
bt1=t1

= 0 gives

¡ db
¡bt1

¢

dbt1

¯̄
¯̄
¯bt1=t1

= (n¡ 1)
n¡1X

l=1

µ
n¡ 2
l¡ 1

¶
(1¡ F (t1))

n¡l¡1 F (t1)
l¡1 f

¡bt1
¢

E(t2;:::;tl)

"
C

Ã
t1 +

lX

j=1

tj

!
¡ C

Ã
lX

j=1

tj

!
j tj · t1; j = 2; : : : ; l

#
:

This necessary condition is obviously ful¯lled for the decreasing function bcave as given by (1)
since C is strictly increasing (and hence the conditional expectation is positive). The su±cient
condition @

2U(t1 ;bt1)
@bt1@t1 > 0 for all t1;bt1 is satis¯ed, since

@2U
¡
t1;bt1

¢

@bt1@t1
= ¡ (n¡ 1)

n¡1X

l=1

µ
n¡ 2
l¡ 1

¶ ¡
1¡ F

¡bt1
¢¢n¡l¡1 F

¡bt1
¢l¡1 f

¡bt1
¢

E(t2;:::;tl)

"
C0

Ã
bt1 +

lX

j=1

tj

!
¡ C0

Ã
lX

j=1

tj

!
j tj · bt1; j = 2; : : : ; l

#
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and since the derivative C 0 = d
dtC (t) is strictly decreasing if C is strictly concave.

If C is convex the proof is similar and therefore omitted here.
The above result shows that the e±cient SEPT schedule is implemented by the auction if

the cost function C is concave. In the case of a convex cost function the equilibrium bidding
function is strictly increasing in processing time. Hence, agents are queued in the reverse order
meaning that those with longer processing time are served ¯rst (this is the well known LEPT
policy). In this case the auction yields the worst possible schedule since it maximizes P (Á).

The main reason behind these contrasting results is as follows: Agent's i cost from being

delayed for a period of time t, C (t+ ti)¡C (ti) ; is increasing in ti if C is convex and decreasing
if C is concave. Hence, if C is convex, it is more costly for an agent with a longer processing
time to queue for some time t (before her own job is processed) than for an agent with a
shorter processing time. The need to avoid the higher cost is expressed by a higher bid in
the auction, yielding the increasing bid function for the case of convex cost functions. The
opposite occurs for a concave cost function.

The "anti-e±cient" auction outcome for convex cost functions suggests to look for mech-
anisms that perform better in this case. We study such mechanisms in the next section.

4 Slot auctions with bid caps

Assume that bidders are not allowed to submit bids that are above a predetermined common-
knowledge maximum bid eb. If m > 1 agents submit bids equal to eb; then each of these bidders
is given any of the ¯rst m slots in the queue with probability 1

m .

Theorem 2 1) Let C be concave and assume that the bid cap eb satis¯es

E(t2 ;:::;tn)

"
C

Ã
t+

nX

j=2

tj

!
¡ 1
n¡ l + 1

n¡lX

k=0

C

Ã
t+

n¡kX

j=2

tj

!#
< eb < b (t) : (2)

The schedule auction with bid cap eb has a unique symmetric equilibrium characterized by a
type et = et(eb), strictly decreasing in eb; such that

ebcave
³
eb; t

´
=

(
bcave(t) if t > et

eb if t · et:;
(3)

2) Let C be convex and assume that the bid cap eb satis¯es

E(t2;:::;tn)

"
C

Ã
t+

nX

j=2

tj

!
¡ 1
n¡ l +1

n¡lX

k=0

C

Ã
t+

n¡kX

j=2

tj

!#
< eb < b

¡
t
¢
: (4)
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The schedule auction with bid cap eb has a unique symmetric equilibrium characterized by a
type et = et(eb), strictly increasing in eb; such that

ebvex
³
eb; t

´
=

(
bvex(t) if t · et

eb if t > et;
(5)

Proof. See Appendix.
By choosing an appropriate bid cap the auctioneer is able to determine the types of agents

that pool in equilibrium. Whereas the auctioneer can only decrease e±ciency by introducing a
bid cap eb < b (t) in the case of a concave cost function (note that performance is monotonically
decreasing in eb), an e®ective bid cap eb < b ¡t¢ necessarily increases performance in the case
of a convex cost function since, in that case, the auction performs worst among all possible
scheduling mechanisms. Moreover, overall performance is increasing in eb if C is convex. In

particular, by setting a bid cap equal to the lower bound in (4) all agents bid eb and hence are
given a certain position in the queue with probability 1

n: In this case all agents pay a ¯xed fee,
and the schedule is determined by an equal chance lottery among all agents.

4.1 Revenue considerations

We now turn to an analysis of bid caps on the designer's revenue. We ¯rst show that, if the
cost function is concave, the designer cannot pro¯t by setting an e®ective bid cap. Thus, the
ensuing e±ciency loss in this case has necessarily a negative e®ect on her revenue. The result
is not trivial since some bidders bid in the constrained auction more than in the unconstrained
one. Hence, an auctioneer interested in revenue needs to balance this positive e®ect of bid

caps with the negative e®ect caused by the fact that some other bidders cannot bid more than
eb.

Theorem 3 Assume that C is concave. Then the designer's revenue in an auction with an
e®ective bid cap is lower than her revenue in the auction without bid cap.

In the case of a convex cost function it is interesting to note that the introduction of
a bid cap causes some low-type bidders to bid eb even if they submitted lower bids in the
unrestricted auction (because this signi¯cantly increases their probability of getting a better
slot). The next result shows that if the cost function is not "too convex", then it is optimal for
a revenue-maximizing designer to set the lowest relevant e®ective a bid cap. Thus, increasing
the e±ciency of the auction is also bene¯cial in terms of revenue, and the optimum is achieved
with a lottery that does not condition on the agents' private information
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Theorem 4 Assume that C is convex. For any distribution function F and for any number
of jobs n, there exists a constant Kn > 0 such that if C00 < Kn the revenue maximizing bid cap
is given by

ebM = E(t2 ;:::;tn)

"
C

Ã
t+

nX

j=2

tj

!
¡ 1
n¡ l + 1

n¡lX

k=0

C

Ã
t+

n¡kX

j=2

tj

!#
:

Proof. see Appendix
In contrast to the ¯nding above, there exist environments with strongly convex cost func-

tions where the unrestricted auction yields more revenue than any auction with an e®ective
bid cap. The intuition is that more convexity leads to more aggressive bidding by agents
with high processing costs. The revenue loss resulting from limiting these bidders cannot be

anymore compensated by the low-type bidders' willingness to increase their bids up to the bid
cap.

Example 5 Assume n = 2, C (t) = et and ti » U [0; 1]: The following graph shows the
dependence of a bidder's expected bid on the marginal type et: Since the marginal bid increases
in et (which, in turn, increases in the bid cap eb) it is optimal not to restrict the auction with
an e®ective bid cap.

0
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0.015

0.02

b

0.2 0.4 0.6 0.8 1t

Note that in many standard auctions the auctioneer can increase her revenue by rationing
the auctioned good through the imposition of a reserve price. Apart from the fact that this has
a negative e®ect on overall e±ciency, and hence is not desirable if e±ciency is the auctioneer's
concern, it might be di±cult to commit to an exclusion of bidders ex-post. In contrast, we
analyzed here the e®ect of an instrument (bid caps) that ensure that all agents are served.

5 Optimal Mechanisms

In the previous section we showed that, for the case of convex cost functions, it may be
advantageous (both for revenue and for e±ciency purposes) not to use any private information
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about processing times, i.e., both the revenue maximizing and the performance maximizing
auction may sometime coincide with a lottery where slots in the queue are allocated at random.
But, it is conceivable that scheduling mechanisms other than the above described auctions do
perform better. In this section we show that mechanism that do not depend on the available
private information do minimize expected waiting costs in an important class of incentive
compatible mechanisms.

De¯nition 6 A direct revelation mechanism (Á; p) is called ex-post incentive compatible if
truthful announcement of processing times constitutes an ex-post equilibrium, i.e. for any
realization of types, it is optimal for any agent i to announce his true type given that all other
agents also announce their processing times truthfully.

Ex-post equilibria do not depend on the underlying distribution functions (In particular,
they do not depend on the assumption of independency of agents' processing times).

A mechanism (Á; p) that minimizes P (Á) in the class of all ex-post incentive compatible
mechanisms is called an optimal ex-post incentive compatible mechanism.

The following result shows that, for the case of two agents, the best allocation that can
be implemented in ex-post equilibrium is given by a lottery giving the ¯rst position in the
queue to both agents with probability 1

2. In fact, any mechanism that does not depend on
reports yields that same allocation. More generally, if the types t1; t2 are distributed on

£
t1; t1

¤

and
£
t2; t2

¤
according to di®erent distribution functions F1 and F2 (with densities f1 and f2)

the best allocation in ex-post equilibrium is given by the ex-ante e±cient allocation, i.e., by
scheduling ¯rst the agent with the shortest expected processing time.

Theorem 7 Assume that C is convex. The optimal ex-post incentive compatible mecha-
nism is to always choose the SEPT schedule based on the ex-ante expected processing costs
R ti
ti
C (ti) fi (ti)dti. If the ex-ante expected processing costs are the same for both agents, then

any random schedule is optimal.

Proof. Appendix
The situation is more complicated if the mechanism designer is not only interested in

minimizing expected total waiting costs for the agents, but additionally prefers that this cost

stays below a given threshold as often as possible. Such a constraint arises for example if there
is an overall budget constraint with costly overdraws.

The following stylized example (which can be approximated in our model) shows that these
two goals might not be attainable simultaneously.

Example 8 Assume two agents and the following distribution of processing time:

11



t1 =

(
1 with probability 1

5

3 with probability 4
5

¯̄
¯̄
¯ ; t2 =

(
2 with probability 1

5

5 with probability 4
5

¯̄
¯̄
¯ :

The (convex) cost function is given by C (t) = t2. Note that t2 stochastically dominates t1
hence, according to Theorem 7, it is optimal to serve agent 1 ¯rst since this minimizes expected
processing time. On the other hand, the probability that overall processing time is below 30 is
higher if agent 2 is queued ¯rst, i.e.

PrfC (t1) +C (t1 + t2) · 30g =
4
25
<

1
5
= PrfC (t2) + C (t1 + t2) · 30g:

The following result o®ers a su±cient condition guaranteeing that serving the agent with
lower expected processing time ¯rst maximizes the probability that total costs are below a
given (arbitrary) threshold among all announcement-independent mechanisms We use the
following de¯nition:

De¯nition 9 The random variable t2 is larger then t1 in the sense of likelihood ratio, t2 ¸LR
t1, if f2(t)f1(t)

is (weakly) increasing in t:

Note that the likelihood ratio order implies standard stochastic dominance. In particular,
t2 ¸LR t1 implies that E(t2) ¸ E(t1):

The following is a well-known property of the likelihood ratio ordering:

Proposition 10 Assume that t2 ¸LR t1;and let h (x; y) be a real-valued function satisfying
h (t2; t1) ¸ h (t1; t2) for all t2 ¸ t1 . Then the random variable h (t2; t1) stochastically domi-
nates h (t1; t2) :

Proof. See Ross (1983), Proposition 8.4.2 on page 268.5

It is immediate that the above condition is satis¯ed for the function h that measures total
waiting costs, i.e., h (t1; t2) = C (t1) + C (t1 + t2) : Hence, if t2 ¸LR t1; it follows that the
probability of overall costs being below an arbitrary threshold is higher if agent 1 is served
before agent 2 than the other way round. In other words, if in a deterministic scheduling
problem with known processing times it is optimal to interchange two jobs, then it is also
stochastically optimal to interchange two jobs with random processing times that are likelihood
ratio ordered. In conjunction with Theorem 7, these observations yield the following result:

Theorem 11 Assume that t2 ¸LR t1 and that C is convex. Given an arbitrary constant
K ¸ 0; the optimal ex-post incentive compatible mechanism maximizes the probability that
overall costs are below K in the class of all mechanisms that do not depend on announcements.

5For an extensive analysis of the uses of stochastic orders in queueing see Chang and Yao (1993) and

Shanthikumar and Yao (1991).
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6 Conclusion

We have combined a simple queueing problem with an incentive problem arising if impatient
agents are privately informed about the processing time needed to complete their respective
jobs. We have shown that auction-based queue disciplines are e±cient if the delay cost function
is concave, and anti-e±cient if it is convex. For the later case, the auction's performance can
be enhanced by imposing bid caps. Finally, for the case of convex cost functions, we have
shown that the best performance is attained by mechanisms that do not attempt to condition
on the private information. These mechanisms take into account ex-ante available information.

The model analyzed here is very simple, and the vast queueing literature has considered
much more complicated models with random arrivals, multiple servers, preemptive service,
multi-stage service, etc...In principle, the performance of various pricing mechanisms similar
to those studied here can be applied to such models. We think that the combination of
queueing and incentive models constitutes a fruitful avenue and that such studies will have

many signi¯cant real-life applications.

7 Appendix

We use the following abbreviation: dF (tl+1; : : : ; tn) := f (tl+1) : : : f (tn) dtl+1; : : : dtn:
Proof of Theorem 2: The proof is performed for the case of a convex cost function. The

case of a concave cost functions follows along the same line.
Given that other bidders bid according to a strictly increasing bidding function b if their

type is smaller et and bid eb otherwise, the interim expected utility of a bidder with type t1 who
bids according to b as if he were of type bt < etis given by:

U
¡
t1; b

¡bt
¢¢

= V ¡
nX

l=1

µ
n¡ 1
l ¡ 1

¶
F l¡1

¡bt
¢ Z t

bt
¢ ¢ ¢

Z t

bt| {z }
n¡l

C

Ã
t1+

nX

j=l+1

tj

!
dF (tl+1; : : : ; tn) ¡ b

¡bt
¢
:

If a bidder with type t1 bids eb , his interim expected utility is given by (we de¯ne
Ps¡1
s f (s) = 0) :

U
³
t1;eb

´
= V ¡

nX

l=1

µ
n¡ 1
l¡ 1

¶
F l¡1

¡et
¢ Z t

et
¢ ¢ ¢

Z t

et| {z }
n¡l

1
n¡ l +1

n¡lX

k=0

C

Ã
t1 +

n¡kX

j=l+1

tj

!
dF (tl+1; : : : ; tn) ¡eb:
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Taking the derivative of U
¡
t1; b

¡bt
¢¢

with respect to bt yields

@
@bt
U

¡
t1; b

¡bt
¢¢

= ¡
nX

l=2

µ
n¡ 1
l¡ 1

¶
(l¡ 1)F l¡2

¡bt
¢
f

¡bt
¢ Z t

bt
¢ ¢ ¢

Z t

bt| {z }
n¡l

C

Ã
t1 +

nX

j=l+1

tj

!
dF (tl+1; : : : ; tn)

+
n¡1X

l=1

µ
n¡ 1
l ¡ 1

¶
(n¡ l)F l¡1

¡bt
¢
f

¡bt
¢ Z t

bt
¢ ¢ ¢

Z t

bt| {z }
n¡l¡1

C

Ã
t1 + bt+

nX

j=l+2

tj

!
dF (tl+2; : : : ; tn)

¡ d
dbt
b
¡bt

¢

= (n¡ 1)
n¡1X

l=1

µ
n¡ 2
l ¡ 1

¶
F l¡1

¡bt
¢
f

¡bt
¢

Z t

bt
¢ ¢ ¢

Z t

bt| {z }
n¡l¡1

"
C

Ã
t1 + bt +

nX

j=l+2

tj

!
¡ C

Ã
t1+

nX

j=l+2

tj

!#
dF (tl+2; : : : ; tn) ¡ d

dbt
b
¡bt

¢
:

The ¯rst order condition @
@btU

¡
t1; b

¡bt
¢¢¯̄

bt=t1 = 0 and the condition b (t) = 0 determines the
equilibrium bidding function6 b (t1) for t1 < et: This function coincides with bvex(t1) on that
interval. Given eb , the marginal type et is determined by the condition U

¡et; b
¡et

¢¢
= U

³
et;eb

´
;

i.e. by

eb = b
¡et

¢
+
n¡1X

l=1

µ
n¡ 1
l ¡ 1

¶
F l¡1

¡et
¢

Z t

et
¢ ¢ ¢

Z t

et| {z }
n¡l

"
C

Ã
et+

nX

j=l+1

tj

!
¡ 1
n¡ l +1

n¡lX

k=0

C

Ã
et+

n¡kX

j=l+1

tj

!#
dF (tl+1; : : : ; tn): (6)

For eb = b
¡
t
¢
we get et = t whereas for

ebM =
Z t

t
¢ ¢ ¢

Z t

t| {z }
n¡1

"
C

Ã
t+

nX

j=2

tj

!
¡ 1
n¡ l+ 1

n¡lX

k=0

C

Ã
t +

n¡kX

j=2

tj

!#
dF (tl+1; : : : ; tn) (7)

we have et = t: The derivative with respect to et of the r.h.s. of (6) is strictly positive. This

6It can easily be checked that the second order condition is also satis¯ed for t < et.
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shows that et is uniquely de¯ned and that a higher bid cap eb yields a higher marginal type et :

d
det

eb =
d
det
b
¡et

¢
+
n¡1X

l=2

µ
n¡ 1
l¡ 1

¶
(l¡ 1)F l¡2

¡et
¢
f

¡et
¢

Z t

et
¢ ¢ ¢

Z t

et| {z }
n¡l

"
C

Ã
et+

nX

j=l+1

tj

!
¡ 1
n¡ l +1

n¡lX

k=0

C

Ã
et+

n¡kX

j=l+1

tj

!#
dF (tl+1; : : : ; tn)

¡
n¡1X

l=1

µ
n¡ 1
l ¡ 1

¶
F l¡1

¡et
¢
f

¡et
¢ Z t

et
¢ ¢ ¢

Z t

et| {z }
n¡l¡1

"
(n¡ l)C

Ã
2et +

nX

j=l+2

tj

!

¡
n¡l¡1X

k=0

ÃÃ
n¡ l ¡ k
n¡ l+ 1

C

Ã
2et+

n¡kX

j=l+2

tj

!
+ k + 1
n¡ l + 1

C

Ã
et+

n¡kX

j=l+2

tj

!!!#
dF (tl+2; : : : ; tn)

+
n¡1X

l=1

µ
n¡ 1
l ¡ 1

¶
F l¡1

¡et
¢

Z t

et
¢ ¢ ¢

Z t

et| {z }
n¡l

"
@
@et
C

Ã
et+

nX

j=l+1

tj

!
¡ 1
n¡ l +1

n¡lX

k=0

@
@et
C

Ã
et+

n¡kX

j=l+1

tj

!#
dF (tl+1; : : : ; tn)

=
d
det
b
¡et

¢
+ (n¡ 1)

n¡2X

l=1

µ
n¡ 2
l ¡ 1

¶
F l¡1

¡et
¢
f

¡et
¢

Z t

et
¢ ¢ ¢

Z t

et| {z }
n¡l¡1

"
C

Ã
et+

nX

j=l+2

tj

!
¡ 1
n¡ l

n¡l¡1X

k=0

C

Ã
et+

n¡kX

j=l+2

tj

!
¡ C

Ã
2et+

nX

j=l+2

tj

!

+
1
n¡ l

n¡l¡1X

k=0

ÃÃ
n¡ l¡ k
n¡ l + 1

C

Ã
2et+

n¡kX

j=l+2

tj

!
+
k + 1
n¡ l +1

C

Ã
et+

n¡kX

j=l+2

tj

!!!#
dF (tl+2; : : : ; tn

¡ (n¡ 1)Fn¡2
¡et

¢
f

¡et
¢ 1
2

£
C

¡
2et

¢
¡ C

¡et
¢¤

+
n¡1X

l=1

µ
n¡ 1
l ¡ 1

¶
F l¡1

¡et
¢

Z t

et
¢ ¢ ¢

Z t

et| {z }
n¡l

"
@
@etC

Ã
et+

nX

j=l+1

tj

!
¡ 1
n¡ l +1

n¡lX

k=0

@
@etC

Ã
et+

n¡kX

j=l+1

tj

!#
dF (tl+1; : : : ; tn)

15



= (n¡ 1)
n¡2X

l=1

µ
n¡ 2
l ¡ 1

¶
F l¡1

¡et
¢
f

¡et
¢

Z t

et
¢ ¢ ¢

Z t

et| {z }

1
n¡ l

n¡l¡1

"
n¡l¡1X

k=0

ÃÃ
n¡ l¡ k
n¡ l +1

C

Ã
2et+

n¡kX

j=l+2

tj

!
+
k +1
n¡ l+ 1

C

Ã
et+

n¡kX

j=l+2

tj

!!!

¡
n¡l¡1X

k=0

C

Ã
et+

n¡kX

j=l+2

tj

!#
f (tl+2)dtl+2 : : : f (tn)dtn

+ (n¡ 1)Fn¡2
¡et

¢
f

¡et
¢ 1
2

¡
C

¡
2et

¢
¡ C

¡et
¢¢

+
n¡1X

l=1

µ
n¡ 1
l ¡ 1

¶
F l¡1

¡et
¢

Z t

et
¢ ¢ ¢

Z t

et| {z }
n¡l

"
@
@et
C

Ã
et+

nX

j=l+1

tj

!
¡ 1
n¡ l+ 1

n¡lX

k=0

@
@et
C

Ã
et +

n¡kX

j=l+1

tj

!#
dF (tl+1)

Obviously, it is not optimal to deviate to a bid b < eb if t1 > et or to a bid b > b
¡et

¢
if t1 < et:

Q.E.D.
Proof of Theorem 4: It su±ces to show that for the linear cost function C (x) = x

imposing a bid cap ebM leads to a strictly higher revenue than any other bid cap. Given a bid
cap eb and given the uniquely de¯ned corresponding marginal type et; the auctioneer's expected
revenue per agent is:

R(eb) :=
Ã

eb
¡
1¡ F

¡et
¢¢

+
Z et

t
bvex (x) f (x) dx

!
:

We show below that d
detR(

eb) = d
det
eb

¡
1¡ F

¡et
¢¢

+
³
bvex

¡et
¢

¡eb
´
f

¡et
¢
< 0 for et < t: Thus, the

optimal marginal type is t; and, accordingly, the optimal bid cap is ebM :
For C (x) = x we have:

d
det
R(eb) =

¡
1¡ F

¡et
¢¢

(n¡ 1)
n¡2X

l=1

µ
n¡ 2
l¡ 1

¶
F l¡1

¡et
¢
f

¡et
¢

Z t

et
¢ ¢ ¢

Z t

et| {z }
n¡l¡1

1
n¡ l

"
n¡l¡1X

k=0

n¡ l ¡ k
n¡ l+ 1

et
#

| {z }
(1¡F(et))n¡l¡1 1

2
et

dF (tl+2; : : : ; tn)

+ (n¡ 1)Fn¡2
¡et

¢
f

¡et
¢ 1
2
et
¡
1 ¡ F

¡et
¢¢

¡f
¡et

¢ n¡1X

l=1

µ
n¡ 1
l¡ 1

¶
F l¡1

¡et
¢ Z t

et
¢ ¢ ¢

Z t

et| {z }
n¡l

"
nX

j=l+1

tj ¡
1

n¡ l+ 1

n¡lX

k=0

n¡kX

j=l+1

tj

#
dF (tl+1; : : : ; tn)
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= (n¡ 1)
n¡1X

l=1

µ
n¡ 2
l ¡ 1

¶
F l¡1

¡et
¢
f

¡et
¢ ¡

1 ¡F
¡et

¢¢n¡l 1
2
et

¡f
¡et

¢ n¡1X

l=1

µ
n¡ 1
l ¡ 1

¶
F l¡1

¡et
¢ Z t

et
¢ ¢ ¢

Z t

et| {z }
n¡l

"
nX

j=l+1

j ¡ l
n¡ l + 1

tj

#
dF (tl+1; : : : ; tn)

=
n¡1X

l=1

(n¡ 1)!
(n¡ l)! (n¡ l ¡ 1)!

F l¡1
¡et¢ f ¡et¢

0
BB@

¡
1¡ F

¡et
¢¢n¡l 1

2
et¡ 1
n¡ l

Z t

et
¢ ¢ ¢

Z t

et| {z }
n¡l

"
nX

j=l+1

j ¡ l
n¡ l + 1

tj

#
dF (tl+1; : : : ; tn)

1
CCA

·
n¡1X

l=1

(n¡ 1)!
(n¡ l)! (n¡ l ¡ 1)!

F l¡1
¡et

¢
f

¡et
¢
0
BB@

¡
1 ¡ F

¡et
¢¢n¡l 1

2
et¡

Z t

et
¢ ¢ ¢

Z t

et| {z }
n¡l

1
2
etdF (tl+1; : : : ; tn)

1
CCA

= 0:

Q.E.D.
Proof of Theorem 7: Since the suggested mechanisms do not depend on announcements,

truthtelling is an ex-post equilibrium. To simplify notation, let ki
¡bt1;bt2

¢
denote the probability

that agent i is served ¯rst, given announcements bt1;bt2: Obviously we must have k2 = 1¡ k1:
For an allocation (k1; k2) to be implementable in ex-post equilibrium we must have for all
ti ¸ bti:

ui
¡
ti;bti; t¡i

¢
¡ui

¡bti;bti; t¡i
¢

· ui (ti; ti; t¡i) ¡ui
¡bti; ti; t¡i

¢
for all t¡i:

For i = 1 this yields for all t2:

£
C (t1) ¡ C

¡bt1
¢¤
k1

¡bt1; t2
¢
+

£
C (t2 + t1) ¡ C

¡
t2 + bt1

¢¤ ¡
1¡ k1

¡bt1; t2
¢¢

¸
£
C (t1) ¡ C

¡bt1
¢¤
k1 (t1; t2) +

£
C (t2 + t1)¡ C

¡
t2 + bt1

¢¤
(1 ¡ k1 (t1; t2))

This is equivalent to:

£
C (t2 + t1)¡ C (t1) ¡ C

¡
t2 + bt1

¢
+ C

¡bt1
¢¤
k1

¡bt1; t2
¢

·
£
C (t2 + t1)¡ C (t1) ¡ C

¡
t2 + bt1

¢
+ C

¡bt1
¢¤
k1 (t1; t2) :

Since C is convex, the above condition is equivalent to k1
¡bt1; t2

¢
· k1 (t1; t2) for all t2: This

last condition implies in turn that ex-post implementability requires that
Z t2

t2

k1 (t1; t2) f2 (t2) dt2 is increasing in t1: (8)
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Equivalently, by looking at i = 2 we get the requirement that
Z t1

t1

k1 (t1; t2)f1 (t1) dt1 is decreasing in t2: (9)

We are now looking for the solution to the following problem:

min
(k1;k2)

Z t1

t1

Z t2

t2

[C (t1) k1 (t1; t2) + C (t2) k2 (t1; t2)) +C(t1 + t2)]f1 (t1) f2 (t2) dt1dt2 (10)

subject to incentive compatibility constraints:

Since k2 = 1¡ k1; and since the cost C(t1 + t2) is incurred for sure in any allocation, the
above problem becomes:

min
k1

Z t1

t1

Z t2

t2
(C (t1) ¡ C (t2)) k1 (t1; t2)f1 (t1) f2 (t2)dt1dt2 (11)

s:t: (8) ; (9) :

We have that
Z t1

t1

Z t2

t2
(C (t1) ¡ C (t2))k1 (t1; t2) f1 (t1) f2 (t2) dt1dt2

=
Z t1

t1
C (t1)

Z t2

t2
k1 (t1; t2) f2 (t2) dt2f1 (t1)dt1

¡
Z t2

t2
C (t2)

Z t1

t1
k1 (t1; t2) f1 (t1) dt1f2 (t2)dt2:

For the solution k1 of (11) de¯ne:
Z t1

t1

Z t2

t2
k1 (t1; t2) f1 (t1) f2 (t2) dt1dt2 :=K 2 [0; 1]:

Since C is increasing and because of (8) and (9) we obtain that
Z t1

t1
C (t1)

Z t2

t2
k1 (t1; t2) f2 (t2) dt2f1 (t1)dt1

is minimized if
R t2
t2
k1 (t1; t2) f2 (t2) dt2 = K and that

Z t2

t2

C (t2)
Z t1

t1

k1 (t1; t2) f1 (t1) dt1f2 (t2)dt2

is maximized if
R t1
t1
k1 (t1; t2) f1 (t1) dt1 = K. Hence, for the solution of (11), we must have:

Z t1

t1

Z t2

t2

(C (t1) ¡ C (t2))k1 (t1; t2) f1 (t1) f2 (t2) dt1dt2

= K

ÃZ t1

t1
C (t1) f1 (t1) dt1 ¡

Z t2
t2
C (t2) f2 (t2) dt1dt2

!
:

This last expression is minimized at:

18



K = 0 if
R t1
t1
C (t1) f1 (t1) dt1 ¸

R t2
t2
C (t2) f2 (t2) dt1dt2

K = 1 if
R t1
t1
C (t1) f1 (t1) dt1 ·

R t2
t2
C (t2) f2 (t2) dt1dt2

any K 2 [0; 1] if
R t1
t1
C (t1) f1 (t1) dt1 =

R t2
t2
C (t2)f2 (t2) dt1dt2:

The mechanism suggested in the statement of the theorem obviously ful l̄ls these require-
ments. Q.E.D.
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