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We demonstrate that for a natural preference domain for couples, namely the domain of
responsive preferences, the existence of stable matchings can easily be established. However,
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of a couple to be closer together may already cause instability. This demonstrates that the
nonexistence of stable matchings in couples markets is not a singular theoretical irregularity.
Our nonexistence result persists even when a weaker stability notion is used that excludes
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Moreover, we show that even if preferences are responsive there are problems that do not
arise for singles markets. Even though for couples markets with responsive preferences the set
of stable matchings is nonempty, the lattice structure that this set has for singles markets does
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Resident Matching Program to fill positions for physicians in the United States may cycle, while
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1 Introduction

In many countries, the proportion of women attending college has steadily been increasing during
the last decades. Thus, it is not surprising that the number of couples searching jointly for a job
in the same labor market has been increasing as well. So, in addition to individual job quality,
couples’ preferences may capture complementarities that are induced by the distance between
jobs.

Roth (1984) demonstrates the possibility of instability in the presence of couples. In his
example, however, the couples’ preferences over pairs of positions (one position for each member
of the couple) seem to be somewhat arbitrary.3

We show that for a natural preference domain for couples, namely the domain of responsive
preferences (which reflect situations where couples search for jobs in the same metropolitan
area), the existence of stable matchings can easily be established. Since the requirement of
responsiveness essentially excludes complementarities in couples’ preferences that are caused by
distance considerations, this result – to some extend – may seem trivial. However, proceeding
from this possibility result, we show that the absence of stable matchings in couples markets
is not a singular theoretical irregularity: a single couple may cause a real-life market to be
unstable even if their preference list is very consistently based on their individual preferences
and the desire to not live too far away from each other. In other words, a small deviation from
responsiveness may cause instability. Our nonexistence result persists even when we relax the
requirement of stability to a weaker stability notion that excludes myopic blocking. Moreover,
we show that even though for couples markets with responsive preferences the set of stable
matchings is nonempty, the lattice structure that this set has for singles markets does not carry
over. This for example means that the consensus that exists on each side of a singles market on
which matching is worst and which one is best is lost. All the results discussed so far (Section 3)
complement the theory on stability in couples markets. Moreover, they suggest that there is not
much hope for a positive answer to the open question by Roth and Sotomayor (1990) whether
there exist plausible classes of couples’ preferences that allow for stable matchings.

In the second part of the paper (Section 4) we deal with a specific US labor market. Each
year thousands of medical school graduates seek their first employment through a centralized
matching process: the National Resident Matching Program (NRMP).4 This clearinghouse was
initiated in the 1950s in response to persistent failures to organize the market in a timely and
orderly way by decentralized means. Around the mid 1970s voluntary and orderly participation
started to drop. What happened then was that a growing number of couples in need of two
positions in the same vicinity left the centralized market and started to negotiate directly with
hospitals (see Checker (1973)). As a consequence, the labor market became, just as before the
1950s, prone to chaos and dissatisfaction on all sides. A hypothesis offered by Roth (1984) is
that the chaotic conditions reflect the instability of the matching procedure. If couples and
hospitals find it profitable to make their own arrangements outside of the matching program it
must be that the matching procedure is unstable with respect to couples. This indeed turned
out to be the case.

3Apart from possible instabilities in couples markets there are other intrinsical differences with simple matching
markets, for instance (a) there may be no optimal stable matching for either side of the market (Roth (1984)
and Aldershof and Carducci (1996)) or (b) different stable matchings may assign positions to different applicants
and/or have different positions filled (Aldershof and Carducci (1996)).

4See Roth (1984), Roth and Sotomayor (1990), and Roth and Peranson (1999).
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In the mid 1990s a crisis of confidence5 in the matching procedure on the applicants side
of the market finally made the NRMP Board of Directors decide to design a new algorithm.
Apart from recovering confidence by favoring the students side of the market, the algorithm
was also meant to deal with couples in an appropriate manner. The first match with the new
algorithm was carried out in 1998. Roth and Peranson (1999) describe how the new algorithm
was designed. Furthermore, using computational simulations and analyzing previous data, they
show that the new algorithm is to be expected to perform well in practice.

Roth (2002) gives a more recent review of the redesign of the NRMP algorithm in the context
of analyzing the “engineering aspects” of economic design. A nice overview of how the new
algorithm was designed to address the problems that occur in the presence of couples is given in
Roth (2002, Section 2.4.1). Roth (2002, p. 1359) reports that even though theoretically a stable
matching may not exist “one result of the computational experiments conducted during the
design of the algorithm is that the procedure never failed to converge to a stable matching. So
there is reason to believe that the incidence of examples with no stable matchings may be rare.”
Furthermore, Roth (2002, p. 1359) explains that “Based on these computational experiments,
the applicant proposing algorithm for the NRMP was designed so that all single candidates are
admitted to the algorithm for processing before any couples are admitted. This reduces the
number of times that the algorithm encounters cycles and produced the fastest convergence.”

Indeed, the higher the percentage of responsive preferences for couples, the more likely
the existence of a stable matching is. However, surprisingly enough, we found that even if
preferences are responsive (i.e., a stable matching always exists) the new NRMP algorithm may
cycle. Furthermore, since single candidates are processed first, the new NRMP algorithm may
be prone to strategic manipulation by the members of a couple pretending to be single.

The relevance of the latter results in practice may need some further analysis. However, we
feel that presenting these potential problems of the new NRMP algorithm contributes to under-
standing the complexities of the situation. We conjecture that since in this particular market
students can only conduct a very small amount of interviews (fewer than 15 according to Roth
(2002)), couples in order to maximize their chances of (a) receiving an offer and (b) being able
to live together may focus their attention of job offers in the same region or metropolitan area,
thereby segmenting the market into local markets where they can act as singles. In that case,
couples preferences are likely to be responsive, which would ensure the existence of stable. This
in fact may explain the observation Roth (2002, p. 1363) derives from his computations: “The
computational results suggest that there may be theorems that explain why it becomes increas-
ingly unlikely that the set of stable matchings will be either large or empty, as the market grows
large.” If the labor market indeed is large, it seems even more likely that couples may focus
on particular regions or metropolitan areas since then these local labor markets probably are
sufficiently large so that each student can conduct all interviews there. In such a situation all
students can act as singles and the NRMP algorithm for singles would never fail to find the
student optimal stable matching.

5Many students believed that the matching was not conducted in their best interest and that possibilities for
strategic manipulations existed; see Roth and Peranson (1999).
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2 Matching with couples: the model

For convenience and without loss of generality, we describe a model with 4 hospitals and 2 pairs
of students; H = {h1, h2, h3, h4}, S = {s1, s2, s3, s4}, and C = {c1, c2} = {(s1, s2), (s3, s4)} are
the sets of hospitals, students, and couples, respectively. Each hospital has exactly one position
to be filled. All of our results can easily be adapted to more general situations that include other
couples as well as single agents and hospitals with multiple positions.

Next, we describe preferences of hospitals, students, and couples. Each hospital h ∈ H has a
strict, transitive, and complete preference relation �h over the set of students S and the prospect
of having its position unfilled, denoted by ∅. Hospital h’s preferences can be represented by a
strict ordering of the elements in S ∪ {∅}; for instance, P (h) = s4, s2, ∅, s1, s3 indicates that
hospital h prefers student s4 to s2, and considers students s1 and s3 to be unacceptable. In our
examples and results typically each hospital prefers its position filled by some student rather
than unfilled. Let PH = {P (h)}h∈H .

Similarly, each student s ∈ S has an individual strict, transitive, and complete preference
relation �s over the set of hospitals and the prospect of being unemployed, denoted by u. We
assume that these individual preferences are the preferences a student has if he is single. Student
s’s individual preferences can be represented by a strict ordering of the elements in H ∪{u}; for
instance, P (s) = h1, h2, h3, h4, u indicates that student s prefers hi to hi+1 for i = 1, 2, 3 and
prefers being employed to being unemployed. Let PS = {P (s)}s∈S .

Finally, each couple c ∈ C has a strict, transitive, and complete preference relation �c

over all possible combination of ordered pairs of (different) hospitals and the prospect of being
unemployed. Couple c’s preferences can be represented by a strict ordering of the elements
in H := [(H ∪ {u}) × (H ∪ {u})]\{(h, h) : h ∈ H}. A generic element of H will be denoted
by (hp, hq), where hp and hq indicate either a hospital or being unemployed. For instance,
P (c) = (h4, h2), (h3, h4), (h4, u), etc. indicates that couple c = (s1, s2) prefers s1 and s2 being
matched to h4 and h2, respectively, to being matched to h3 and h4, respectively, and so on. Let
PC = {P (c)}c∈C .

Now, the standard one-to-one matching market with single students, or singles market for
short, is denoted by (PH , PS). Since singles markets and some of the classical results for singles
markets are well-known, for a detailed description we refer to Roth and Sotomayor (1990) who
give an excellent introduction to this model and review all results that are relevant here. For
instance, the set of stable matchings is nonempty and coincides with the core. As discussed in
the Introduction, some problems in real-world singles markets occurred because of the existence
of couples. We define a one-to-one matching market with couples, or a couples market for short,
by (PH , PC).

Before we continue, some brief remarks about our notation and its use may be helpful.
Instead of denoting a couples market by (PH , PC), we could add students’ individual pref-

erences and consider (PH , PS , PC). Since we will not explicitly use the students’ individual
preferences, we suppress them in our notation.

Under certain circumstances, one can derive orderings of hospitals for both members of
a couple from the couple’s preferences (responsive preferences). Even though these derived
preferences need not coincide with the students’ individual preferences, in order to keep notation
as simple as possible, we will denote the derived preferences the same way as we denote students’
individual preferences.
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Note that when presenting preferences in examples, we often use column notation. Further-
more, whenever we use the strict part � of a preference relation, we assume that we compare
different students, hospitals, or ordered pairs of hospitals, respectively.

Next, we introduce several possible restrictions on the couples’ preferences.
First, we introduce strong unemployment aversion.6 If couple c prefers full employment to the

employment of only one partner and the employment of only one partner to the unemployment
of both partners, we say that it is strongly unemployment averse. Formally, for all hp, hq, hr 6= u,
(hp, hq)�c(hr, u)�c(u, u) and (hp, hq)�c(u, hr) �c(u, u).

Note that a priori we do not require any relation between students’ individual preferences and
couples’ preferences. In fact, we cannot or do not always wish to specify individual preferences
when couples are concerned. However, we do study some situations in which there is a clear
relationship. This is the case when the unilateral improvement of one partner’s job is considered
beneficial for the couple as well. Couple c = (sk, sl) has responsive preferences if there exist
preferences �sk

and �sl
such that for all hp, hq, hr ∈ H∪{u}, [hp�sk

hr implies (hp, hq)�c(hr, hq)]
and [hp�sl

hr implies (hq, hp)�c(hq, hr)]. If couple (sk, sl) has responsive preferences, then one
can easily derive the (unique) associated individual preferences �sk

and �sl
. Note that these

associated individual preferences may in fact be identical to the students’ individual preferences.
However, as we will show later (see Example 3.4), associated individual preferences and students’
individual preferences may not coincide.

Additive preferences are a special case of responsive preferences; couple c = (sk, sl) has
additive preferences if there exist functions uk : H ∪ {u} → IR and ul : H ∪ {u} → IR such that
for all hp, hq, hx, hy ∈ H∪{u}, (hp, hq)�c(hx, hy) if and only if uk(hp)+ul(hq) > uk(hx)+ul(hy).

If a couple always aims to maximize the job quality for one of its members first, we say
that the couple has leader-follower preferences. Without loss of generality we define this class
of preferences for a couple c = (sk, sl) with student sk as the leader and student sl as the
follower: for all hp, hx, hq, hy ∈ H ∪ {u}, (hp, hx)�c(hq, hy) implies (hp, h

′
x)�c(hq, h

′
y) for all

h′
x, h′

y ∈ H ∪ {u}.
It is easy to see that leader-follower responsive preference are additive and that not all ad-

ditive preferences are of the leader-follower type. Moreover, not all responsive preferences are
additive as the following example shows: P (sk, sl) = (h1, h2), (h2, h1), (h3, h1), (h1, h3), (h2, h3),
(h3, h2), . . ., where the rest of the preference list can be anything that is consistent with respon-
siveness. If the preference of couple (sk, sl) were additive we would have

uk(h1) + ul(h2) > uk(h2) + ul(h1),
uk(h3) + ul(h1) > uk(h1) + ul(h3), and
uk(h2) + ul(h3) > uk(h3) + ul(h2),

but summing these inequalities yields a contradiction. In the next section we discuss the con-
struction of couples’ preferences out of the individual preferences in more detail.

We define an outcome µ for a couples market (PH , PC) to be an assignment, or matching, of
students and positions such that each student is assigned to at most one position in H or to
u (which can be assigned to multiple students), each position in H is assigned to at most one

6Two weaker notions of “unemployment aversion” that could be used instead of strong unemployment
aversion are unemployment aversion and strict unemployment aversion: We say that couple c is unemploy-
ment averse if both partners being unemployed is the worst possible match for couple c. Formally, for all
(hp, hq) ∈ H, (hp, hq)�c(u, u). If couple c always is worse off if one of its partners, or both, loose their posi-
tions, we say that it is strictly unemployment averse. Formally, for all hp, hq 6= u, (hp, hq)�c(hp, u)�c(u, u) and
(hp, hq)�c(u, hq)�c(u, u).
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student, and a student is assigned to a hospital if and only if the hospital is assigned to the
student. By µ(S) = hi1 , hi2 , hi3 , hi4 we denote the positions in H or u matched to students
s1, s2, s3, s4. When focusing on a particular student sk, we will denote his match by µ(sk) = hik .
Alternatively, by µ(H) = si1 , si2 , si3 , si4 we denote the students in S or ∅ matched to hospitals
h1, h2, h3, h4. When focusing on a particular hospital hp, we will denote its match by µ(hp) = sip .
Note that the matching µ = (µ(S), µ(H)) associated to (PH , PC) can be completely described
either by µ(S) or by µ(H), but both notations will be useful later.7

Finally, we define stability for couples markets (e.g., see Roth and Sotomayor (1990)). First, for
a matching to be stable, it should always be better for students to accept the position offered by
the matching instead of voluntarily choosing unemployment and for hospitals it should always
be better to accept the student assigned by the matching instead of leaving the position unfilled.
A matching µ is individually rational if

(i1) for all c = (sk, sl) ∈ C, (µ(sk), µ(sl))�c(µ(sk), u), (µ(sk), µ(sl))�c(u, µ(sl)),
and (µ(sk), µ(sl))�c(u, u);

(i2) for all h ∈ H, µ(h)�h∅.

Second, if one partner in a couple can improve the given matching by switching to another
position such that the hospital that holds the position is better off as well, then we would
expect this mutually beneficial trade to be carried out, rendering the given matching instable.
A similar statement holds if both students of the couple can improve. For a given matching µ,
((sk, sl), (hp, hq)) such that c = (sk, sl) ∈ C and (hp, hq) ∈ H is a blocking coalition if

(b1) (hp, hq)�c(µ(sk), µ(sl));

(b2) [hp ∈ H implies sk�hpµ(hp)] and [hq ∈ H implies sl�hqµ(hq)].

A matching is stable if it is individually rational and if there are no blocking coalitions.8

Roth (1984, Theorem 10) shows that stable matchings may not exist in the presence of couples.
He considers the couples market (PH , PC) given by Table 1.

We will use the following convention for this and future examples. If ∅ is not listed for
hospitals, then all students are acceptable. If the unemployment option u is not listed for
students, then we have strong unemployment aversion for both couples.

By giving a blocking coalition for each of the 24 individually rational full employment match-
ings, Roth shows that no stable matching exists. Note that the couples’ preferences are not re-
sponsive. (For couple c1 this follows for instance from (h1, h4)�c1(h1, h3) and (h2, h3)�c1(h2, h4).)

In the next section, departing from Roth’s example, we address one of the open questions
and research directions Roth and Sotomayor (1990, p. 246, 4.) state, namely to “find reasonable
assumptions about the preferences of married couples that assure the nonemptiness of the core.”
In other words, are there classes of “real-world preferences” for which stable matchings always
exist?

7In our model with two couples and four hospitals we have 209 different matchings: 24 matchings with
full employment, 96 matchings with one unemployed student, 72 matchings with two unemployed students, 16
matchings with three unemployed students, and 1 full unemployment matching.

8In order to keep notation as simple as possible, we allow some redundancy in the definition of stability with
respect to (i1) and (b1).
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PH PC

h1 h2 h3 h4 {s1, s2} {s3, s4}
s4 s4 s2 s2 h1h2 h4h2

s2 s3 s3 s4 h4h1 h4h3

s1 s2 s1 s1 h4h3 h4h1

s3 s1 s4 s3 h4h2 h3h1

h1h4 h3h2

h1h3 h3h4

h3h4 h2h4

h3h1 h2h1

h3h2 h2h3

h2h3 h1h2

h2h4 h1h4

h2h1 h1h3

Table 1: No stable matching

3 Existence of (weakly) stable matchings

First, we establish an existence result. It is based on the intuition that if there are no negative
externalities from one partner’s job for the other partner or for the couple, then by treating
the market as if only singles participate will be sufficient to guarantee the existence of a stable
matching, since this market always has an stable matching (Gale and Shapley (1962)). This
would be the case if couples only apply for jobs in one city or metropolitan area so that different
regional preferences or travel distance are not part of the couples’ preferences anymore.

Let (PH , PC) be a couples market and assume that couples have responsive preferences.
Then, from the couples’ responsive preferences we can uniquely determine the associated indi-
vidual preferences for all agents. By (PH , PS(PC)) we denote the associated singles market we
obtain by replacing couples in (PH , PC) by individual students with their associated individual
preferences.

Theorem 3.1 Let (PH , PC) be a couples market where couples have responsive preferences.
Then, any matching that is stable for the associated singles market (PH , PS(PC)) is also stable
for (PH , PC). In particular, there exists a stable matching for (PH , PC).

Proof. Let µ be a stable matching for (PH , PS(PC)). Suppose that µ is not stable for (PH , PC).
Hence, either there exists a blocking coalition or µ is not individually rational because (i1) is
violated.

Assume that ((sk, sl), (hp, hq)) is a blocking coalition. Then, (b1) (hp, hq)�c(µ(sk), µ(sl))
and (b2) [hp ∈ H implies sk�hpµ(hp)] and [hq ∈ H implies sl�hqµ(hq)] hold.

Either hp�sk
µ(sk) or hq�sl

µ(sl) together with the corresponding statement of acceptability
for the hospital in (b2) would contradict the stability of µ in (PH , PS(PC)). Hence, µ(sk)�sk

hp

and µ(sl)�sl
hq. But then responsiveness implies (µ(sk), µ(sl))�c(hp, µ(sl))�c(hp, hq), which

contradicts (b1).
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Now assume (i1) is violated. Then there exists a couple c = (sk, sl) such that (µ(sk), u)�c

(µ(sk), µ(sl)), (u, µ(sl))�c(µ(sk), µ(sl)), or (u, u)�c(µ(sk), µ(sl)). So, ((sk, sl), (µ(sk), u)),
((sk, sl), (u, µ(sl))), or ((sk, sl), (µ(sk), µ(sl))) is a blocking coalition. Using the same arguments
as before we obtain a contradiction.

Hence, µ is also stable for (PH , PC). Finally, by Gale and Shapley (1962) a stable matching
for (PH , PS(PC)) always exists. 2

The following example shows that not all stable matchings for (PH , PC) are stable for (PH ,
PS(PC)). The intuition is that a student may not want to block by taking the position of his
or her partner.

Apart from the fact that stable matchings always exist in the absence of couples, matching
markets with singles have other interesting features. If preferences are strict, the set of stable
matchings has a particular algebraic structure. Without specifying the details here (we refer
the interested reader to the book by Roth and Sotomayor (1990)) we recall that the set of
stable matchings for matching markets with singles is a distributive lattice. Example 3.2 also
demonstrates that even for responsive preferences PC the lattice structure of the set of stable
matchings in (PH , PS(PC)) need not carry over to (PH , PC).

Example 3.2 Consider the couples market (PH , PC) where the students’ individual preferences
PS are given by P (s1) = h4, h1, h2, h3, u, P (s2) = h2, h1, h4, h3, u, P (s3) = h2, h1, h4, h3, u,
and P (s4) = h2, h3, h1, h4, u. The preferences of the couples and the hospitals are given by
Table 2. It can easily be checked that the preferences of the couples are responsive (note that
PS = PS(PC)). There are six stable matchings for the couples market (PH , PC): µ1(S) =
h4, h1, h2, h3, µ2(S) = h4, h1, h3, h2, µ3(S) = h1, h4, h2, h3, µ4(S) = h1, h4, h3, h2, µ5(S) =
h4, h3, h2, h1, and µ6(S) = h3, h4, h2, h1. However, matching µ2(S) is the unique (hence both
hospital and student optimal) stable matching for (PH , PS(PC)). All students (hospitals) like
matching µ1(S) weakly better (worse) than all other stable matchings, but there is no agreement
among the couples/students about which stable matching is worst. The latter statement shows
that the set of stable matchings may not be a distributive lattice anymore if couples are present,
even if they have responsive preferences. �

Next, we address the question whether or not one can enlarge the domain of responsive pref-
erences while still guaranteeing the existence of stable matchings. In fact, we will start with a
somewhat less ambitious task. First we relax the requirement of stability by excluding myopic
behavior of blocking coalitions and ask for which reasonable preference domains weakly stable
matchings always exist (see Klijn and Massó (2002) for weak stability in singles markets).

To model non-myopic behavior we assume that if the assignment of hospitals to students and
students to hospitals that a blocking coalition proposes for themselves is not likely to be their
final “match,” then the blocking will not take place. Let µ be a matching and ((t1, t2), (l1, l2))
be a blocking coalition. We model two cases when a blocking coalition’s match most likely will
not be their final match:

• the couple (t1, t2) that participates in the blocking coalition ((t1, t2), (l1, l2)) can do better
for themselves in another blocking coalition (((t1, t2), (k1, k2))) such that other agents (one
or both hospitals) that are participating in both blocking coalitions are not worse off.
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PH PC

h1 h2 h3 h4 {s1, s2} {s3, s4}
s4 s4 s2 s2 h4h2 h2h3

s2 s3 s3 s4 h4h1 h1h2

s1 s2 s1 s1 h1h2 h2h1

s3 s1 s4 s3 h4h3 h1h3

h1h4 h2h4

h2h1 h4h2

h1h3 h1h4

h2h4 h3h2

h3h2 h4h3

h2h3 h4h1

h3h1 h3h1

h3h4 h3h4

Table 2: No lattice for responsive preferences

So, if couple (t1, t2) also blocks µ together with hospitals (k1, k2), then (t1, t2) prefers
(k1, k2) to (l1, l2), which it would receive in the other blocking coalition, i.e., (d1) (k1, k2)
�(t1,t2)(l1, l2).

Should any hospital be in both blocking coalitions, then it is not worse off, i.e., if for some
i, j = 1, 2, ki = lj , then (d2) ti�ki

tj .

• a hospital lp that participates in the blocking coalition ((t1, t2), (l1, l2)) can do better for
itself in another blocking coalition (((z1, z2), (k1, k2))) such that other agents (the other
hospital or the couple) participating in both blocking coalitions are not worse off.

Let lp = kr, tp be the student that is assigned to hospital lp in blocking coalition ((t1, t2), (l1, l2)),
and zr be the student that is assigned to hospital kr = lp in blocking coalition ((z1, z2), (k1, k2)).

So, if hospital kr = lp blocks µ together with hospital ks ({kr, ks} = {k1, k2}) and couple
(z1, z2), then it obtains a better student, i.e., (d2) zr�lptp.

Should the other hospital be in both blocking coalitions, then it should not be worse off,
i.e., if for some i, j = 1, 2, ki = lj , then (d2) zi�ki

tj .

Should the new blocking coalition be formed with the same couple, then it should not be
worse off, i.e., (d1) (k1, k2)�(t1,t2)(l1, l2).

We now give the formal definition. Let µ be a matching. We say that a blocking coalition
((t1, t2), (l1, l2)) is dominated by another blocking coalition ((z1, z2), (k1, k2)) 6= ((t1, t2), (l1, l2)),
if

(d1) if (z1, z2) = (t1, t2), then (k1, k2)�(z1,z2)(l1, l2);

(d2) for all i, j = 1, 2, if ki = lj ∈ H, then zi�ki
tj ;
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(d3) (z1, z2) = (t1, t2) or ki = lj ∈ H for some i, j = 1, 2.9

A matching µ is weakly stable if it is individually rational and all blocking coalitions are dom-
inated. Clearly, a stable matching is weakly stable. Note also that a matching with a single
blocking coalition cannot be weakly stable. In some contexts it is natural to focus only on
weakly stable matching with full employment (for instance when couples are strongly unem-
ployment averse). For Roth’s example (Table 1) there are three weakly stable matchings with
full employment (for a proof see Appendix).

Now one might wonder whether with this weaker concept of stability we may extend the existence
result in Theorem 3.1 to a larger class of preferences. For singles markets Klijn and Massó (2002)
show that the set of weakly stable matchings is a superset of Zhou’s (1994) bargaining set. Hence,
Zhou’s (1994) result that in general the bargaining set is nonempty indicates that studying weak
stability might be a fruitful approach. The next theorem, however, crushes any hope for this
approach.

Theorem 3.3 Let (PH , PC) be a couples market where couples are strongly unemployment
averse and have responsive preferences. If one couple switches two pairs of hospitals in their
preference relation then no weakly stable matching with full employment may exist. In particular,
no stable matching may exist after such a single switch.

Proof. Consider a couples market with students’ individual preferences P (s1) = h3, h4, h1,
h2, u, P (s2) = h1, h2, h3, h4, u, and P (s3) = P (s4) = h2, h1, h3, h4, u. Differences in the students’
individual preferences can be easily explained by “regional preferences:” even though there may
exist a unanimous ranking of hospitals according to prestige or salary, students may rank certain
hospitals differently because they prefer to live in a certain region, e.g., they prefer to live at
the West Coast instead of at the East Coast, or vice versa.

The preferences of the strongly unemployment averse couples and the hospitals are given
by Table 3. It can easily be checked that the preferences of the first couple are leader-follower
responsive. The preferences of the second couple are obtained by first constructing leader-
follower responsive preferences and then switching the last and second but last entries (in fact,
only two hospitals for agent s4 are switched – the switch is denoted in bold face in Table 3).
This switch can be easily justified by assuming that hospital h3 is closer than hospital h2 to
hospital h4 which is assigned to leader s3.

Note also that the hospitals have identical preferences over students, which can be easily
justified if hospitals rank students according to final grades or other test scores. It is tedious
but not difficult to check that no weakly stable matching with full employment, and therefore
no stable matching, exists. This last part of the proof can be found in the Appendix. 2

The example in the proof of Theorem 3.3 exhibits almost responsive preferences, except for a
single switch that can easily be explained by the desire of couple (s3, s4) to be closer together
if the leader is assigned to hospital h4. Therefore, this example also brings us closer to answer
Roth and Sotomayor’s (1990) question in the negative. If we extend the domain of respon-
sive preferences to allow for non-responsive switches that are caused by distance considerations

9By (d3) we ensure that we only compare conflicting blocking coalitions in the sense that there exists at least
one agent that is present in both blocking coalitions. Otherwise, no domination is possible.
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PH PC

h1 h2 h3 h4 {s1, s2} {s3, s4}
s4 s4 s4 s4 h3h1 h2h1

s1 s1 s1 s1 h3h2 h2h3

s2 s2 s2 s2 h3h4 h2h4

s3 s3 s3 s3 h4h1 h1h2

h4h2 h1h3

h4h3 h1h4

h1h2 h3h2

h1h3 h3h1

h1h4 h3h4

h2h1 h4h3

h2h3 h4h1

h2h4 h4h2

Table 3: Almost responsive preferences

(which is the very reason that couples may have different preferences than if they were singles),
then stable matchings may not exist.

The next example reinforces this negative answer with respect to the existence of stable
matchings for reasonable couples’ preferences. Note that in the previous example students have
different regional preferences (see explanation in the proof of Theorem 3.3), which create different
individual preferences of students. The following example deals with preferences that are based
on identical individual preferences of students (no differences because of regional preferences).
But, in addition, we assume that if positions are too far away, the unemployment of one partner
may be preferred to being separated, i.e., we drop the assumption of strong unemployment
aversion. This example also illustrates how students’ individual preferences may differ from the
students’ associated preferences as derived from the couples’ preferences.10

Example 3.4 Consider the couples market (PH , PC) where the students’ individual preferences
PS are given for s ∈ S by P (s) = h1, h2, h3, h4, u. The hospitals’ and the couples’ preferences
are given by Table 4. Both couples have the same preference relation. Note that as singles all
students like hospital h1 best. However, assume that hospitals h2, h3, and h4 are close together,
while hospital h1 is very far away. Now, instead of being separated, the partner of a student
who is matched to hospital h1 would not accept his position because it means separation, but
rather be unemployed. When ranking matchings consisting of two positions, each couple uses
lexicographic preferences with respect to the quality of the position. Note that if we focus
only on individually rational matchings with full employment, then the agents’ preferences are
responsive. In that case, a student’s derived associated individual preference over hospitals

10Cantalà (2002) also studies the existence of stable matchings in relation to distance aspects. He shows
nonexistence of stable matchings for a very restricted preference domain: he assumes that “preferences of couples
satisfy the strong regional lexicographic conditions and that couples face the same geographical constraint.” To be
more precise, Cantalà (2002) proves his nonexistence result for matching markets containing at least six firms and
three couples. By slightly changing Example 3.4 (move complete unemployment uu below h1u in both couples’
preferences in Table 4) we can extend his result to matching markets containing only four firms and two couples.
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(excluding u) equals h2, h3, h4, h1. Comparing this to the student’s individual preferences, we
see that hospital h1 moved from being the best position for the single student to being the worst
position for the member of a couple, because working at h1 either means separation from or
unemployment of the partner.

It is easy to prove that no stable matching exists. Moreover, there is no weakly stable
matching with full employment (this follows easily since any such matching is not individually
rational). However, one can show for instance that the matching µ(S) = u, h1, h4, h3 is weakly
stable. The proofs of these statements can be found in the Appendix. �

PH PC

h1 h2 h3 h4 {s1, s2} {s3, s4}
s1 s1 s1 s1 h2h3 h2h3

s3 s3 s3 s3 h2h4 h2h4

s4 s4 s4 s4 h3h2 h3h2

s2 s2 s2 s2 h3h4 h3h4

h4h2 h4h2

h4h3 h4h3

h1u h1u
h2u h2u
h3u h3u
h4u h4u
uh1 uh1

uh2 uh2

uh3 uh3

uh4 uh4

h1h2 h1h2

h1h3 h1h3

h1h4 h1h4

h2h1 h2h1

h3h1 h3h1

h4h1 h4h1

uu uu

Table 4: Living together

4 Married couples and the new NRMP algorithm

As already mentioned in the Introduction, in the mid 1990s the American medical market was
experiencing some difficulties. The proportion of students using the NRMP to obtain their
positions was slowly, but consistently, decreasing over the years. The board of directors of the
NRMP, responsible on behalf of a variety of medical institutions of organizing the market, asked
Alvin Roth to evaluate the situation and to propose a new algorithm that could deal with one
of the main source of instability: the need to link pairs of positions. The two main reasons to
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link positions are the presence of couples and the need of some students of being assigned to
two different positions in consecutive years. A new algorithm, partially designed to take care of
the instabilities produced by couples, was used by the NRMP for the first time in 1998.

The formal and complete description of the algorithm is outside the scope of this paper. Its
main building block adapts (from the original one-to-one model without couples) the following
dynamic process used by Roth and Vande Vate (1990). Take an individually rational matching
µ and let (s, h) be a blocking pair of µ (if such a pair does not exist, µ is stable). Obtain a
new matching ν from µ by satisfying the two members of the pair (s, h); namely, the matchings
ν and µ coincide except that now ν (s) = h, if µ (s) 6= u then ν (µ (s)) = ∅, and if µ (h) 6= ∅
then ν (µ (h)) = u. Knuth (1976) showed that the process of starting at an individually rational
matching and successively satisfying blocking pairs may cycle. However, Roth and Vande Vate
(1990) showed that if the process cycles it is because there is at least one matching in the
cycle with more than one blocking pair. In fact, they showed that for any individually rational
matching µ there is a finite sequence of matchings µ1, ..., µK such that µ = µ1, for all 1 ≤ k ≤
K − 1 the matching µk+1 is obtained from µk by satisfying a blocking pair of µk, and µK is
stable.

The flowchart in the Appendix describes the parts of the new Applicant Proposing Couples
Algorithm (APCA) used by the NRMP that will be relevant for understanding Examples 4.1
and 4.2 below (see Roth’s web page for a complete description of the algorithm). Observe that,
in contrast with the Deferred Acceptance Algorithm by Gale and Shapley (1962), this algorithm
is built upon the idea of solving instabilities one at a time.

Example 4.1 shows that even for responsive preferences the algorithm might cycle without
selecting a stable matching. In addition, the example also shows that this very unpleasant
property of the algorithm is still aggravated because the stable matching is the outcome of the
Deferred Acceptance Algorithm by Gale and Shapley (1962) and can also be obtained with
probability one by (an adaptation of) the random process proposed by Roth and Vande Vate
(1990).

Example 4.1 Consider the couples market (PH , PC) where the students’ individual prefer-
ences PS are given by P (s1) = P (s2) = h1, h2, h3, h4, u, P (s3) = h2, h1, h3, h4, u, and P (s4) =
h3, h4, h2, h1, u. The hospitals’ and the couples’ preferences are given by Table 5. Note that
hospitals have identical preferences over students and that the couples’ preferences are leader-
follower responsive.

Using Table 14 in the Appendix it can be checked easily that the unique stable matching is
µ(H) = s2, s3, s1, s4. Because of responsiveness it is the outcome of the Deferred Acceptance
Algorithm by Gale and Shapley (1962) when students submit their individual preferences (which
here coincide with the associated individual preferences).

We apply the Applicant Proposing Couples Algorithm to this couples market. Suppose that
couple (s3, s4) is at the top of the stack (a symmetric process will occur if instead couple (s1, s2) is
at the top of the stack). The algorithm starts at 0.0 with the empty matching µ0 (H) = ∅, ∅, ∅, ∅
and cycles over the matchings µI (H) = ∅, s3, s4, ∅, µII (H) = s1, s2, ∅, ∅, µIII (H) = s3, ∅, s4, ∅,
µIV (H) = s2, s1, ∅, ∅, and finally back to µI (H). See the Appendix for a full, and step by step,
description of the APCA applied to this couples market.

Finally, we will show that for any individually rational matching µ we can find a blocking-
pair-satisfying path (i.e., à la Roth and Vande Vate (1990)) to the unique stable matching. For
this we need the following notation. Given two individually rational matchings µ and µ′ with full
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employment, we write µ → µ′ if µ′ is the consequence of 1) satisfying the blocking coalition for µ
indicated in Table 14 (which leaves at most one of the other students matched), 2) unmatching
the student of the other pair that is still matched (if one), and 3) assigning the students of this
pair ‘appropriately’ to the two remaining, unmatched hospitals. For example, µ2 → µ14 since
µ14 follows from µ2 by first satisfying the blocking coalition ((s3, s4), (h1, h3)), then unmatching
student s2, and finally assigning students s1 and s2 to hospitals h2 and h4, respectively.

It is important to note that each of the three steps above is a particular instance of ‘satisfying
blocking coalitions’. Since µ9 is the unique stable matching, our claim follows directly from the
following observations:

µ2 → µ14 → µ7 → µ3 → µ1 → µ13 → µ9,

µ11, µ12, µ17, µ18 → µ7,

µ4, µ5, µ6, µ19, µ20, µ21, µ22, µ23, µ24 → µ1,

µ8 → µ4,

µ10, µ15, µ16 → µ9.

A consequence of our claim is that any random process that begins by selecting an arbitrary
matching and then proceeds to generate a sequence of matchings by satisfying blocking coalitions
converges with probability one to the stable matching, provided that any blocking coalition is
chosen with positive probability (that additionally only depends on the matching it blocks). �

PH PC

h1 h2 h3 h4 {s1, s2} {s3, s4}
s2 s2 s2 s2 h1h2 h2h3

s3 s3 s3 s3 h1h3 h2h4

s1 s1 s1 s1 h1h4 h2h1

s4 s4 s4 s4 h2h1 h1h3

h2h3 h1h4

h2h4 h1h2

h3h1 h3h4

h3h2 h3h2

h3h4 h3h1

h4h1 h4h3

h4h2 h4h2

h4h3 h4h1

Table 5: Responsive preferences for which the new NRMP algorithm cycles

Finally, Example 4.2 illustrates the possibility that, if the APCA is used, a couple of students
may obtain a better pair of positions by registering as single students rather than as a couple.

Example 4.2 Consider the couples market
(
PH , PC

)
where hospitals h1 and h2 are located

in one city and hospitals h3 and h4 are located in some other city. Assume that the two
cities are very far away from each other and that the students have the same preferences over
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hospitals. More precisely, we assume that P (s) = h1, h2, h3, h4, u for each s ∈ S and P (s1,s2) =
P (s3, s4) = (h1, h2) , (h2, h1) , (h3, h4) , (h4, h3) , . . . (the tail can be anything). In other words,
the students would look for a job in another market before accepting two positions located in
different cities. The hospitals’ preferences over students are P (h) = s1, s3, s4, s2, ∅ for every
h ∈ H.

Assume first that the four students register as couples, and couple (s1, s2) is at the top of
the stack. Then, the APCA produces the matching µ̃(H) = s1, s2, s3, s4. See the Appendix for
a full, and step by step, description of the APCA applied to this couples market when the order
of applicants in the stack is (s1, s2) , (s3, s4).

However, if s3 and s4 register as single students and, as a consequence, the order in the stack
changes to s3, s4, (s1, s2), then the algorithm produces the matching µ̂(H) = s3, s4, s1, s2. At
this matching couple (s3, s4) is strictly better off than at matching µ̃.11

See again the Appendix for a full, and step by step, description of the APCA applied to this
market when the order of applicants in the stack is s1, s2, (s3, s4). �

5 Conclusion

In this paper we demonstrate that there is not much hope to find a natural real world preference
domain for couples markets that would ensure the existence of stable matchings. On the positive
side, we establish the existence of stable matchings if all couples have responsive preferences. We
conjecture that if the labor market indeed is large, it seems very likely that couples may focus
on particular regions or metropolitan areas which would induce responsiveness. In this case
one could derive the associated individual preferences from the couples’ preferences and apply
the NRMP algorithm for singles (the student optimal Deferred Acceptance algorithm by Gale
and Shapley (1962)). This algorithm would never fail to find a stable matching (particularly,
it would never cycle) and furthermore, since all students can be treated as singles, the issue
of manipulation by pretending to be singles instead of a couple would not arise (sequencing of
course may still matter, but here at least ex ante fairness could be achieved by determining the
sequence using a fair lottery).

11If instead the order in the stack changes to s4, s3, (s1, s2), then the algorithm produces the matching µ̄(H) =
s4, s3, s1, s2, in which couple (s3, s4) is also strictly better off than at matching µ̃.
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6 Appendix: remaining proofs

Proof of statements in Example 3.2: In Table 6 we list all 24 individually rational (full
employment) matchings for the couples market with preferences given by Table 2. For the 18
matchings that are not stable we provide a blocking coalition. 2

Hospitals Blocking coalitions?
no. h1 h2 h3 h4 Students Hospitals
1 s1 s2 s3 s4 (s3, s4) (h2, h1)
2 s1 s2 s4 s3 (s1, s2) (h4, h2)
3 s1 s3 s2 s4 (s1, s2) (h1, h4)
4 s1 s3 s4 s2 −− −−
5 s1 s4 s2 s3 (s1, s2) (h4, h1)
6 s1 s4 s3 s2 −− −−
7 s2 s1 s3 s4 (s3, s4) (h2, h1)
8 s2 s1 s4 s3 (s1, s2) (h4, h2)
9 s2 s3 s1 s4 (s3, s4) (h2, h1)
10 s2 s3 s4 s1 −− −−
11 s2 s4 s1 s3 (s1, s2) (h4, h1)
12 s2 s4 s3 s1 −− −−
13 s3 s1 s2 s4 (s1, s2) (h1, h2)
14 s3 s1 s4 s2 (s1, s2) (h1, h2)
15 s3 s2 s1 s4 (s1, s2) (h1, h2)
16 s3 s2 s4 s1 (s3, s4) (h2, h3)
17 s3 s4 s1 s2 (s1, s2) (h1, h4)
18 s3 s4 s2 s1 (s1, s2) (h4, h1)
19 s4 s1 s2 s3 (s1, s2) (h4, h2)
20 s4 s1 s3 s2 (s3, s4) (h2, h1)
21 s4 s2 s1 s3 (s1, s2) (h4, h2)
22 s4 s2 s3 s1 (s3, s4) (h2, h1)
23 s4 s3 s1 s2 −− −−
24 s4 s3 s2 s1 −− −−

Table 6: Example 3.2 / Table 2, all matchings (with blocking coalitions if possible)

Proof of existence of three weakly stable matching with full employment for Roth’s
(1984) example: We show that for the couples market with preferences given by Table 1 there
are exactly three weakly stable matchings with full employment. In Tables 7, 8, and 9 we list all
24 individually rational (full employment) matchings. Roth (1984) already showed that for all
matchings at least one blocking coalition exists. (In the tables we list all blocking coalitions.)
One can see that for the three weakly stable matchings all blocking coalitions are dominated.
For the remaining matchings we indicate all undominated blocking coalitions. 2
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Hospitals Blocking coalitions
no. h1 h2 h3 h4 Students Hospitals Undominated?
1 s1 s2 s3 s4 (s3, s4) (h3, h1) x

(s3, s4) (h3, h2)
2 s1 s2 s4 s3 (s3, s4) (h4, h2) x
3 s1 s3 s2 s4 (s1, s2) (h1, h4) x
4 s1 s3 s4 s2 (s3, s4) (h3, h1) x

(s3, s4) (h3, h2)
(s3, s4) (h2, h1)

5 s1 s4 s2 s3 (s1, s2) (h4, h1) x
(s1, s2) (h4, h3)
(s1, s2) (h1, h4) x

6 s1 s4 s3 s2 (s3, s4) (h3, h1) x
7 s2 s1 s3 s4 (s1, s2) (h2, h3) x

(s1, s2) (h2, h4)
(s3, s4) (h3, h1)
(s3, s4) (h3, h2)

8 s2 s1 s4 s3 (s1, s2) (h4, h1) x
(s1, s2) (h4, h3)
(s1, s2) (h4, h2)
(s1, s2) (h3, h4) x
(s1, s2) (h3, h1)
(s1, s2) (h3, h2)
(s1, s2) (h2, h3)
(s1, s2) (h2, h4)
(s3, s4) (h4, h2)

9 s2 s3 s1 s4 (s1, s2) (h3, h4)
(s3, s4) (h3, h1) x
(s3, s4) (h3, h2)
(s3, s4) (h3, h4)

10 s2 s3 s4 s1 (s3, s4) (h3, h1) x
(s3, s4) (h3, h2)
(s3, s4) (h3, h4)
(s3, s4) (h2, h4)
(s3, s4) (h2, h1)

11 s2 s4 s1 s3 (s1, s2) (h4, h1) x
(s1, s2) (h4, h3)
(s1, s2) (h3, h4) x

12 s2 s4 s3 s1 (s3, s4) (h3, h1) x

Table 7: Roth’s (1984) example / Table 1, matchings 1-12
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Hospitals Blocking coalitions
no. h1 h2 h3 h4 Students Hospitals Undominated?
13 s3 s1 s2 s4 (s1, s2) (h1, h2)

(s1, s2) (h1, h4)
(s1, s2) (h1, h3)
(s3, s4) (h2, h4)
(s3, s4) (h2, h1)
(s3, s4) (h1, h2)

14 s3 s1 s4 s2 (s1, s2) (h1, h2)
(s1, s2) (h1, h4)
(s1, s2) (h1, h3)
(s1, s2) (h3, h4)
(s1, s2) (h3, h1)
(s1, s2) (h3, h2)
(s1, s2) (h2, h3)
(s3, s4) (h3, h1)
(s3, s4) (h3, h2)
(s3, s4) (h2, h1)
(s3, s4) (h2, h3)
(s3, s4) (h1, h2)

15 s3 s2 s1 s4 (s1, s2) (h1, h2)
(s1, s2) (h1, h4)
(s1, s2) (h1, h3)
(s1, s2) (h3, h4)
(s1, s2) (h3, h1)
(s3, s4) (h3, h1) x
(s3, s4) (h3, h2)
(s3, s4) (h3, h4)
(s3, s4) (h2, h4)
(s3, s4) (h2, h1)
(s3, s4) (h1, h2)

16 s3 s2 s4 s1 (s1, s2) (h1, h2)
(s1, s2) (h4, h1)
(s1, s2) (h4, h3)
(s3, s4) (h3, h1)
(s3, s4) (h3, h2)
(s3, s4) (h3, h4)
(s3, s4) (h2, h4)
(s3, s4) (h2, h1)
(s3, s4) (h2, h3)
(s3, s4) (h1, h2)
(s3, s4) (h1, h4)

Table 8: Roth’s (1984) example / Table 1, matchings 13-16
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Hospitals Blocking coalitions
no. h1 h2 h3 h4 Students Hospitals Undominated?
17 s3 s4 s1 s2 (s1, s2) (h1, h4)

(s1, s2) (h1, h3)
(s3, s4) (h3, h1) x
(s3, s4) (h3, h2)

18 s3 s4 s2 s1 (s1, s2) (h4, h1) x
19 s4 s1 s2 s3 (s1, s2) (h4, h3) x

(s1, s2) (h4, h2)
(s3, s4) (h4, h2)

20 s4 s1 s3 s2 (s1, s2) (h2, h3) x
21 s4 s2 s1 s3 (s1, s2) (h4, h3) x

(s1, s2) (h4, h2)
(s1, s2) (h3, h4) x
(s3, s4) (h4, h2)

22 s4 s2 s3 s1 (s1, s2) (h4, h3) x
23 s4 s3 s1 s2 (s3, s4) (h3, h1) x

(s3, s4) (h3, h2)
24 s4 s3 s2 s1 (s3, s4) (h2, h4) x

Table 9: Roth’s (1984) example / Table 1, matchings 17-24

Completion of the Proof of Theorem 3.3: We still have to check that for the couples
market with preferences given by Table 3 none of the 24 individually rational (full employment)
matchings is weakly stable. We do this below by providing in Tables 10 and 11 at least one
undominated blocking coalition for each of the matchings. 2

Proof of statements in Example 3.4: To show that for the couples market defined by Table
4 no stable matching exists, let H∗ be the seven most preferred hospital combinations depicted
in Table 4, i.e.,

H∗ = {(h2, h3), (h2, h4), (h3, h2), (h3, h4), (h4, h2), (h4, h3), (h1, u)}.

Let µ be a stable matching. Suppose that (µ(s1), µ(s2)) 6∈ H∗. Then, ((s1, s2), (h1, ∅)) is a
blocking coalition. Hence, (µ(s1), µ(s2)) ∈ H∗.

Suppose that (µ(s3), µ(s4)) 6∈ H∗. If (µ(s1), µ(s2)) = (h1, u), then ((s3, s4), (h2, h3)) or
((s3, s4), (h2, h4)) is a blocking coalition. If (µ(s1), µ(s2)) 6= (h1, u), then ((s3, s4), (h1, ∅)) is a
blocking coalition. Hence, (µ(s3), µ(s4)) ∈ H∗.

We have established that µ is one of the 12 matchings depicted in Table 12. But for each of
these matchings a blocking coalition exists: a contradiction. Hence, there is no stable matching.

It remains to be proven that the (individually rational) matching µ(S) = u, h1, h4, h3 is
weakly stable. In Table 13 we have listed all blocking coalitions for this matching, along with
the blocking coalitions they are dominated by. Since each blocking coalition is dominated by
some other blocking coalition it follows that µ is weakly stable. 2
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Hospitals Blocking coalitions
no. h1 h2 h3 h4 Students Hospitals Undominated?
1 s1 s2 s3 s4 (s1, s2) (h3, h2) x

(s3, s4) (h3, h2) x
(s3, s4) (h3, h1)

2 s1 s2 s4 s3 (s1, s2) (h4, h2) x
3 s1 s3 s2 s4 (s1, s2) (h3, h2) x

(s1, s2) (h1, h2)
(s3, s4) (h2, h1)
(s3, s4) (h2, h3)

4 s1 s3 s4 s2 (s1, s2) (h4, h2) x
(s1, s2) (h1, h2)
(s3, s4) (h2, h1)

5 s1 s4 s2 s3 (s1, s2) (h3, h4) x
(s1, s2) (h4, h3) x
(s3, s4) (h4, h3) x
(s3, s4) (h4, h1)

6 s1 s4 s3 s2 (s1, s2) (h3, h4) x
(s1, s2) (h4, h3) x
(s1, s2) (h1, h3)

7 s2 s1 s3 s4 (s1, s2) (h3, h1) x
(s1, s2) (h1, h3) x
(s3, s4) (h3, h2)
(s3, s4) (h3, h1)

8 s2 s1 s4 s3 (s1, s2) (h4, h1) x
(s1, s2) (h1, h4) x

9 s2 s3 s1 s4 (s3, s4) (h2, h1) x
(s3, s4) (h2, h3)

10 s2 s3 s4 s1 (s3, s4) (h2, h1) x
11 s2 s4 s1 s3 (s3, s4) (h4, h3) x

(s3, s4) (h4, h1)
12 s2 s4 s3 s1 (s1, s2) (h3, h1) x
13 s3 s1 s2 s4 (s1, s2) (h3, h1) x

(s1, s2) (h1, h3) x
(s1, s2) (h2, h1)
(s3, s4) (h1, h2)
(s3, s4) (h1, h3)

Table 10: Theorem 3.3 / Table 3, matchings 1-13 not weakly stable
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Hospitals Blocking coalitions
no. h1 h2 h3 h4 Students Hospitals Undominated?
14 s3 s1 s4 s2 (s1, s2) (h4, h1) x

(s1, s2) (h1, h4) x
(s1, s2) (h2, h1)
(s3, s4) (h1, h2)

15 s3 s2 s1 s4 (s1, s2) (h3, h1) x
(s3, s4) (h1, h2)
(s3, s4) (h1, h3)

16 s3 s2 s4 s1 (s1, s2) (h4, h1) x
(s3, s4) (h1, h2)

17 s3 s4 s1 s2 (s1, s2) (h3, h1) x
18 s3 s4 s2 s1 (s1, s2) (h3, h1) x

(s1, s2) (h4, h1)
19 s4 s1 s2 s3 (s1, s2) (h3, h4) x

(s1, s2) (h4, h3) x
(s3, s4) (h4, h3) x

20 s4 s1 s3 s2 (s1, s2) (h3, h4) x
(s1, s2) (h4, h3) x
(s1, s2) (h2, h3)
(s3, s4) (h3, h2)

21 s4 s2 s1 s3 (s3, s4) (h4, h3) x
22 s4 s2 s3 s1 (s1, s2) (h3, h2) x

(s3, s4) (h3, h2) x
23 s4 s3 s1 s2 (s1, s2) (h3, h2) x
24 s4 s3 s2 s1 (s1, s2) (h3, h2) x

(s1, s2) (h4, h2)

Table 11: Theorem 3.3 / Table 3, matchings 14-24 not weakly stable
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Students A blocking coalition
no. s1 s2 s3 s4 Students Hospitals
1 h1 u h2 h3 (s1, s2) (h2, h4)
2 h1 u h2 h4 (s1, s2) (h2, h3)
3 h1 u h3 h2 (s1, s2) (h2, h4)
4 h1 u h3 h4 (s1, s2) (h3, h2)
5 h1 u h4 h2 (s1, s2) (h2, h3)
6 h1 u h4 h3 (s1, s2) (h3, h2)
7 h2 h3 h1 u (s3, s4) (h3, h4)
8 h2 h4 h1 u (s3, s4) (h4, h3)
9 h3 h2 h1 u (s3, s4) (h2, h4)
10 h3 h4 h1 u (s3, s4) (h4, h2)
11 h4 h2 h1 u (s3, s4) (h2, h3)
12 h4 h3 h1 u (s3, s4) (h3, h2)

Table 12: Example 3.4 / Table 4, no stable matchings

Blocking coalitions
no. Students Hospitals Dominated by no.
1 (s1, s2) (h3, h2) 9
2 (s1, s2) (h4, h2) 1
3 (s1, s2) (h1, u) 2
4 (s1, s2) (h2, u) 3
5 (s1, s2) (h3, u) 4
6 (s1, s2) (h4, u) 5
7 (s3, s4) (h2, h3) 5
8 (s3, s4) (h3, h2) 5
9 (s3, s4) (h4, h2) 8

Table 13: Example 3.4 / Table 4, a weakly stable matching: µ(S) = u, h1, h4, h3
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Hospitals Blocking coalitions?
no. h1 h2 h3 h4 Students Hospitals
1 s1 s2 s3 s4 (s3, s4) (h1, h4)
2 s1 s2 s4 s3 (s3, s4) (h1, h3)
3 s1 s3 s2 s4 (s1, s2) (h1, h2)
4 s1 s3 s4 s2 (s1, s2) (h1, h2)
5 s1 s4 s2 s3 (s1, s2) (h1, h2)
6 s1 s4 s3 s2 (s1, s2) (h1, h2)
7 s2 s1 s3 s4 (s3, s4) (h2, h4)
8 s2 s1 s4 s3 (s3, s4) (h2, h3)
9 s2 s3 s1 s4 −− −−
10 s2 s3 s4 s1 (s1, s2) (h3, h1)
11 s2 s4 s1 s3 (s1, s2) (h2, h1)
12 s2 s4 s3 s1 (s1, s2) (h2, h1)
13 s3 s1 s2 s4 (s3, s4) (h2, h4)
14 s3 s1 s4 s2 (s1, s2) (h2, h1)
15 s3 s2 s1 s4 (s1, s2) (h3, h1)
16 s3 s2 s4 s1 (s1, s2) (h3, h1)
17 s3 s4 s1 s2 (s1, s2) (h2, h1)
18 s3 s4 s2 s1 (s1, s2) (h2, h1)
19 s4 s1 s2 s3 (s1, s2) (h1, h2)
20 s4 s1 s3 s2 (s1, s2) (h1, h2)
21 s4 s2 s1 s3 (s1, s2) (h1, h2)
22 s4 s2 s3 s1 (s1, s2) (h1, h2)
23 s4 s3 s1 s2 (s1, s2) (h1, h2)
24 s4 s3 s2 s1 (s1, s2) (h1, h2)

Table 14: Example 4.1 / Table 5, all matchings (with blocking coalitions if possible)
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0.0  Initialization: Stack contains all applicants (couples at bottom); Initial 
matching: µ=∅  (all positions unfilled, all applicants unmatched). 

1.t  Any applicants in stack? 

8.t  Check the stability of the matching 

at which each h i  is matched to the 

applicant it is holding. Stable? 

No 

2.t  Select the individual applicant or couple (a=a i  or a=(a i ,a j )) 

at the top of the applicant stack (and remove from stack): set n=1. 

Yes 

3.t-1.q  Applicant’s preference list 
has at least n entries preferred to µ? 

3.t-2.q  Applicant applies to nth choice on 
preference list (if applicant is a couple, this may 
involve an application to two distinct hospitals). 

Yes 

3.t-3.q  Does (each) hospital (h=h i or h=(h i ,h j )) applied to either have a vacancy, or 

have no vacancy but prefer applicant to least preferred other application currently held?  

n=n+1 
q=q+1 

No 

Stop. Current 
matching is 
final matching. 

Yes 

4.t  Does (either) hospital need to reject previously held 
applicant to make room for holding new applicant? 

Yes 
(Hospital now “holds” new applicant) No 

µ=µ∪ (h,a) 

[(h,a)={h i ,a i } or {(h i ,a i ),(h j ,a j )}] 

5.t  Put rejected applicant(s) a’ at the top of the stack. 

Yes 

6.t  Is a rejected applicant a i  a member of a couple (a i ,a k ) AND 

is a k ’s application currently being held by some hospital h k ? 

No 

µ=µ∪ (h,a)/(h,a’) 

7.t  Withdraw a k ’s application from h k  (making 

h k ’s position vacant). 

Yes 
Loop detector here: same couple 
displaced by same applicant? 

µ=µ∪ (h,a)/{(h i ,a i ),(h k ,a k )} 

No 

Flowchart 1: The analyzed part of the Applicant Proposing Couples Algorithm (APCA) 

t=1

t=t+1

q=1 

No 

···
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The APCA applied to Example 4.1:
0.0 µ0 (H) = ∅, ∅, ∅, ∅.

1.1 Yes.
2.1 (s3, s4) is selected and set n = 1.
3.1-1.1 Yes, (s3, s4) has more than one entry preferred to µ0 (s3, s4) = (u, u).
3.1-2.1 (s3, s4) applies to (h2, h3).
3.1-3.1 Yes, h2 “holds” s3 and h3 “holds” s4.
4.1 No, no rejection is needed; µI (H) = ∅, s3, s4, ∅.

1.2 Yes.
2.2 (s1, s2) is selected and set n = 1.
3.2-1.1 Yes, (s1, s2) has more than one entry preferred to µI (s1, s2) = (u, u).
3.2-2.1 (s1, s2) applies to (h1, h2).
3.2-3.1 Yes, h1 “holds” s1 and h2 “holds” s2.
4.2 Yes, h2 rejects s3; µII (H) = s1, s2, ∅, ∅.

5.2 (s3, s4) is at the top of the stack.
6.2 s3 is rejected and s4 is currently being held by h3.
7.2 s4 is withdrawn from h3; µII (H) = s1, s2, ∅, ∅.

1.3 Yes.
2.3 (s3, s4) is selected and set n = 1.
3.3-1.1 Yes, (s3, s4) has more than one entry preferred to µII (s3, s4) = (u, u).
3.3-2.1 (s3, s4) applies to (h2, h3).
3.3-3.1 No, h2 prefers s2 to s3. Set n = 2.
3.3-1.2 Yes, (s3, s4) has more than two entries preferred to µII (s3, s4) = (u, u).
3.3-2.2 (s3, s4) applies to (h2, h4).
3.3-3.2 No, h2 prefers s2 to s3. Set n = 3.
3.3-1.3 Yes, (s3, s4) has more than three entries preferred to µII (s3, s4) = (u, u).
3.3-2.3 (s3, s4) applies to (h2, h1).
3.3-3.3 No, h2 prefers s2 to s3 and h1 prefers s1 to s4. Set n = 4.
3.3-1.4 Yes, (s3, s4) has more than four entries preferred to µII (s3, s4) = (u, u).
3.3-2.4 (s3, s4) applies to (h1, h3).
3.3-3.4 Yes, h3 has a vacancy and h1 prefers s3 to s1.
4.3 Yes, h1 rejects s1; µ4.3 (H) = s3, s2, s4, ∅.
5.3 (s1, s2) is at the top of the stack.
6.3 s1 is rejected and s2 is currently being held by h2.
7.3 s2 is withdrawn from h2; µIII (H) = s3, ∅, s4, ∅.

1.4 Yes.
2.4 (s1, s2) is selected and set n = 1.
3.4-1-1 Yes, (s1, s2) has more than one entry preferred to µIII (s1, s2) = (u, u).
3.4-2.1 (s1, s2) applies to (h1, h2).
3.4-3.1 No, h1 prefers s3 to s1. Set n = 2.
3.4-1.2 Yes, (s1, s2) has more than two entries preferred to µIII (s1, s2) = (u, u).
3.4-2.2 (s1, s2) applies to (h1, h3).
3.4-3.2 No, h1 prefers s3 to s1. Set n = 3.
3.4-1.3 Yes, (s1, s2) has more than three entries preferred to µIII (s1, s2) = (u, u).
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3.4-2.3 (s1, s2) applies to (h1, h4).
3.4-3.3 No, h1 prefers s3 to s1. Set n = 4.
3.4-1.4 Yes, (s1, s2) has more than four entries preferred to µIII (s1, s2) = (u, u).
3.4-2.4 (s1, s2) applies to (h2, h1).
3.4-3.4 Yes, h2 has a vacancy and h1 prefers s2 to s3.
4.4 Yes, h1 rejects s3; µ4.4 (H) = s2, s1, s4, ∅.
5.4 (s3, s4) is at the top of the stack.
6.4 s3 is rejected and s4 is currently being held by h3.
7.4 s4 is withdrawn from h3; µIV (H) = s2, s1, ∅, ∅.

1.5 Yes.
2.5 (s3, s4) is selected and set n = 1.
3.5-1.1 Yes, (s3, s4) has more than one entry preferred to µIV (s3, s4) = (u, u).
3.5-2.1 (s3, s4) applies to (h2, h3).
3.5-3.1 Yes, h3 has a vacancy and h2 prefers s3 to s1.
4.5 Yes, h2 rejects s1; µ4.5 (H) = s2, s3, s4, ∅.
5.5 (s1, s2) is at the top of the stack.
6.5 s1 is rejected and s2 is currently being held by h1.
7.5 s1 is withdrawn from h2; µV (H) = µI (H) = ∅, s3, s4, ∅.

The APCA cycles and stops at one of the unstable matchings µI , µII , µIII , µIV , or µV .

The APCA applied to Example 4.2 with (s1, s2) , (s3, s4) in the stack:
0.0 µ0 (H) = ∅, ∅, ∅, ∅.

1.1 Yes.
2.1 (s1, s2) is selected and set n = 1.
3.1-1.1 Yes, (s1, s2) has more than one entry preferred to µ0 (s1, s2) = (u, u).
3.1-2.1 (s1, s2) applies to (h1, h2).
3.1-3.1 Yes, h1 “holds” s1 and h2 “holds” s2.
4.1 No, no rejection is needed; µI (H) = s1, s2, ∅, ∅.

1.2 Yes.
2.2 (s3, s4) is selected and set n = 1.
3.2-1.1 Yes, (s3, s4) has more than one entry preferred to µI (s3, s4) = (u, u).
3.2-2.1 (s3, s4) applies to (h1, h2).
3.2-3.1 No, h1 prefers s1 to s3. Set n = 2.
3.2-1.2 Yes, (s3, s4) has more than two entries preferred to µI (s3, s4) = (u, u).
3.2-2.2 (s3, s4) applies to (h2, h1).
3.2-3.2 No, h1 prefers s1 to s4. Set n = 3.
3.2-1.3 Yes, (s3, s4) has more than three entries preferred to µI (s3, s4) = (u, u).
3.2-2.3 (s3, s4) applies to (h3, h4).
3.2-3.3 Yes, h3 “holds” s3 and h4 “holds” s4.
4.2 No, no rejection is needed; µII (H) = s1, s2, s3, s4.

1.3 No, the stack is empty.
8.3 Yes, µ̃(H) ≡ µII (H) = s1, s2, s3, s4 is stable and it is the outcome of the algorithm.
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The APCA applied to Example 4.2 with s3, s4, (s1, s2) in the stack:
0.0 µ0 (H) = ∅, ∅, ∅, ∅.

1.1 Yes.
2.1 s3 is selected and set n = 1.
3.1-1.1 Yes, s3 has more than one entry preferred to µ0 (s3) = u.
3.1-2.1 s3 applies to h1.
3.1-3.1 Yes, h1 “holds” s3.
4.1 No, no rejection is needed; µI (H) = s3, ∅, ∅, ∅.

1.2 Yes.
2.2 s4 is selected and set n = 1.
3.2-1.1 Yes, s4 has more than one entry preferred to µI (s4) = u.
3.2-2.1 s4 applies to h1.
3.2-3.1 No, h1 prefers s4 to s3. Set n = 2.
3.2-1.2 Yes, s4 has more than two entries preferred to µI (s4) = u.
3.2-2.2 s4 applies to h2.
3.2-3.2 Yes, h2 “holds” s4.
4.2 No, no rejection is needed; µII (H) = s3, s4, ∅, ∅.

1.3 Yes.
2.3 (s1, s2) is selected and set n = 1.
3.3-1.1 Yes, (s1, s2) has more than one entry preferred to µII (s1, s2) = (u, u).
3.3-2.1 (s1, s2) applies to (h1, h2).
3.3-3.1 No, h2 prefers s4 to s2. Set n = 2.
3.3-1.2 Yes, (s1, s2) has more than two entries preferred to µII (s1, s2) = (u, u).
3.3-2.2 (s1, s2) applies to (h2, h1).
3.3-3.2 No, h1 prefers s3 to s2. Set n = 3.
3.3-1.3 Yes, (s1, s2) has more than three entries preferred to µII (s1, s2) = (u, u).
3.3-2.3 (s1, s2) applies to (h3, h4).
3.3-3.3 Yes, h3 “holds” s1 and h4 “holds” s2.
4.3 No, no rejection is needed; µIII (H) = s3, s4, s1, s2.
1.4 No, the stack is empty.
8.4 Yes, µ̂(H) ≡ µIII (H) = s3, s4, s1, s2 is stable and it is the outcome of the algorithm.
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