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Abstract

Connections seem to matter both at the individual level, in terms how well a person,
a firm, or a country does, as well as for the aggregate performance of the system. In
this paper we develop a simple model of networks to study the conditions which give
rise to differences in the level of connections across individual entities.

We suppose that links are costly to form but also generate benefits for the involved indi-
viduals. Our analysis shows that increasing returns from links facilitate the emergence
of asymmetric architectures, i.e., networks with an unequal distribution of connections
across individuals. Moreover, positive spillovers across links reinforce this tendency
and can accentuate inequality in connections. By contrast, decreasing returns from
links (and negative spillovers across links), allow for a wider range of architectures,
which include symmetric networks as well as asymmetric networks. Several social and
economic applications are presented to illustrate the scope of the analysis.
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1 Introduction

Connections seem to matter both at the individual level as well as in the aggregate. For
example, it has been argued that better connected managers are higher achievers in organiza-
tions, that firms use collaborations to gain competitive advantage vis-a-vis competitors, and
countries which are better linked may exploit their ties to bargain for better terms in particu-
lar contexts.! Similarly, the aggregate effects of differences in connections can be substantial;
for example, the outcome of competition among firms which have very different number of
collaborative ties, and hence different cost structures, is different from the outcome where
all firms are symmetric. In this paper, we develop a simple model of networks to study the

conditions which give rise to differences in the level of connections across individuals.

We consider a strategic game of link formation. There are two stages; in the first stage ex-ante
identical players choose to form links with other players. Links are bilateral and costly and
are formed only if both players agree to put in the required resources. The links of all players
together defines a a network. A network in turn defines a interaction structure within which
the second stage action takes place. We suppose that for every network, the second stage
game generates a well defined payoff. We then focus on the reduced form payoffs of a single
stage game. We use a solution concept that is a refinement of Nash equilibrium: a pair-wise
stable equilibrium network is one which is supported by a Nash equilibrium strategy profile,
and in addition satisfies the property that there is no pair of players which would be better
off by forming an additional link. To keep matters simple, we assume throughout that the
costs of link formation are the same for every link and that they are linearly increasing in
the number of links. The analysis focuses on the marginal returns from links as a function

of the links of a player and the links of his partners.

We start with an analysis of situations in which marginal returns from links are increasing

in the number of links a player has. A special case of this situation is one where the returns

IThere is a large body of theoretical and empirical work on this subject. See e.g., Burt (1992) on
careers of professional managers, Delapierre and Mytelka (1998) and Hagedoorn and Schakenraad (1990)
on collaborations among firms, and Siedman (2001) on international trading ties. There is an extensive
literature in sociology on issues of power and inequality in social networks; see e.g., Wellman and Berkowitz
(1988).



from links can be expressed as a function of the number of links a player has and the number
of links of the population at large. In this setting, marginal returns to a player from an
additional link are the same irrespective of whom he connects with; thus the identity of the
partners is not critical per se. We first consider the case of increasing returns: given any
network, the marginal returns to an additional link are increasing in the number of links
formed by the player.? In this case we find that equilibrium networks have the dominant
group architecture (see Figure 1 in section 3, below). This is a structure in which there
are essentially two groups of players, one group consists of a completely connected group of
players (which is referred to as a complete component) and another group which consists
of isolated players. This architecture is thus quite asymmetric, with some players having
many links, while others have no links at all. The intuition behind this result is as follows:
Consider a network in which two players ¢ and j have formed some links. This means that the
marginal returns from the links are larger than the marginal costs of forming them. Given
that the costs remain constant across links and marginal returns from links are increasing,
it then follows that the two players have an incentive to form a link with each other. Thus
every pair of players who have any links must be also linked with each other. This argument
does not apply to isolated players who may not have an incentive to link with anyone. Hence,
every non-empty network will have at most one non-singleton component, and the rest of

the players will be isolated.

We then consider the case of decreasing returns: the marginal returns from an additional
link are decreasing in the number of links a player has. In this case, it is difficult to provide
a general analysis without referring to the effects of a bilateral link on third parties. If these
effects are positive (or zero) then equilibrium networks have the following property: if there
are three players i, j and k, such that player i is less linked than player j who in turn is
less linked than player k, then it must be the case that players i and j have a link with each
other. This property implies in particular that dominant group architectures cannot arise
in equilibrium (see Figure 2 in section 3 below for an illustration of asymmetries that can

be sustained). By contrast, if these effects across links are negative then a wide variety of

2Cost-reducing collaboration links between Cournot firms and between local monopolies (examples 1 and
2 in section 5 below) satisfy the property of increasing returns.



symmetric as well as asymmetric architectures can arise.> The intuition behind this finding
is as follows: as a set of players build up links, their marginal returns from further links
go down and they may stop forming additional links. The returns to others from forming
links, however, may go down even more sharply, due to negative effects, and thus an unequal
distribution of links across players can be sustained. This argument also suggests why sharp

asymmetries are difficult to sustain when effects across links are small or positive.

We then examine a class of games in which the returns to a player from an additional link
depend crucially on the position of the potential partner in the network; specifically, we
consider the case where marginal returns to a player ¢ from a link with player j depend
on the number of links of player ¢ as well as the number of links of player j. In this
analysis we first take up the case of positive spillovers: marginal payoffs are increasing in
the number of links that players i and j have.* In this setting, we find that equilibrium
networks have the dominant group architecture or the inter-linked stars architecture (see
Figure 3 in section 4 below). Consider a partition of players into groups corresponding to
the number of links players have. An inter-linked stars architecture refers to a partition
in which the maximally linked group is linked with all players (and hence to each other),
while the minimally linked group consists of players who are only linked to the maximally
connected players.® Architectures such as interlinked stars (of which the star is a special case)
can display greater variation in the number of links across individual playes as compared to
dominant group architectures. Our results suggest, therefore, that positive spillovers may
sustain and enhance the pressure toward unequal connections and asymmetric architectures

that are present in games with increasing marginal returns.

Finally, we study the case of negative spillovers: where marginal returns for player ¢ from

a link with a player j are decreasing in the number of links that players ¢ and j have.® In

3Knowledge sharing links between firms engaged in a patent race (example 3 in section 5) satisfy this
decreasing returns and negative effects.

4Information sharing links for the provision of a pure public good (example 4 in section 5) satisfy this
positive spillovers property.

5Formal definitions of different network architectures are given in section 2.

6Bilateral free-trade agreement links between countries satisfy the negative spillovers property.



this setting, we find that symmetric networks arise naturally. In addition, a moderate level
of inequality in links across individuals is also sustainable. In particular, we find that if a
pair of players 7 and 7 do not have a link with each other, then two players [ and k& who
have more links than ¢ and j cannot have a link either. This property implies that networks
such as dominant group architectures (with 2 or more isolated players) and inter-linked stars

cannot arise in equilibrium.

The conditions on payoffs we identify are simple and appealing from an economic point of
view. In section 5 we apply the general results to several economic and social examples to
derive the architecture of equilibrium networks. These applications illustrate the scope of

the analysis and also demonstrate existence of equilibrium networks in these settings.

Our paper is intimately related to the research on social structure and economic perfor-
mance (see e.g., Bala and Goyal (1998), Benabou (1993), Ellison and Fudenberg (1993),
Glaezer, Sacerdote and Schienkman (1996), Goyal (1996), and Morris (2000). Also refer to
Granovetter (1985) for a discussion of the role of embeddedness in economic transactions
and Schelling (1975) for early work in economics on the role of social interaction.) This
literature on social structure and economic performance has highlighted the different ways
in which structure, broadly construed, effects key economic outcomes. This research is one
of the main motivations underlying the attempt to develop a better understanding of the
factors which shape the interaction structure. In this paper we take the view that in many
interesting settings, individual entities consciously decide on whether to form links/ties with
others. Thus social and economic structure arise out of individual incentives. In making
these choices, individuals trade off the benefits of forming links against the costs of doing
so. The main contribution of the present paper to this literature is to illustrate that this
approach yields sharp predictions about the architecture of sustainable networks. In par-
ticular, our results highlight the circumstances which facilitate the emergence of unequal

distribution of connections across individuals (who are ex-ante identical).

The paper is closely related to the recent literature on the theory of network formation. This
is currently a very active field of research; see e.g., Bala and Goyal (2000), Boorman (1975),
Calvo (2000), Dutta, van den Nouweland and Tijs (1995), Kranton and Minehart (2001),



and Jackson and Wolinsky (1996)). The main contribution of the present paper to the theory
of network formation is the use of ‘local conditions’ on payoffs in explaining differences in
levels of connections across players. This approach focuses on how marginal returns for a
player ¢ from an additional link with player j can be expressed as a function of two variables,
the number of links of the player ¢ and the number of links of the potential partner j.
The examples we present in section 5 illustrate that individual incentives are appropriately

reflected in the dependence of marginal returns on the local network structure.

Issues relating to group formation and cooperation have long been a central concern of
economics in general, and game theory in particular. The traditional approach to these
issues has been in terms of coalitions. In recent years, there has been considerable work
on coalition formation in games; see e.g., Bloch (1997) and Ray and Vohra (1997). In this
literature, group formation is modeled in terms of a coalition structure which is a partition
of the set of firms. Each player, therefore, can belong to one, and only one, element of the
partition, referred to as a coalition. In our paper, we consider two-player relationships. In
this sense, our model is somewhat restrictive as compared to the work referred to above,
which allows for groups of arbitrary size. However, the principal distinction concerns the
nature of collaboration structures we examine. Our approach accommodates collaborative
relations that are non-exclusive (or non-transitive). From a conceptual point of view, this
distinction is substantive. It means that we allow for relationships across coalitions. Thus,
we consider a class of cooperative structures which are significantly different from those
studied in the coalition formation literature. Our analysis suggests that these structures
— such as arbitrary symmetric networks, or asymmetric networks like stars and interlinked
stars — arise quite naturally in a wide class of economic and social games. Further, these

structures are also empirically common but are ruled out in the coalition literature.”

The paper is organized as follows. Section 2 presents the model. Section 3 studies situations
in which marginal returns depend only on the number of links of a player. Section 4 analyzes

situations in which marginal returns from a link depend crucially on the number of links of

"For a discussion of the relationship between networks and coalitions, see Jackson and Wolinsky (1996).



the potential partner as well. Section 5 illustrates the scope of the results by applying the

results to a variety of social and economic examples. Section 6 concludes.

2 The Model

We envision a two-stage model in which players form bilateral links with each other in the
first stage. Formation of a link entails a commitment to invest resources in the relationship
and, therefore, imposes a fixed cost on the two players involved in the link. The structure
of bilateral links between the players defines a network. In the subsequent stage, the players
play a non-cooperative game contingent on the links they have established in the first stage.
We assume there is a unique second stage Nash equilibrium corresponding to each possible
network structure. The Nash equilibrium payoffs can therefore be written as a function of
the network structure. We then characterize the set of equilibrium networks under general

restrictions on the reduced form payofts.

2.1 Networks

Let N = {1,2,...,n} denote a finite set of ex-ante identical players. We shall assume that
n > 3. Every player makes an announcement of intended links. An intended link s; ; € {0, 1},
where s; ; = 1 means that player ¢ intends to form a link with player j, while s, ; = 0 means
that player ¢ does not intend to form such a link. Thus a strategy of player ¢ is given
by si = {{si;}jemg}}- Let S; denote the strategy set of player i. A link between two
players ¢ and j is formed if and only if s;; = s;; = 1. We denote the formed link by
gi ;- A strategy profile s therefore induces a network g(s). In what follows, for expositional
simplicity we shall often omit the dependence of the network on the underlying strategy
profile. A network g = {(g:;)}, is a formal description of the pair-wise relationships that
exist between the players. We let G denote the set of all networks (the set of all undirected

networks with n vertices.)



G is a partially ordered set with the ordering relation > defined as follows: for g = {(¢:,)},
g =1{(gi;)}inG,g>gifg; > g, Vi,j €N. The strict ordering relation is defined as
follows: for g = {(g:;)}, ¢ = {(9i;)} n G, g > ¢" if g5 > g;; Vi,j € N and g;; > g; ; for
some ¢,7 € N.

A path in g connecting players i and j is a distinct set of players {ii,...,4,} such that
Giiy = Giryis = Ginsis = '+ = Gi,,; = 1. We say that a network is connected if there exists a
path between any pair i,7 € N. A network, ¢’ C g, is a component of g if for all i,j € ¢,
i # j, there exists a path in ¢’ connecting ¢ and j, and for all ¢ € ¢’ and k € g, g;, = 1
implies k£ € ¢’. We will say that a component ¢’ C g is complete if g, ; = 1 for all 4,5 € ¢'.
Finally, let N;(g) ={j € N :j # i, gi; = 1} be the set of players with whom player i has a
link in the network g, and let 7;(g) = |NV;(g)| be the cardinality of this set. Given a network
g, we will let g + g; ; denote the network obtained by replacing g;; = 0 in network ¢ by
gi; = 1. Similarly, we will let g — g, ; denote the network obtained by replacing ¢; ; = 1 in
network g by g; ; = 0. Let 7;(g) be the number of links that player ¢ has in network g and

let n;(g) =mi(g) + 1.

Networks in which all players have the same number of links are referred to as symmetric. In
a symmetric network 7;(g) =n Vi € N, and we refer to n as the degree of the network. The
complete network, ¢¢, is a network in which n =n —1, Vi € N, while the empty network, ¢¢,

is a network in which n =0, Vi € N.

If two or more players have an unequal number of links then we say that the network
is asymmetric. Let Ni(g), N2(g), ..., Nm(g) be a partition of players, corresponding to the
number of links that players have. In particular, if i,j € Ni(g), k = 1,2, ..m, then n;(g) =
nj(g). We note that k here refers to the order in the partition and not the precise number
of the links that players have. An inter-linked stars architecture is one in which there are at
least two members in this partition and the minimum and maximum linked groups satisfy the
following two conditions: one, there exist players who have links with all the other players,
in other words, 7;,(g) = n — 1 for all i € N,,(g) and two, there are players who have links
with only the universally linked players and no one else, N;(g) = N,,(g) for all i € Ni(g).
We note that since players in N,,,(g) are linked to all other players, they are also linked to



each other; the network, therefore, resembles a set of inter-linked stars. We note that the
star network is a special case of this architecture, with |N,,(g)] =1 and |N1(g)| =n—1. A
dominant group architecture is characterized by one complete non-singleton component and
a set of singleton players. Thus there are two groups, N;i(g) and Na(g), with the property
that 7;(g) = 0, for i € Ni(g), while 1;(g) = [N2(g)| — 1, for j € Na(g).

2.2 Payoffs, equilibrium and stability

Let m;(g) denote the reduced form gross payoffs of player . We will impose the following

restrictions on gross payoffs:

(A.1) Anonymity: For any network g = {(g;;)}, and any permutation function on the
set of players p: N — N, let g” = {(gp(i),p(j))}- Then:

mi(9) = Tw(9"), iE€EN
(A.2) Gross Payoff Monotonicity: In any network g:

(g + gi5) = mi(9), m(g+ gi5) = m;(g)

The anonymity condition formalizes the idea that the identity of the players in a network
does not matter. The networks g and ¢g” have the same architecture but with different players
at the nodes. Anonymity states that the gross payoff of player i in g is equal to that of player
p(i) who occupies the same node in ¢” as i did in g. The payoff monotonicity condition says
that given a network, g, a player always gains in terms of gross payoffs from forming an
additional link.

Given a strategy profile s = {sy, s9, ..., S, }, the (net) payoffs to a player are given by

(s, 5-:) = mi(g(s)) — ni(g(s)) f (1)
where f is the cost incurred by each player when a link is formed.

9



We now present two classes of games that are covered by our analysis. Given a network,
g, let g_; be the network obtained by deleting all the links of player i. In the first class of

games, the payoffs to a player, 7, from a network, g, can be written as follows:

[i(g) = ¢i(g-1,m(9))- (2)

Thus the payoffs of a player ¢ from a network g depend on the complementary network g_;
and the number of links he maintains in the network g, 7;(g). The crucial feature here is
that the identity of the partners — wiz. the number of their links and more generally their
location in the network — does not affect the payoffs of player i. Given a network g, the

marginal payoffs of player ¢ from an additional link are given by

Hi(g+gi,j) IL(9) = ¢i(g-i;mi(g) + 1) — ¢i(g—i,mi(g))- (3)

More generally, let £ be the number of links of player 7. It is useful to write the marginal
returns from an additional link in terms of the complementary network ¢g_; and the number

of links of player i as follows:
Agi(g i, k) = ¢i(g i,k +1) — di(g-i, k) (4)

The first part of our analysis deals with the implications of increasing and decreasing marginal

returns and covers this class of games as a special case.

We also consider a class of games in which the payoffs of a player can be expressed as a

function of his own links and the links of his partners:

IL;(g) = ®i(n:(9), {1;(9) }jeni(a))- (5)

Given a network g, the marginal payoffs to player ¢, from forming a link with player j are

given as follows:

10



(g + gi ) — Wi(g) = Li(mi(g + i j), {1n6(9) I renioraiy) — Pi(mi(9)); {mk(9) brens))  (6)

We develop conditions on marginal returns which relate to number of links of a player and

his partners. This analysis covers the second class of games as a special case.

We study the architecture of networks that are strategically stable. Our notion of strategic
stability is a refinement of Nash equilibrium. A strategy profile s* = {s7, s}, ..., s%} is said
to be a Nash equilibrium if II;(s}, s*;) > II;(s;, s*;), for all s; € S;, and for all i € N. In our
model, a link requires that both players acquiesce in the formation of the link. It is then easy
to see that an empty network is always a Nash equilibrium. More generally, for any pair ¢
and j, it is always a mutual best response for the players to offer to form no link. To avoid
this potential coordination problem we supplement the idea of Nash with the requirement
of pair-wise stability. An equilibrium network is said to be pair-wise stable if players have
no incentive to form a link that does not exist in the network. We borrow this idea from

Jackson and Wolinsky (1996). We will focus on pair-wise stable equilibrium networks.

Definition 2.1 A network g is a pair-wise stable equilibrium network if the following con-
ditions hold.

1. There is a Nash equilibrium strategy profile which supports g.

2. Forg;; =0, m(9+ gi;) —mi(g) > f = mj(g+9g;) —mi(g) <f

In what follows, for expositional simplicity we shall use the short form — pws-equilibrium —
while referring to pair-wise stable equilibrium networks. It is arguable that the notion of
pair-wise stability is very mild; for instance it does not consider deviations by more than
two players. A more general stability requirement would allow for coordinated deviations
by several players. In some of the settings we analyze, it is possible to see that this will

alter the outcome (see example 2 in section 5 below). We choose to work with the notion

11



of a pws-equilibrium on grounds of tractability: indeed, the main point of our paper is that
this mild requirement by itself sharply restricts the set of equilibrium networks and gives us

several insights into the relation between individual incentives and network architectures.

3 Own links

In this section we consider a class of network formation games in which the marginal returns
from links for a player are increasing or decreasing in the number of links of the player.® Our

analysis develops a characterization of equilibrium network architectures.

3.1 Increasing Returns

We start by examining the case where each player’s marginal payoffs are strictly increasing

in his own links. Formally:

Definition 3.1 Fix some network g. The marginal payoff function of player i is strictly

increasing in own links if for any distinct j, k € N:

(9 + Gik + 9i5) — mi(g + gi5) > mi(9 + gi5) — Til9) (7)

We say that the payoff function of player i exhibits increasing returns (IR) if this property

15 true for any network g € G.

To facilitate interpretation of this definition, it is useful to recapitulate the first class of payoft
functions we mentioned in section 2. The payoff function is given by IL;(g) = ¢;(g_i,n:(g))
and the marginal payoffs are given by A¢;(g_i, k) = ¢i(g9_i, k + 1) — ¢i(g_s, k). Increasing

8In section 5 below we shall present a class of economic and social problems which satisfy this property. In
particular, we shall show that R&D collaboration between firms in different market settings (Examples 1 and
2) satisfy the increasing returns property, while the patent race model (Example 3) satisfies the decreasing
returns property.

12



returns imply that for every g_;, A¢i(g 4, k) is strictly increasing with respect to k. We note
that we make no assumptions regarding how marginal payoffs are affected by links formed

by other players.

Increasing returns imply the following “transitivity” property of link formation:

Lemma 3.1 Consider a pws-equilibrium network g. Consider two players i,j € N. If
Gix = gj1 =1 for some k,l € N\{i,j}, then g; ; = 1.

Proof: Assume to the contrary that for somes, j,k,l € N, g;, = g;; = 1 in a pws-equilibrium

network g but g; ; = 0. By the definition of pws-equilibrium:

mi(g) — mi(9 — gix) = f
mi(g) —mi(g —g10) = f
Since each player’s marginal payoffs are increasing in own links:

7i(9 + 9ij) — mi(g) > mi(g) — mi(g — gik) = f
mi(9 + 9ig) — mi(g) > mig) —mi(g — gia) = f (9)
This implies that players ¢ and 7 have an incentive to form a link and, therefore, g is not a

pws-equilibrium, a contradiction that completes the proof. A

The above lemma helps us to develop the following characterization of pws-equilibrium net-

works:

Proposition 3.1 Suppose the payoffs of each player satisfy (IR). Then, in the class of
symmetric networks, the only pws-equilibrium networks are the empty and complete networks,
while in the class of asymmetric networks, the only pws-equilibrium networks are those with

the dominant group architecture.
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Proof: Consider the class of symmetric networks. For high enough f, the empty network
is trivially stable. Now consider a non-empty pws-equilibrium symmetric network g # ¢¢
with degree 0 < n < n — 1. Since g is symmetric, we can find two players ¢ and j such that
gii = gim = 1 for some [,m € N but g, ; = 0. However, from Lemma 3.1, this contradicts

the hypothesis that g is a pws-equilibrium.

Next consider the class of asymmetric networks. We first show that any asymmetric network
can have at most one non-singleton component. Let C}(g) and Cy(g) be two non-singleton
components in g. Suppose that ¢,5 € C; with g;; = 1 and I,m € Cy, with ¢;,,, = 1. From
the definition of a component, g;; = 0. However, from Lemma 3.1, this contradicts the

hypothesis that g is a pws-equilibrium.

Next we show that the non-singleton component must be complete. If it is incomplete, then
there are players ¢ and j in the component such that 7;(g) > 1, n;(g) > 1 and g;; = 0.

However, from Lemma 3.1, this contradicts the pws-equilibrium hypothesis concerning g. A

This result suggests that symmetric networks are generally difficult to sustain in the pres-
ence of increasing returns. Moreover, increasing returns also sharply restrict the nature of
asymmetric networks that can arise: the dominant group architecture is the only candidate
for equilibrium. An interesting question is how the size of the dominant group, k, varies with
the cost of link formation, f. This requires an explicit comparison between the marginal
returns and costs of forming links. We explore this issue in the context of R& D collaboration

between firms in section 5. Figure 1 illustrates dominant group networks.

— Insert Figure 1 somewhere here —

3.2 Decreasing returns

We now take up the case where marginal returns to an additional link are decreasing.

14



Definition 3.2 Fix some network g. The marginal payoff function of player i is strictly

decreasing in own links if for any distinct j,k € N:

(9 + Gk + 9ij) — mi(g + 9i5) < w9+ gij) — mi(9) (10)

We say that the payoff function of player i exhibits decreasing returns if this property is true
for any network g € G.

The analysis in this subsection will focus on the payoff functions of the form, II;(g) =

®(g—i,mi(g))- In this context, the property of decreasing returns is stated as follows.

(DR) Forall g ;, ¢i(k+1,93)— ¢i(k,g-4) < ¢i(k,g9-5) — di(k—1,94),
VEke{l, .,n—2}

The general analysis of equilibrium networks in the presence of decreasing returns is com-
plicated. The main factor complicating the analysis is the presence of effects across links.
To simplify matters we shall therefore take up different cases of effects — zero, positive and

negative — separately. We start with the simplest case: zero effects.

Zero-effects We model zero-effects as follows:

(ZE)  mi(g) = ¢(ni(9)),Vg€g.

The following result helps in the delineation of sustainable symmetric networks.

Lemma 3.2 Assume that the payoff function of each player satisfies (DR) and (ZE). For

generic values of cost of forming links, f, there is at most one symmetric equilibrium.

Proof: Suppose there are two symmetric networks with degree k and k', with & < £’ that
are pws-equilibrium networks. Since the k-degree symmetric network is a pws-equilibrium,
it follows from the definition of pair-wise stability and symmetry of the network that ¢;(k +

1)—¢;(k) < f. Similarly, since the k’-degree network is a pws-equilibrium network, it follows

15



that ¢;(k') — ¢:(K' — 1) > f. Since k' > k, the two inequalities cannot be simultaneously

satisfied for generic values of f. A

We now turn to asymmetric networks.

Lemma 3.3 Assume that the payoff function of each player satisfies (DR) and (ZE). Con-
sider a pws-equilibrium network g. For generic values of f, the following property obtains:
if i € Ny(g) and j € N,.(g), 1 < q,7 <m, then g;; = 1.

Proof: We start by proving the following property: for any 7,5 € N, if there exists a player
k € N\{i,j} such that n;,(g) < n,(g) < nx(g), then g; ; = 1. Suppose to the contrary that in
a pws-equilibrium network g there exist players 4,7,k € N such that 1;,(g9) < n;(9) < nx(g)
but g; ; = 0. Then it is true that

f

IN

k(9) — (9 — Gk k)

o(me(9)) — ¢(n(g) — 1)

o(n;(g9) +1) — o(n;(9))

7i(9 + 9i3) — m;(9)) (11)

IN

where the first weak inequality follows from pws-equilibrium hypothesis concerning g, the
equality follows from zero-effects, and the weak-inequality follows from the fact that 7;(g) <
nk(g), while the final inequality follows from the hypothesis that ¢ is an equilibrium. For
generic values of f, the first inequality is strict. An identical argument can be made for

player i. Hence players 7 and j have an incentive to form a link. The proof follows. A

We summarize our analysis of the zero effects case in the following result.

Proposition 3.2 Assume that the payoff function of each player satisfies (DR) and (ZE).
(a). In the class of symmetric networks, a variety of networks can be supported depending
on the costs of forming links. However, for generic values of f, there is at most one degree

that can be supported in a pws-equilibrium. (b). In the class of asymmetric networks, a
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pws-equilibrium network has the property that all non-maximally connected players have a
direct link.

The above Proposition 3.2 has some interesting implications for the structure of asymmetric
pws-equilibrium networks. First, if the players in N,,(g), the element of the partition of N
with the maximum number of links, form their own component, then the pws-equilibrium
network will have only two components. Second, architectures such as the dominant group
(with at least two singleton players), stars and interlinked stars are not sustainable in equi-

librium.

Positive effects: We now take up the case of positive effects with respect to links of others.

This is modeled as follows:

(PE) If g; < g’ then ¢i(g—i, b+ 1) — ¢i(9-i, k) < di(g' s,k + 1) — ¢i(9" 4, k),
VEke {12, ..n—2).

We start with a consideration of symmetric networks. We expect that multiple symmetric
networks can be sustained in equilibrium for a given value of f. The intuition is as follows.
Suppose that a certain degree network is sustainable in a pws-equilibrium. Then it is possible
that a higher degree network can also be sustained, since a higher degree can lead to higher
marginal payoffs due to positive effects and this may offset the decreasing returns effect in

some cases. We present a simple example to illustrate this intuition.

Example 3.1: Suppose n = 4 and individual payoffs are given as follows:

mi(g) = a/mi(g) + 6 ni(9)m(g), (12)
i
where o > 3 > 0.2 It follows that:
Gi(g—isni +1) = dilg—i,mi) = al\/ni +1 = /m) + BY_me + B+ B (13)

ki
9Note that if 8 = 0, then we are back to the case where the payoff function satisfies (DR) and (ZS).
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It can be verified that the payoff function satisfies (DR) for « sufficiently greater than (.

Further, it satisfies (PE) since an increase in g_; leads to an increase in >y, 1.

In this example, the symmetric pws-equilibrium networks are characterized as follows: (a).
If a + B < f, then the empty network is a pws-equilibrium network. (b). If 0.4la + 53 <
f < a+ 38, then the symmetric network of degree 1, g', is a pws-equilibrium. (c). If
0.3204+98 < f < 0.41a+78 then the symmetric network of degree 2, g2, is a pws-equilibrium.
(d). If f < 0.32cc + 110 then the complete network is a pws-equilibrium.

This characterization can be derived by computing the payoffs to different players in the
different networks. The payoffs in the complete network are given by II;(¢¢) = 1.72a +
273 — 3f. The payoffs in the empty network are given by II;(¢¢) = 0. In the symmetric
network of degree 1, II;(¢') = a + 33 — f, while in the symmetric network of degree 2,
I1;(g?) = 1.41a + 128 — 2f. The characterization stated above can be derived using these
payofs.

If we set o = 40 and 3 = 1 then ¢', g% and ¢¢ are pws-equilibrium networks over the range
218 < f <234 A

What is the nature of asymmetric networks that can be sustained in equilibrium? In the
above example it can be verified that the only asymmetric pws-equilibrium network is the
dominant group network with three players in a complete component and one isolated player,
and this occurs over the range 0.32a + 78 < f < 0.41a + 53.19 This observation is in fact a

special case of a more general result characterizing asymmetric equilibrium networks.

Lemma 3.4 Suppose g is an asymmetric pws-equilibrium network. If i,j ¢ N, (g), then

gi,j = ]_

Proof: Take some player k € N,,(g). It follows from the pws-equilibrium hypothesis that

(g k> (9)) — Pr(9-#,m0(9) — 1) > f. (14)

10This follows by noting that the payoff to a player in the complete component is II;(g) = 1.41a + 88 — 2f
while the payoff to the isolated player is zero and then verifying the equilibrium conditions.
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Suppose that i, j ¢ Ny, (g), and that g; ; = 0. Then it follows that either ¢;(g_,,7:(g) +1) —
¢i(9-i,ni(g)) < f, or ;(g9-4,m;(9) +1) — ¢;(9-4m;(g)) < f, or both. However, note that

G—i = 9—ik + {91k Hieny(g), | 7# 1, k.
9—k = g—i—k + {gi,m}meNi(Q)v m # i, k. (15)

Since 7;(g) < mk(g), it follows that g ; > g  (with a slight abuse of notation). Hence it
follows that

¢i(g-i,mi(g) +1) — ¢i(g—i;mi(g)) (16)
> ¢i(g-k,mi(g) + 1) — ¢i(g-r,mi(9)) (17)
> Ok(9—k,Mk(9)) — Or(g—r,milg) — 1) > f. (18)

In the above expression, the first inequality follows from (PE), while the second inequality
follows from noting that nx(g) > 7;(¢) and applying (DR). Note that we use the anonymity
assumption in deriving this inequality as well. The final inequality follows from the equilib-

rium hypothesis. Similar reasoning establishes that

¢i(9-4,m5(g) + 1) — ¢(9-5,mi(9)) > f (19)

Hence, i and j have a strict incentive to form a link, which contradicts our starting hypothesis

that g is a pws-equilibrium. A

We are now in a position to summarize our analysis of network formation under decreasing

returns and positive effects.

Proposition 3.3 Suppose the payoff function of every player satisfies (DR) and (PE). For
a given value of f, symmetric networks of different degrees can arise in equilibrium. Asym-
metric pws-equilibrium networks have the property that all non-mazimally linked players have

a direct link.
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The first part of the above result shows that symmetric networks are easily sustained in
equilibrium, and that for the same value of f, different degree networks can arise. This is in
marked contrast to the situation under increasing returns where symmetric networks are in
general not sustainable in equilibrium. The second part of the result rules out networks such
as stars and dominant group architectures with two or more isolated players. It also rules
out inter-linked stars. However, positive effects do allow for asymmetrically-sized complete
components. One may interpret this result as saying that (DR) and (PE) together imply
that networks can be at most moderately asymmetric. Figure 2 gives some examples of

equilibrium networks.

— Insert Figure 2 somewhere here —

Negative effects: We finally take up the case where links of third parties have a negative

spillover on a players’ marginal returns. The idea of negative effects is modeled as follows:

(NE) If g_; < g'; then ¢i(g—i,k+ 1) — ¢i(g—i, k) > ¢i(g' s,k +1) — ¢s(g"4, k),
VEke{l,2,,..,n—2}

We first take up the case of symmetric networks.

Lemma 3.5 Consider the class of symmetric networks. For a given value of f, symmetric

networks of at most one degree k can be sustained in a pws-equilibrium.

Proof: Suppose k£* and k are pws-equilibrium and £* < k. Then it follows that

and moreover

di(g" i k) — dilg" s k—1) > f. (21)
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Combining these equations yields us the following:
f < dilghi k) = ilghi k= 1)
< ¢i(gkzu ) ¢z(g—z k — 1)
< dilg K+ 1) = dilgki k) < f. (22)

The first inequality follows from the hypothesis that gi€ is an equilibrium network, the second
inequality follows from (NE), while the third inequality follows from (DR). The final inequal-
ity follows from the hypothesis that ¢*" is an equilibrium. This generates a contradiction

which completes the proof. A

We now explore the nature of asymmetric equilibrium networks. We have been unable to
provide a general characterization here. The following example illustrates some of the issues

that arise.

Example 3.2: Suppose n = 3 and individual payoffs are given as follows:

mi(g) = ay/nig) — BD_ni(9)nig), (23)

J#i

where a > 3 > 0. It is possible to verify that this payoff function satisfies (DR) and (NE).

This is done as follows:

Gi(g-ismi + 1) = ¢i(g-i,m:) = a(yni + 1 = /mi) = B — B — B (24)
ki
Clearly, this is decreasing in 7; and also decreasing in g_;, since an increase in g_; leads to

an increase in _j; M-

In this example, the pws-equilibrium networks are characterized as follows: (a). If f <
0.41a—>50 then the unique pws-equilibrium is the complete network. (b). If0.4la—50 < f <
0.41a—30 then the unique pws-equilibrium is the star network. (c¢). If0.4la—36 < f < a—f3
then the unique pws-equilibrium is the partially connected network. (d). If « — 3 < f then

the unique pws-equilibrium is the empty network.
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This characterization can be derived by computing the payoffs to different players in the
different networks. The payoffs in the complete network are given by I1;(¢g¢) = 1.41a—85—2f.
The payoffs in the empty network are given by II;(¢¢) = 0. In the partially connected
network there is one pair of players linked and one isolated player. The payoffs of the linked
players are as follows: II;(¢7°) = a — 8 — f, while the payoffs of the isolated player are
given by II;(¢?°) = 0. Finally, in the star there are two peripheral players with one link
each while there is a central player with two links. The payoffs of the central player are
given by II;(¢°) = 1.41a — 43 — 2f, while the payoffs of the peripheral players are given by
II;(¢°) = a — 38 — f. The proof now follows from a straightforward comparison of these

payoffs. A

This example illustrates that a variety of architectures, including some with sharp asymme-
tries such as the star, can be sustained in equilibrium if payoffs display decreasing returns

and negative effects.

Several remarks can be made on the basis of the results we have obtained in this section.
First, we note the effect of marginal returns on sustainability of symmetric networks in
equilibrium. We found that it is difficult to sustain symmetric networks under increasing
returns with respect to own links. By contrast, symmetric networks can be sustained in
equilibrium under decreasing returns. Second, we note the effects on asymmetric networks.
Here we found that increasing returns lead to a very specific form of asymmetric networks:
the dominant group architecture. By contrast, the nature of asymmetric networks under
decreasing differences depends on the spillover effects of third party links. If effects are
absent or positive, then we found that dominant group and star like structures are not
sustainable in equilibrium. In general, asymmetries across links of players are limited in
equilibrium. Finally, if effects across links are negative, then stars and other asymmetric

networks can arise in equilibrium.
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4 Links of the Partner

In this section we consider a class of games in which the marginal returns of a player from a
link are a function both of the number of links of the player and that of the potential part-
ner. We distinguish between positive and negative spillovers based respectively on whether
marginal payoffs from a link are influenced favorably or adversely by the number of links of

the potential partner and the level of connectedness of the network.

4.1 Positive spillovers

Our notion of positive spillovers encompasses several related ideas: one, that marginal payoffs
from a link increase as the network gets more connected. Two, that marginal payoffs are
greater the more connected is the player with whom the link is being formed. Finally, that
marginal returns from a link are greater the greater the number of links the player forming

the link has. These ideas are formally defined below.

Definition 4.1 Fix some network g. The payoff function of player i satisfies the positive
spillovers (PS) property if:

L. m(g+gk+9,) —m(g+or) > m(g+g,;) —m(g)
2. mi(g+gi;) —milg) > mi(g + gi0) — milg) if n;(g) > m(g)

3. mi(g+ gik) — mi(g) > mi(g + g50) — mi(g) if mi(g) > n;(g) and ni(g) > m(g)

It is worth noting that increasing returns and positive spillovers are distinct conditions
on payoffs. This is easiest to illustrate by looking at examples in section 5. Example 1
which deals with collaboration among Cournot firms satisfies increasing returns, but violates
positive spillovers (cf. conditions (1) and (2) in positive spillovers). On the other hand,
example 3 about information sharing of a public good satisfies positive spillovers but violates

increasing returns. (An implication of this is the finding that the star network can be
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an equilibrium under positive spillovers but is ruled out under increasing returns.) We
now characterize pws-equilibrium networks for payoff functions which satisfy the positive

spillovers property.!! We start with a consideration of symmetric networks.

Lemma 4.1 Suppose payoffs of every player satisfy (PS) and let g be a symmetric network.

If g 1s a pws-equilibrium network then it is either empty or complete.

Proof: Let g be a symmetric network which is neither empty nor complete. Let every firm
have k links, with 0 < £k < n — 1. Suppose g is an pws-equilibrium. Then it follows that

there exist firms ¢ and j with g, ; = 0, whose payoffs satisfy the following conditions:

mi(g) — mi(g — gia) = f
7i(9) — mi(9 = gip) = f (25)
with [, p # 4, j. Since g is symmetric 1;(g — gi1) > (g9 — i), and 1;(9 — g;p) > (9 — gjp)-
From part (1) of positive spillovers it follows that m;(g + ¢:,;) — mi(g) > mi(9 — giz + i) —
7i(g — gi1). From part (2) of positive spillovers it follows that m;(g — gi;+ ¢:.;) — (g — gis) >
7;i(g) — mi(g — ¢i1). Thus we have the following implication:

mi(g + gij) — mi(g) > mi(g) — mi(g — gir) >

f
mi(9 + gi5) — mi(g) > mi(9) — (g — gjp) = f

v

(26)

This implies that players ¢ and j have an incentive to form a link and therefore g is not a

pws-equilibrium, a contradiction that completes the proof. A

Our next result looks at asymmetries that may arise in pws-equilibrium networks.

Lemma 4.2 Suppose payoffs of every player satisfy (PS) and g is a pws-equilibrium network.

Then g has at most one non-singleton component.

IWe note that in the pure public good case (Example 4 in section 5, below), the marginal returns to
player ¢ from a link g; ; are given by 3/2 4+ n;(g) + 2n,(g). It can be checked that these marginal returns
satisfy the three requirements of positive spillovers stated above.

24



Proof: Let C; and C5 be two non-singleton components in g. Suppose that i, 7 € C with
gi; =1 and l,m € Cy, with g;,, = 1. Moreover, let n,(g) > n,(g),Vp € N.

Since g is pws-equilibrium it follows that:

m(g9) — m(9 — Gim) = f
Tm(9) — Tm (9 — gl,m) > f. (27)

Since 1;(g) > n,(g), for all p € N, it follows from parts (1) and (3) of the positive spillovers
condition that mi(g+gi1) —mi(9) = mi(9— gm+9i1) = 7i(9— Gym) > Tm(9) = T (9= Gim) = f-
We next note that from part (1) and (2) of the positive spillovers condition it follows that
m(g +9i0) = 7u(9) = m(9 = Gum + gia) = m(9 = Gum) = m(g) = m(g — gm) = f. Thus players
i and [ have an incentive to form an additional link, contradicting the hypothesis that the

network ¢ is a pws-equilibrium. This completes the proof. A

We are now ready to provide a characterization of pws-equilibrium networks in the positive

spillovers case.

Proposition 4.1 Suppose payoffs of every player satisfy (PS) and g is a pws-equilibrium
network. Then either g is empty or it has a unique non-singleton component. In the latter

case, the non-singleton component is either complete or has the interlinked stars architecture.

Proof: Consider a non-empty network g and let C(g) be a non-singleton component in this
network. Suppose that C(g) is not complete. Let i € N,,(g); it is easy to see that i € C(g).
We wish to show that g;; = 1, for all j € C(g)\{i}. Suppose that j € C(g) and g;; = 0.
Since j € C(g), there is some [ € C(g) such that g;; = 1. Since g is a pws-equilibrium

network, it follows that

25



It now follows from the definition of positive spillovers that:

mi(9 + gij) — mi(9) = mi(g — gju + gig) — mi(g — g50) > mlg) — m(g — gju) > f
(g + gi5) — 7i(9) = (9 — gja + Gig) — mi(g — giu) > mi(9) —mig—gi) = f (29)

Here we have used part (1) of the (PS) definition to derive the weak inequality in both
equations. Part (3) of (PS) implies the strict inequality in the first equation, while part (2)
implies the strict inequality in the second equation. Thus players ¢ and j have an incentive
to form a link. This contradicts the pws-equilibrium hypothesis of the network g. The proof

now follows from Lemma 4.1 and Lemma 4.2.

Let Ni(g) be the set of minimally linked players in the component C(g). We finally show
that 1,(g) = | N (g)| for all i € Ny(g). Suppose not. Then there is some i € N;(g) such that
gi; =1, and j ¢ N,,(g). But then it follows from parts (1) and (2) of positive spillovers that
player j has a strict incentive to form a link with every other player since 7;(g —g: ;) < 7x(9),
for all k& € N; moreover, parts (1) and (3) of (PS) imply that every other player k has
an incentive to reciprocate the link with j. Thus player j must be a member of N,,(g), a

contradiction that completes the proof. A

— Insert Figure 3 somewhere here —

4.2 Negative spillovers

In some interesting economic applications, congestion effects may dominate and links con-
sequently exhibit negative spillovers. Our definition of negative spillovers incorporates the
following ideas: one, that marginal payoffs from a link decrease as the network gets more
connected. Two, that marginal payoffs are smaller the more connected is the player with
whom the link is being formed. Finally, that marginal returns from a link are smaller the

greater the number of links of the player forming the link. These are defined below:

Definition 4.2 Fix some network g. The payoff function of player i satisfies the negative
spillovers (NS) property if:
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L w9+ gk + 9i5) — mi(g + gix) < mi(g+ gi5) —mi(g)
2. (g +9i5) —mi(g) < milg + gi0) — milg) if ni(9) > m(9)

3. milg+gig) —mi(g) < milg+ gix) — m(9) if ni(g) > n;(g) and m(g) > nx(g)

The negative spillovers case is considerably more difficult to characterize than the positive.
In order to gain some insight into the nature of equilibrium networks, we start with an
example satisfying the negative spillovers property. The example demonstrates that both
symmetric networks as well as very asymmetric networks can be sustained in an equilibrium

under negative spillovers.

Example 4.1: Let n = 4. Suppose the payoff function of the players in the network g is
given by:

mi(9) = ayni(g) — B ni(g)ni(g), i€ N (30)

leN

The marginal payoffs are given by:

mo+gi) —mle) = a{ynl)+1- /(o) |
-3 ni(g) — 26 {ni(g) +n;(9) + 1} {ni(g) + 1} (31)

leN

It can be verified that payoffs satisfy the negative spillovers property. In this example,
the symmetric pws-equilibria are characterized as follows: (a). The empty network is a
pws-equilibrium for o — 28 < f. (b). The symmetric network of degree 1, g*, is a pws-
equilibrium for 0.41a — 168 < f < o —48. (c). The symmetric network of degree 2, g2,
is a pws-equilibrium for 0.32a — 465 < f < 0.41la — 22(3. (d). The complete network is a
pws-equilibrium for 0.32a — 565 > f.

This characterization of symmetric networks can be derived by computing the payoffs for each
player in the different networks. For example, II;(¢¢) = 0 while II;(¢¢) = 1.72a — 1085 — 3f.
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Similarly, IT;(¢') = o — 48 — f and II;(¢?) = 1.41a — 323 — 2f. The characterization follows

by verifying the equilibrium conditions using these payoffs.

We turn next to a complete characterization of asymmetric networks. (a). The dominant
group network with one isolated player is a pws-equilibrium for 0.32a—308 < f < 0.41a—183
while the dominant group with two isolated players is a pws-equilibrium for o —40 < f < a—
23. (b). The interlinked star network in which N1(g) = {i}, Na(g) = {j, k} and N3(g) = {I}
is a pws-equilibrium for 0.32a—420 < f < 0.32a—340; the interlinked star network in which
Ni(g) = {i,j} and Na(g) = {k,1} is a pws-equilibrium for 0.32cc — 563 < f < 0.32a — 4203.
The star network, however, is not a pws-equilibrium. (c). The “line” network, in which two
players have two links and two players have one link, is a pws-equilibrium for 0.41a — 223 <
f < 04la — 165. (d) The non-singleton component may be incomplete: the network with
one isolated player and the other three players in a star component is a pws-equilibrium for
0.41la — 148 < f < 0.41a — 104. A

Two observations follow from the above example. First, we see that symmetric networks
and highly asymmetric networks can coexist as equilibria under negative spillovers. This
is mainly due to condition (1) of negative spillovers: the marginal payoffs to players ¢ and
j from a link are adversely affected as the network becomes more connected; therefore, if
some players have established a large number of links, then they can deter other players from
forming links. Of course, if all firms are symmetrical with respect to links, then over some
cost range they will find it unprofitable to establish or delete a link. Second, we note that a
wide range of possible architectures can be supported as pws-equilibria. In fact, for the case
n = 4, all network architectures except the star can be sustained as pws-equilibria over some
cost range. In particular, the dominant group and the interlinked stars architecture, which
were equilibria under positive spillovers, continue to be equilibria under negative spillovers

as well.

We would like to gain a better understanding of the role played by the number of links of
the potential partner. In the process, we would like to differentiate more critically between

positive and negative spillovers by restricting the architectures that can be sustained as
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equilibria under the latter. To accomplish this, we now replace condition (1) of negative

spillovers with the following stronger condition:

Va. mig+gue+ 9ig) — milg + que) < milg+gi5) —mi(g), L =1i,j and k # i,

0. mi(g+ gk + gig) — 79+ aik) = milg+ i) —milg), Lk #1, ]

Condition (1*) states that the marginal payoffs of players i and j from establishing a link
are adversely affected if either ¢ or j gets more connected; however, the marginal payofts
are unafffected if players other than ¢ and j form or delete links. Therefore, in contrast
to condition (1), link formation by other players does not create negative externalities for
players i and j. We shall denote the combination of (1*), (2) and (3) as (NS*).!2 We
start with an example to show that condition (1*a) restricts the possible equilibria that can

emerge.

Example 4.2: Let the payoff function be given by:

mi(g) = ayni(g) — B ni(g) (32)

ki

The marginal payoffs are given by:

milg +95) — o) = a{\mlo) +1— (o)} —28n,(9) — 5 (33)

It can be verified that the above payoff function satisfies conditions (NS*). We now offer
a complete characterization all pws-equilibrium networks for the case n = 4.In the class of
symmetric networks: (a). The empty network is a pws-equilibrium for f > a — 3. (b). The
symmetric network of degree 1, g*, is a pws-equilibrium for 0.41a—38 < f < a—pB. (c). The
symmetric network of degree 2, g%, is a symmetric equilibrium for 0.32a— 58 < f < 0.41a —

12\We note that in the example with free-trade agreements (example 5 in section 5, below) the marginal
returns satisfy conditions (NS*) for neighborhood sizes, n;(g) = 7:(g9) +1 > 3 and n;(g) = n;(g) +1 > 1.

29



38. (d). The complete network is a pws-equilibrium for f < 0.32a—53. This characterization
result follows by noting that II;(¢¢) = 0, II;(¢!) = a — 38 — f, [;(¢%) = 1.4la — 128 — 2f
and II;(¢¢) = 1.72ac — 273 — 3f and then verifying the equilibrium conditions.

In the class of asymmetric networks, there are only two equilibrium architectures: (a). The
dominant group network with one isolated player is a pws-equilibrium for 0.32a — 3 < f <
0.41ac — 38. (b). The star network is a pws-equilibrium for 0.4la — 35 < f < min{0.32a —
B,a — 53}. In the dominant group network, the payoff to the player in the non-singleton
component is II;(g) = 1.41ac — 83 — 2f while that to the isolated player is I1;(g) = —124;
in the star network, the payoff of the central player is II;(g) = 1.72ac — 33 — 3f while the
peripheral players earn I1;(g) = o — 113 — f. The characterization result now follows from

the equilibrium conditions. A

We observe that in contrast to Example 4.1, the star network is a pws-equilibrium; on the
other hand, networks such as the interlinked star, or the dominant group with two or more
isolated players, are no longer equilibria in Example 4.2. We now examine the generality of

these findings.

Our first result establishes a general property of equilibrium networks under (NS*), which is

specially relevant for asymmetric networks.

Lemma 4.3 Consider any network g in which there exists distinct players i, j, k,l satisfying

gra =1 andni(g) < n;(g) < mg) < m(g) such that ni(g—gr1) < M(g—gr) andn;(g—gri) <
m(g—gra)- If g is a pws-equilibrium network, then for generic values of cost of link formation,

gi;j=1ing.

Proof Suppose not and let g; ; = 0. It follows that:

mi(g+ gig) —mi(9) = 79— grs + Gij) — 79 — Gr1)
m(9) — (9 — Gra)
f (34)

v

v
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where the equality follows from property (1*b) of negative spillovers and the first inequality
from property (3) since m(g — gr1) < m;(9 — gr1) and nk(g — gr1) < mi(g — grs); the final
inequality follows from the hypothesis that ¢ is a pws-equilibrium. This will be strict for
generic values of f. A similar argument holds for player j. Therefore, ¢ and j have an

incentive to form a link, contradicting the hypothesis that g is a pws-equilibrium network.A

Lemma 4.3 shows that if there are two or more unlinked players in N;(g), then players in
Ny(g9), ¢ > 1, cannot have links with each other. In particular, this implies that (localized)
negative spillovers rule out the “line” architecture and the interlinked stars architecture (for
|N,| > 2) as pws-equilibria. In the “line” network (with n > 4), we can find peripheral
players ¢ and j, and non-peripheral players k and [ such that 1 = n,(g) = 1;(9) < nx(9) =
m(g) = 2; however, g; ; = 0 and therefore g is not a pws-equilibrium. In the interlinked star
(for |N,,| > 2) network, there exists i € Ni(g), | € Niu(9), j € Ny(9), ¢ € {1,2,....m — 1}
and k € N,.(g9), r € {2,3,..,m}; therefore, the conditions of Lemma 4.3 are satisfied but
gi; = 0. However, if the central players have no link with each other but are connected only
to the peripheral players, then we have an “interlinked star-like” structure which may be a
pws-equilibrium. To see this, consider the payoff function of example 4.2 once again and let
n = 6. Consider the network where players 1 and 2 are linked to players 3,4,5 and 6 but
not with each other; the peripheral players 3,4,5 and 6 have no links with each other. This
network is a pws-equilibrium for 0.32ac — 50 < f < min{0.28« — 33,0.41cc — 73}. It is worth

noting that a star network cannot be ruled out on the basis of Lemma 4.3 because for any

Players iuju k7l7 with gkl = 17 Uz(g - gk,l) > nk(g - gk,l)-

One of the networks that has played a prominent role in the analysis so far is the dominant
group architecture, in which there is one non-singleton component and a set of isolated
players. More generally one can consider the class of networks in which there is a set of
isolated players. The above result has a direct implication for the size of the set of singleton
players: there is at most one singleton component in a (non-empty) pws-equilibrium network.
Suppose we consider the class of networks with one singleton player . What can we say about
the architecture of the network g_;? The next result derives an important property of this

network.
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Proposition 4.2 Suppose payoffs of every player satisfy (NS*) and suppose g is a pws-
equilibrium network. If g has a singleton component consisting of player i, then for generic
values of cost of forming links, f, the network g_; is symmetric. Moreover there is a unique

degree, ', for the network g_;, which can be sustained in a pws-equilibrium.

Proof We first show that the network g ; is symmetric. Suppose to the contrary that in
a pws-equilibrium network ¢ in which player ¢ belongs to the unique singleton component,
g_; is asymmetric. In the network g_;, there exists players j and [ with the minimum and
maximum number of links respectively such that 0 < n,(g) < n:(g). Since n > 4, there also
exists a player k in g_; such that n,(g) < nk(g9) < m(g) with g;, = 0 and gx; = 1. Since g is

a pws-equilibrium network:

me(9) — (g — gr) > 5 m(g) —m(g — gra) > f (35)

First consider player j and note that 7,;(g + ¢; ;) — m;(9) = 7;(9 — gk1 + 9ij) — 7(9 — Gry) >
(9 — s+ gix) — (9 — gry) > m(g) — m(g — gky) > f. The equality follows from property
(1*b), the first inequality from property (3) since 7;(9 — gr1) > 1;(9 — gk;), and the second
inequality from property (2) since 1,(g — gkt) > 1:(9 — gk,1); the final inequality follows from
(35) and will be strict for generic values of f. We can similarly establish for player ¢ that
mi(g + gij) — mi(g9) = Ti(g — grg + Gig) — mi(g — gr1) = (9 — Grp + gik) — (9 — Gr1) >
7k(9) — (g — gr,y) > f. The last inequality will be strict for generic values of f. Therefore,
players ¢ and j have an incentive to form a link. This contradicts the hypothesis that g is a

pws-equilibrium network.

We next show the uniqueness property. Let g be a pws-equilibrium network with player [ as
the singleton component. If n is the degree of symmetry, then we will denote this network
by ¢",. Since all players in ¢”, have the same number of links, pick any representative player
i. The marginal returns of this player from deleting a link with another player j in ¢”; can
be written as function of the degree of the network as ém;(n) = m;(¢9”,) — mi(g”, — gi ;). Note
from property (2) of negative spillovers that m;(¢", + gis) — mi(g”",) > m:(9", + gi) — m:(9",)

for any k # [ since k has more links than [. Therefore, if player ¢ has no incentive to form
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a link with the isolated player [, then ¢ will also not have an incentive to form a link with
player k # 1. Let Am;(n) = mi(g”, + gi1) — mi(g”,) denote the marginal returns to a player in
g", from adding a link with the isolated player. We will show that both Am;(n) and ém;(n)
are (strictly) decreasing in 7. Moreover, ém;(n) < Am;(n — 1).

First, we observe that in moving from g¢”; to gﬁlﬂ, the number of direct links of player ¢
with players other than [ increases by 1; therefore, by virtue of property (1*a) of negative

spillovers:

mi(g" "+ gia) — (g™ ) < mi(g"y + gia) — mi(g™). (36)

Also by virtue of property (1*a) of negative spillovers:

n+1 n

T — (g™ = giy) < mi(g") — mi(g", — gij)- (37)

(g%
Finally, we note that:

mi(g") — mi(9" = 9i5) < ml9" = g9ij + 9i0) — (9" — 9ij)
= mi(g" "+ gir) —mi(g™ ) (38)

where the first inequality holds due to property (2) of negative spillovers (since j is better
linked than [) and the equality holds due to property (1*b) of negative spillovers (since in
moving from ¢”, — g; ; to ng, the only links that are deleted are those of players other than
i and 1),

Let f be the cost of forming links and consider ¢g”,;. Since g is a pws-equilibrium, we must
have ém;(n) > f and Am;(n) < f. Now consider any 1’ # n. If ' > n, then f > Am;(n) >
om;i(n'), and players in gﬁll have an incentive to delete their links. Similarly, if ' < 7, then
Ami(rf) > 6mi(n) > f, and a player in ¢”, has an incentive to form a link with the isolated

player for generic values of f. This proves the result. A

We finally turn to the nature of symmetric networks that can be supported in a pws-

equilibrium. The following result summarizes our analysis for this class of networks.
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Proposition 4.3 Suppose that payoffs of every player satisfy (NS*). Given any generic cost
f > 0 of forming links, there exists a constant n(f) such that the symmetric network g"J) is

the unique pws-equilibrium network in the class of symmetric networks.

Proof: Since all players have the same number of links in a symmetric network, pick any
representative player i. Define Am;(n) = m;(¢" + ¢ ;) — mi(g") as the marginal returns from
adding a link and ém;(n) = m(g") — m (9" — ¢:;) as the loss in returns from a deleting a
link. We will show that both Am;(n) and ém;(n) are (strictly) decreasing in 7. Moreover,
Am;(n) < ém;(n) and Am;(n) = ém;(n + 1) for all 7.

First, we observe that in moving from ¢” to ¢"*!, the number of direct links of players ¢ and

j increase by 1; therefore, by virtue of property (1*a) of negative spillovers:

Ami(n+1) =m(g"" + Gij) — mi(g"h) < mi(g" + i) — mi(g") = 6mi(n). (39)

Also, by virtue of property (1*a) of negative spillovers:

6mi(n +1) = mi(g"™) — mi(g" — giy) < mi(g") — 9" — gi;) = omi(n). (40)
Further, we note that:
Ami(n) = mi(9") — m(9" — gij)

> mi(g" — gij + gix) — 7i(9" — 9ij)
> mi(g" + gix) —mi(g") = 6mi(n) (41)

where the first inequality holds due to property (2) of negative spillovers (since k is better
linked than j) and the second inequality holds due to property (1*a). Finally, we note using
property (1*b) of negative spillovers that:
Ami(n) = mi(g" + gig) —m(g") = m(g'+ i) — mi(g')
= m(g") = m(g"" — giy) = 6mi(n) (42)
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where ¢’ is obtained from ¢7 by adding for every player, other than ¢ and j, an additional

link. There are three possible cases to consider:
(i) f < émi(n—1).

In this case, the complete network is a pws-equilibrium because the players cannot add any
links, and have no incentive to delete any links. We now argue that no other degree can be
sustained as an equilibrium over this range of costs. Consider any degree n < (n—1). In ¢",

there will exist players ¢ and j such that g; ; = 0. However:

f<om(n—1) < Am(n) = mi(g" + gi5) — mi(g") (43)

Therefore, players ¢ (and by symmetry) j have an incentive to form a link; thus ¢” is not a

pws-equilibrium.
(i) f > Am;(0)
In this case, the empty network is a pws-equilibrium because players have no incentive to

add a link, and there are no links to delete. Consider any degree of symmetry n > 0. In ¢",

there will exist players 7 and j such that g; ; = 1. However:

> Am(0) > omi(n) = mi(g") — mi(g" — gi5) (44)

Therefore, players ¢ (and by symmetry) j have an incentive to delete their link; thus g7 is

not a pws-equilibrium.
(iii) ém(n — 1) < f < Am;(0)

In this case, we can find a degree 1 such that Am;(n') < f < ém;i(n'), where at least one
inequality is strict. Then ¢7 is a pws-equilibrium because players have no incentive to
delete their links, and, for values of f in the interval (Am;(n’), ém;(n’)), no incentive to form
additional links. Now consider any n # n'. If n > ', then f > Am(n') > émi(n), and

players in g" have a strict incentive to delete their links for generic values of f in the interval
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(Am;(n'), 6m;(n)). Similarly, if n < ', then Am;(n) > émi(n') > f, and unlinked players in g”
have an incentive to form a link for generic values of f in the interval (Am;(n), ém;(n')). This

proves the result. A

5 Applications

In this section we present some social and economic examples to illustrate the scope of the

analysis.

Example 1: Ré&D collaboration between Cournot competitors'®

Consider a homogeneous product Cournot duopoly consisting of n ex-ante symmetric firms
who face the linear inverse demand: p = o — > ,cn @i, @ > 0. Before engaging in quan-
tity competition, the firms can form collaboration links with other firms. A collaboration
link is an agreement to jointly invest in cost-reducing R&D activity. The firms are initially
symmetric with zero fixed costs and identical constant returns-to-scale cost functions. Col-
laborations lower marginal costs of production along the following lines: ¢;(g) = ~vo —1:(9),
i € N, where 7 is a positive parameter representing a firm’s marginal cost if it has no links.
In this case, firm i’s marginal costs are linearly declining in the number of links it has with

other firms.

Given any network g, the Cournot equilibrium output can be written as:

(o —0) +nymig) —vX;2m4(9)
(n+1) ’

%u(g) = ic N (45)
In order to ensure that each firm produces a strictly positive quantity in equilibrium, we
will assume that (a —70) + (n — 1)?y > 0. The Cournot profits for firm 7 € N are given by
mi(9) = @ (9).

13This example is taken from Goyal and Joshi (1999a).
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Given a network g, the marginal (gross) returns from forming an additional link are as follows:
mi(9+9i;) —mi(9) = ¢?(9+ gij) — ¢?(g). It can be verified that the Cournot output of firm i
is strictly increasing with each additional link: ¢;(¢+gi;) —¢:(9) = v(n—1)/(n+1) > 0.
Using this fact, it is easy to verify that m;(g + gi; + gix) — mi(g+gi;)mi(g+gi ;) —mi(g). Thus,
given a network g, the marginal returns to player ¢ from additional links are increasing in
the number of links. We now use our general results from section 3 to provide a complete

characterization of pws-equilibrium networks in this example.

First we note from Proposition 3.1 that a pws-equilibrium network has the dominant group
architecture. Recall that a dominant group architecture has at most one non-singleton
component which is complete and all the other players are isolated. Thus a dominant group
architecture is fully defined in terms of the size of the dominant group, k, where we will
allow k € {1,...,n}. In the non-singleton component of size k every firm should should have
no incentive to delete any subset of its links. In the present example, marginal payoffs from
links are increasing. So a strategy of retaining a strict subset of links is always dominated
either by the strategy of no links or the strategy of maintaining all the existing links. Thus
we only have to check if the payoff from the latter strategy is higher than the payoff from
the strategy of having no links.!* Therefore, the firm should have no incentive to delete all

its links. After some rearrangement, this requirement can be written as follows:

Y(k) = — 5 Rla—)+E-1)n+3-2k01] = f (46)

If the above condition is satisfied, a firm in the non-singleton component would always want
to form a link with an isolated firm. This is because the firm’s marginal payoffs are increasing
in its own links. Therefore, if g is stable, then the isolated firm should have no incentive to

form a link with a firm in the non-singleton component. This requires:

% [2(a=70) + (n = 1)y = 2k(k = 1)] < f (47)

14This analysis is drawn from our earlier paper, Goyal and Joshi (1999a).

X (k) =
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A network g¢* is an pws-equilibrium if and only if it satisfies (46) and (47). By inspection, we
see that X (k) is declining in k. Let X (n —1) = Fy. Regarding Y (k), it is initially increasing
and then decreasing in k. Now let F} =Y (n), F, = Y(2) = X(1), and F3 = Y (k*). Note
that Fy < Fy < Fy < F3. The functions X (k) and Y (k) are shown in Figure 4.

— Insert Figure 4 somewhere here —

Figure 4 illustrates the nature of pws-equilibrium architectures as the cost of forming links
f varies. When costs are low, i.e. f < Fp, the complete network is uniquely stable. When
costs are moderate, i.e. Fy < f < Fj, only networks with relatively large dominant groups
are stable. When costs are high, i.e. F} < f < F3, only medium size dominant groups
are pws-equilibrium (small and large groups are not sustainable). The empty network is
pws-equilibrium when f > F, and is uniquely pws-equilibrium for very high costs, f > F5.

Hence, the effect of R&D costs on the size of the dominant group is non-monotonic.

Example 2: Ré&D collaboration between local monopolies °

Consider n firms but now suppose that each of them is a monopolist and operates in a
market with linear inverse demand: p = a —¢;, «a > 0. As in example 1, firms can form
collaboration links with other firms. The firms are initially symmetric with zero fixed costs
and identical constant returns-to-scale cost functions. Collaborations lower marginal costs of
production in the following way: ¢;(g) = vo —v7:(g), ¢ € N where ~, is a positive parameter
representing a firm’s marginal cost when it has no links. In this case, firm ¢’s marginal costs
are linearly declining in the number of links it has with other firms. Given any network g,
the monopoly output is ¢i(9) = [(a —~0) +77:(9)]/2, i € N. The profits for a firm are given
by mi(g) = ¢?(g).'® For a given network g, the marginal returns to player i from a link g; ;

are given by:

15This example is adapted from Goyal and Moraga (2001). In that paper, there are no costs to forming
links, but firms choose cost-reducing effort level after forming links. By contrast, in the version presented
below every firm has some exogenously given useful information, but links are costly.

16We shall assume that v and n are small relative to «, so that the costs are always positive and the
optimum is well defined.
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g+ 0i5) — mlg) = 11200 = ) + 2ym(g) + 7 Ho (43)

Clearly, marginal payoffs are increasing in 7;(g), the number of links that firm i has. Propo-
sition ** implies that pws-equilibrium networks are either empty or have the dominant group
architecture. The precise range of archiectures depends on the value of f. We need to verify
two types of incentive constraints. The first set of conditions pertain to the incentives of the
players in the dominant group. Given the increasing returns property, we only need to check
the optimality of zero links as against all existing links. A player ¢ in the dominant group

(of size k) has an incentive to retain all links if:

a—+v(k-1)
9

]2—@—1vz[“‘%f (19)

This is equivalent to the requirement that f < 7[2(a — 70) + v(k — 1)]/4. Player i has
no incentive to form an additional link with one of the isolated players if f > ~[2(a —
) + 2y(k — 1) + ~]/4. Similarly, an isolated player has no incentive to form a link if
> v[2(e—"0) +7]/4. Thus it follows that a dominant group of size k is an pws-equilibrium
if and only if v[2(cx — 70) +7]/4 < f < [2(e —y0) + (k= 1)]/4.

Let Fy = v[2(a — ) + 7]/4 and F} = v[2(a — ) + v(n — 1)]/4. Figure 5 illustrates
the nature of pws-equilibrium architectures as a function of the cost of forming links. The
complete network is a pws-equilibrium when f < F; and is a unique pws-equilibrium for
very low costs, f < Fy. The empty network is a pws-equilibrium when f > Fj and is a
unique pws-equilibrium for very high costs, f > F;. The dominant group architecture for
k€ {2,3,....,n — 1} is a pws-equilibrium over the intermediate range, Fy < f < Fj. Over
this range, the dominant group architecture exhibits the following monotonicity property: as
the cost of forming links increases, only the larger-sized dominant groups are sustainable in
equilibrium. The intuition for this result is as follows: over the intermediate range of costs,
the incentive constraint for the firm in the dominant group to retain all its links is binding;
an increase in cost f requires that the size of the dominant group be large in order to ensure

that each member firm in the non-singleton component can profitably retain all its links.
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— Insert Figure 5 somewhere here —

Example 3: Patent races'’

Consider n firms who are racing to innovate a new product or process. The race is conducted
in continuous time. The firm which succeeds in innovating first wins a patent which prevents
the innovation from imitation or duplication for perpetuity. Let the discounted value of the
patent be V'; without loss of generality, we will use the normalization V' = 1. All other firms

get a payoff of 0. All firms use the same discount rate p.

All firms are inelastically endowed with one unit of R&D capability (or technical know-how).
Firms race to innovate by forming bilateral links with other firms; these links represent
agreements to mutually share R&D capability or technical information. Let 7(n;(g)) denote
the random time at which firm ¢ innovates in a network ¢ in which firm ¢ has established

n:(g) bilateral links. We assume that 7 has an exponential distribution:

Pr{r(ni(g)) <t} = 1—em0F (50)

As firm 7 establishes more links, it increases the probability of innovating successfully before
time ¢. In addition to this technological uncertainty, there is also market uncertainty: any of
the rival n — 1 firms may successfully innovate before firm 7. Assuming that the distribution
of the time of innovation is stochastically independent for the firms, the probability that firm

1 is the first to successfully innovates by time ¢ is:

Pr{r(ni(g)) € [t + dt], T(n;(9)) > tVj #i} = nilg)e " 2=y (51)

There are both benefits and costs from establishing bilateral links. The benefit to ¢ from
linking with j is that it increases the probability of ¢ innovating successfully before time t;

the cost is that the probability that j will innovate successfully before time ¢ also increases.

1"The formulation of patent races in terms of a memoryless dynamic process is due to Dasgupta and
Stiglitz (1980) and Loury (1979), among others.
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This tension between benefits and costs will determine the equilibrium architecture of the

network.

In the network g, the (expected) payoff to firm i is given by:

T‘-Z(g) - /0 e_ptni(g)e_t Zyzl nj(g)dt

ni(g)
p+ 51 mi(9) (52)

Let H(g) = X", n,(g). It is easily verified that:

p+ H(g) —2ni(g)
[p+ H(g)llp+ H(g) + 2]

mi(9 + 9i5) — milg) = (53)
Marginal profits are always positive, i.e. link monotonicity is satisfied. To see this, rewrite
the numerator of (53) as p + X Mk(9) — mi(g). It is implicit in (53) that g;; = 0. The
highest value that 7,(¢g) can assume in any network g with g;; = 0, and the lowest value
> ki Mk(g) can assume, is when i is the center of a star component with n — 1 firms (so that
ni:(g) =n — 2 and n,(g) = 1 for k # 4, j) and j belongs to a singleton component. But, in

such a network:

P
p+ H(g)llp+ H(g) + 2]

m@+mﬁ—m@)=[ >0 (54)
Noting that H(g + ¢;;) = H(g) + 2 for any g, it follows that marginal returns in the racing

model are decreasing in the number of links of player i:

p+ H(g+ gi;) — 2ni(g + 9:5)
lp+ H(g+gij)llp+ H(g+ gi5) + 2]

p+ H(g) — 2n:(g)
lp+ H(g) +2][p+ H(g) + 4]

< (g +gi;) —mi(g) (55)

mi(g+ g +9i5) —mi(g+9gij) =
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Finally, we note that for large p, the marginal returns display negative effects, i.e., m;(n;(g) +
Lg_i)—mi(ni(g),9-:) > mi(ni(g)+1,9",;) —mi(ni(g9),g",;) for ¢", > g_;. Recall that the general
results obtained in section 3 tell us that in the presence of decreasing returns and negative
spillovers, equilibrium networks can have a variety of architectures. We illustrate this with
the help of an example with 3 firms. In this case there are four possible network architectures,
the empty network (with zero links), the complete network (with three links), the partially
connected network (with one link) and the line network (with two links). We suppose that
p > 2 to ensure that negative spillovers obtain. The payoffs under the different networks are
given as follows: m;(g¢) = 0, for alli € N; m;(9¢) = 2/(p+6), for alli € N; m;(g') = 1/(p+2),
for the firms with a link and 7;(g!) = 0 for the isolated firm; m;(g?) = 1/(p+4), for the firms
with one link and 7;(¢g?) = 2/(p + 4) for the firm with two links. It is now straightforward
to obtain the following characterization: If f > 1/(p + 2) then the empty network is a pws-
equilibrium; if p/(p + 2)(p +4) < f < 1/(p+ 2) then the partially connected network is a
pws-equilibrium; if (p+2)/(p+4)(p+6) < f < p/(p+2)(p+4) then the line network is
a pws-equilibrium, while if f < (p+2)/(p+ 4)(p + 6) then the complete network is a pws-
equilibrium. Thus each of the four possible architectures is a pws-equilibrium under suitable

parameters.

While we know that symmetric equilibrium networks do not overlap, an interesting question
is whether symmetric and asymmetric networks can be sustained as equilibria over the same
range of costs? The answer is in the affirmative, as can be seen with an example with 4
players. The symmetric network of degree 2 is a pws-equilibrium for n = 4 over the range
(p+4)/(p+8)(p+10) < f < (p+4)/(p+6)(p+8). Assuming that p > 2, three asymmetric
networks can be sustained as equilibria over subsets of this range of costs. For example, the
dominant group network with one isolated player and the line network are pws-equilibria for
(p+2)/(p+6)(p+8) < f<(p+4)/(p+6)(p+8). The interlinked star, with N;(g) = {1},
Ny(g9) = {2,3} and N3(g) = {4}, is a pws-equilibrium for (p +4)/(p+8)(p + 10) < f <
(p+2)/(p+6)(p+8). Therefore, symmetric networks can coexist as an equilibrium with a

variety of asymmetric architectures.
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Example 4: Provision of a pure public good'®

There are n persons, each of whom is deciding on what output share, z; to produce of a pure
public good. Given each person’s output, the utility of person 4 is: u;(z) = z; 4+, x;. A
collaboration link between two persons can be interpreted as an agreement to share knowledge
about the production of a public good. Let f > 0 be the fixed investment required from
each person in such a link. In any network ¢ in which person i has a neighborhood of size

ni(g) = ni(g) + 1, the cost of producing output z; is given by:

1 i\’

ate) = 3 (2] (56)
2 \ni(g)

Given any network g from the first stage, person ¢ will choose output to maximize utility net

of production costs. This yields an optimal output of z;(g) = n?(g). Therefore, the reduced

form gross payoff of person 1 is:

o) = goilo) + Toilo (57)

The marginal returns to person 7 from an additional link g; ;, can be written as follows:

79 +gi5) ~7lg) = 5 +nilg) +2n,(g). (58)

We note that the marginal payoffs to person ¢ from a link g;; are increasing in the size of
his own neighborhood, n;(g), and they are also increasing in the number of links person j
has, n;(g). Finally, note that the marginal payoffs are insensitive to to the links between
third parties. This example thus satisfies the requirements of positive spillovers. We now use
our analysis of positive spillovers from section 4 to obtain a characterization of equilibrium

networks in this case.

18This example is a networks version of the public good problem presented in Bloch (1997); that paper
studies the formation of coalitions.
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First, it follows from Proposition 4.1 that a pws-equilibrium network is either empty or has
a unique non-singleton component. Moreover the non-singleton component has the inter-
linked stars architecture or is complete. In the following result we characterize the conditions
under which different types of interlinked stars and dominant groups of different sizes can
arise in equilibrium. We need some additional notation to state this result. We shall consider
interlinked stars with two types of players, those who are linked to everyone and a second
group of players who are only linked to this former set. Recall that Ny, (g) (N1(g)) is the
collection of players which has the largest (smallest) number of links in a network g. For the
class of inter-linked stars that we are looking at, we can set m = |N,,(g)| and n—m = | N1(g)|-
Also define z,, = (n+1)/2+(m—1)(2n—1)/(n—1)+(n—m)(2m+1)/(n—1), Y, = m/2+2n,
and z,, = 3m + 9/2.

Proposition 5.1 (a) An inter-linked star with |N,,(g)| = m, where m € {1,2,..,n — 2}, is
a pws-equilibrium if and only if z, < f < min{x,, yn}. (b) A dominant-group network of
size k, where k € {2,...,n — 1} is a pws-equilibrium if and only if 7/2+ k < f < 5k/2—1/2.
The complete network is a pws-equilibrium if f < 5n/2 — 1/2, while the empty network is a
pws-equilibrium if f > 9/2.

Proof: (a) Denote an interlinked star with |NV,,(¢g)| = m and |Ny(g)| = n —m by ¢™°. For
such a network to be a pws-equilibrium it must be the case that (i) each player ¢ € N,,(g)
has no incentive to delete any subset of his links (ii) each player j € Ni(g) has no incentive
to delete any subset of his links and also has no incentive to form an additional link with any
another peripheral player k € N;(g). We note first that for a given network ¢, the marginal
returns to a player ¢ from a link g; ; are given by 3/2 + n;(g) + 2n,(g). It therefore follows
that for any player it is optimal to have either zero links or maintain all the existing links.

Let player n be a typical member of N,,(g). Then we require that:

n?+ (m—1n*+ n—-m)(m+1)>—(n—1)f
+ (m—1)(n—1)* + (n —m)m* = [,(g™) (59)

—n
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Rewriting, we find that that this is equivalent to the requirement that:

1)+ (m—;)£2T—1) . (n—n;)£21n+1) e (60)

f<

N —

Similarly, we can verify that for a peripheral player the condition that he has no incentive

to delete any links is given by
1
f<gmtom=y, (61)

Finally, the requirement that the peripheral player has no incentive to form an additional

link with another peripheral player is given by

9
f23m+§:zm (62)

It then follows that an inter-linked star ¢™* with m € {1,2,..,n — 2} is a pws-equilibrium if
and only if z,, < f < min{z,, ym }. We note that if m = 1, i.e., for the star, these conditions
are simultaneously satisfied if 15/2 < f < (n 4 1)/2 + 3; this interval is non-empty so long
as n > 9. Figure 6 illustrates this pattern.

(b) Suppose that 1 < k < n. In that case, we need to examine the incentives of players to
both form additional links as well as delete existing ones. We first check the incentives of a
player i in the dominant group. Again, from positive spillovers, it follows that we only need
to compare the payoffs from retaining all links and not forming any links. This constraint

is:

%k2+(k—1)k2+(n—k)—(k—l)fz%+(k—1)(k—1)2+(n—k) (63)

Simplifying, we arrive at the following inequality: f < 5k/2 — 1/2. The marginal returns to
player i from an additional link with player j who is a singleton are given 3/2+k+2. Similarly,
the marginal return to player j from forming such a link with player ¢ are given by 3/2+14-2k.
Clearly, we require that f > min{7/2+k,5/2+2k}. We note that 7/2+k < 5/2+ 2k for all
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k > 1. Finally, we require that two singleton players should not have an incentive to form
a link. This is equivalent to the requirement that f > 9/2. Clearly the incentives to form a
link for players 7 and j dominate the incentives to form a link between two singleton players.
This is a consequence of the positive spillovers property. Thus for a fixed f, a dominant
group architecture g* is pws-equilibrium if and only if 7/2 + k < f < 5k/2 — 1/2. We note
that the interval is non-empty for k£ > 3.

We next examine the complete network, where £ = n. In this case, we only need to check
if a player has incentives to maintain all links. This is equivalent to the requirement that
f <5n/2—1/2. Finally, we check the empty network, where & = 1. In this case, we require
that no player has an incentive to form a link. This is equivalent to the requirement that
f >9/2. Figure 7 illustrates this pattern. A

— Insert Figures 6 and 7 somewhere here —

In a recent paper Yi (1997) studies coalition formation under different rules for a similar
public good setting. Yi finds that coalitions of unequal size will be stable under different
rules. Our finding is that equilibrium networks are either dominant groups or inter-linked
stars.The results from the coalition approach and our findings are similar in that asymmetric
structures emerge. However, the precise structures we obtain are very different. For instance
we find that the star network is an equilibrium in a large class of cases, while this network
is ruled out in the coalition framework.

Example 5: Free trade agreements among countries!’

Suppose there are n countries. In each country there is one firm producing a homogeneous
good and competing as a Cournot oligopolist in all countries. We let the output of firm 5 in
country 7 be denoted by Q;’ The total output in country ¢ is given by Q; = > cn Q;’ In

each country ¢ € N, a firm faces an identical inverse linear demand given by:

19Tn an earlier paper, Goyal and Joshi (1999b) we considered a setting where links between countries are
interpreted as free trade agreements. In that paper the links were costless; by contrast, in the present paper,
we assume that links are costly and the focus is on the relation between returns and these costs of forming
links.
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P=a-0Q;, a>0 (64)

All firms have a constant and identical marginal cost of production, v > 0. We assume that
a > «. Let the initial pre-agreement import tariff in each country be T' > «a. Countries
can form agreements which lower the tariff to 0. The natural interpretation of such an
agreement is as a bilateral free trade agreement. We suppose that tariffs remain prohibitively
high between countries that do not have a bilateral free-trade agreement. The assumption
that T' > « ensures that a firm i sells in country j if and only if there is a trade agreement
between the two countries. Therefore, n;(g) = 7;(g) + 1 is the number of firms active in
country ¢ given the network g. If firm ¢ is active in market j, then its output is given by

Q% = (a—~)/(n;(g) + 1). The social welfare of country i is given by:*’

Si(g) = %lerr ¥ lﬂr (65)

ni(g) +1 jeNi(9) n;(g) +1

The marginal return from an additional free trade agreement is given by:

Silg+9) — Silg) = %[(a—v)(m(g)ﬂ)] .

42 l(a—v)m(g)rJr [LVZF

ni(g) +1 ni(g) +

(66)

a—ry a—y
ni(g) +1 n;(g) +2
20 An important concern in the literature has been the negative effects of (regional and bilateral) free-trade
agreements on third parties. One aspect of this effect is “concession diversion”. The above expression allows
us to examine the nature of concession diversion explicitly. Fix a network g and a country i. Consider
a country j € N;(g). The firm from country j earns profits (a — v)?/(n;(g) + 1)? from its operations in
country i. Now consider what happens when country i forms an additional bilateral trade agreement with,
say, country k. This allows the firm of country %k to enter the market of country 4, thus raising the level of
competition. In this new network g + g;x, the profits of country j firm from its operations in country ¢ are
given by (o —v)2/(ni(g) + 2)%. Suppose that j ¢ Ni(g). It follows that profits from all other operations
remain the same. Thus the effect of this additional free trade agreement between country ¢ and country k
on the profits of firm j is given by (a —v)?/(ni(g) +2)? — (o —v)?/(ns(g) + 1)2. This term is negative: this
is the measure of concession diversion created by the new bilateral free-trade agreement and therefore the
extent of negative spillovers that a link creates on a countries other trading partners.
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Simplifying the above expression, we get:

1
2(ni(g) +2)*(ni(g) +1)

Si(g+ gij) — Si(g) = (@ —7)? S{2ni(g) — 5} + (67)

(n;(g) +2)

The marginal payoff of country ¢ from link g, ; is sensitive to the number of links that country
i has as well as the number of links that country j has. In particular, the marginal payoff

is declining with respect to n,(g), for n;(g) > 3, and declining with respect to n;(g), for
n;(g) > 1.

We now offer a characterization of all pws-equilibrium networks for the case where n = 4.
Without loss of generality, we will let (o« — )? = 1. (a). The complete network is a pws-
equilibrium for f < 0.056. (b). The symmetric network of degree 2 is a pws-equilibrium for
0.056 < f < 0.073. (¢). The empty network is a pws-equilibrium for f > 0.069. (d). The

dominant group network with one isolated player is a pws-equilibrium for 0 < f < 0.073.

6 Conclusion

It is widely felt that connections matter both at the individual level as well as in the ag-
gregate. In particular, well-connected individual entities are seen to be at an advantage as
compared to their less connected cohorts. In this paper, we present a strategic model of link
formation to explore the circumstances which give rise and may support unequal connections

across individual players.

In particular, we consider a class of network formation games in which payoffs from links are
related to the ‘local’ structure of the network — the number of links of the individual player
in question and the number of links of his partners. Our analysis derives relations between
the shape of the marginal payoffs function and the architecture of equilibrium networks. We
find that relatively simple and general restrictions on the marginal payoffs lead to sharp

predictions with regard to the architecture of equilibrium networks. In particular, we find
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that if marginal returns are increasing with respect to the number of links of a player then
equilibrium networks will typically be asymmetric, with players having different number of
links and correspondingly different payoffs. We are able to characterize the architecture
of these asymmetric networks fairly tightly: they have the dominant group structure, with
a group of players which is fully connected and a complementary group which consists of
individually isolated players. By contrast, if marginal returns from links are decreasing, then
only moderate levels of inequality in connections can be sustained in equilibrium. These
differences are accentuated once we allow for spillovers across links and make individual
payoffs contingent on the number of links of the partners. In case of positive spillovers, in
addition to the dominant group, we now see the emergence of star-like structures (where
some players are fully connected while others are peripheral and have links with these fully
connected players only). By contrast, in the case of negative spillovers, symmetric structures

figure prominently.
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