
DEFINABLE AND CONTRACTIBLE CONTRACTSMICHAEL PETERS AND BALÁZS SZENTESAbstrat. This paper analyzes Bayesian normal form games in whih players write ontratsthat ondition their ations on the ontrats of the other players. These ontrats are requiredto be representable in a formal language. This is aomplished by onstruting ontrats whihare de�nable funtions of the Godel ode of every other player's ontrat. We provide a ompleteharaterization of the set of alloations supportable as pure strategy Bayesian equilibrium of thisontrating game. When information is omplete, this haraterization provides a folk theorem.In general, the set of supportable alloations is smaller than the set supportable by a entralizedmehanism designer.1. Self Referential Strategies and Reiproity in Stati GamesIn this paper we haraterize the alloation rules attainable by players in a Bayesian game whenthey have the ability to ommit themselves by writing ontrats that ondition their ommitmentson other players' ontrats.The idea that ontrats might ondition on other ontrats is not new in eonomis. The bestknown expression of this idea is well known in the industrial organization literature (e.g. [11℄) asthe 'meet the ompetition' lause in whih one �rm ommits itself to lower its prie when any of itsompetitors does. A similar idea appears in trade theory as the priniple of reiproity ([2℄). Thistakes the form of trade agreements like GATT that require ountries to math tari� uts by otherountries. Finally, tax treaties sometimes have this �avor - for example, out of state residents whowork in Pennsylvania are exempt from Pennsylvania tax as long as they live in a state that has a'reiproal' agreement that exempts out of state residents (presumably from Pennsylvania) fromstate taxes.1All of these approahes are used to support ooperative outomes in stati games. We extend thisapproah to games with inomplete information. We provide a full haraterization of alloationssupportable as ontrat equilibrium. In partiular, we show the limits of the 'ontrats on ontrats'approah by providing alloations supportable by a mehanism designer whih annot be supportedas equilibrium with ontratible ontrats. We also use our Theorem to provide something thatlooks like a folk theorem for a restrited environment.The di�ulty with extending the older literature is that the oneptual and tehnial toolsdeveloped there an only be used in any but the simplest problems. The meet the ompetitionVersion - January 22, 2009.1http://www.revenue.state.pa.us/revenue/wp/view.asp?A=238&Q=2446811



2 MICHAEL PETERS AND BALÁZS SZENTESargument, for example, is extremely stylized. The Stakleberg leader, all it �rm A, o�ers to sell ata very high prie provided its ompetitor, �rm B, also o�ers that high prie in the seond round. If
B in the seond round o�ers any prie below the highest prie, A ommits itself to sell at marginalost. If B believes this ommitment, then one best reply is to set the highest prie.If the �rms move simultaneously, then the logi of the argument beomes louded. A ouldertainly write a ontrat that ommits it to a high prie if B sets the same high prie. Howeversuppose that B's strategy is simply to set this high prie and that for some reason this is a best replyto A's ontrat. Then A should deviate and simply underut �rm B. To support the high prieoutome, �rm B would have to o�er a ontrat similar to A's in order to prevent A's deviation. Anaive argument would suggest that B should simply o�er the same ontrat as A, a high prie if Asets a high prie, and marginal ost otherwise. Casually, two outomes seem onsistent with theseontrats - both �rms prie at marginal ost or both �rms set the high prie. This seems to violatea fairly fundamental property of game theory whih is that for eah pair of ations (ontratsin this ase), there is a unique payo� to every player.2 More to the point, A's ontrat doesn'tatually say what A would do if B o�ers a ontrat that promises to set a high prie unless A setsa lower prie, et. The spei�ation of the problem itself seems to be ambiguous about payo�s.Generally ontrats that reat to ations of other players simply don't make sense. They maynot lead to unambiguous outomes as in the example above. More generally, it is possible thatsuh ontrats are simply ontraditory. For example, two �rms might write ontrat that ommitboth of them to set a prie that is stritly lower than the other �rms prie (or two eonomistsdemand ontrats that guarantee that they will both earn more money than anyone else in thedepartment). To resolve ambiguities and ontraditions in suh ontrat, an outside mediator isneeded to hoose an outome. This defeats the purpose of using ontrats to deentralize theunderlying alloation problem.The reiproal tax agreement problem is better behaved, and provides the basis for the argumentwe extend below. State A wants to exempt residents of stateB from state taxes providedB exemptsresidents of state A from taxes. To write the law A exempts residents from any state that has a'reiproal' agreement with state A. The question is what exatly is a 'reiproal' agreement. Itis lear enough what the intention is - reate a situation in whih both states take the mutuallybene�ial ation of exempting one another in a way that eliminates any inentive for either of themto deviate. As mentioned above, it isn't enough to assume that state B unonditionally exemptsresidents of state A from tax beause A would not longer have any inentive to exempt state B.State B has to have a law like the law in state A, in other words, a reiproal agreement.

2One paper that allows multiple payo�s to be assoiated with eah array of ations is [12℄ who use this approahto support equilibrium when it might not otherwise exist.



DEFINABLE AND CONTRACTIBLE CONTRACTS 3It seems that to resolve this kind of problem one needs to de�ne the term 'reiproal ontrat'as follows:reiproal ontrat ≡ exempt if the other state o�ers a reiproal ontrat,don't otherwiseThis kind of de�nition is familiar from the Bellman equation in dynami programming where thevalue funtion is de�ned in a self referential way. It is tempting to model this in the following naiveway: start by de�ning a olletion of ontrats that seem eonomially sensible. For example, it isreasonable that a state ould write a ontrat that simply �xes any tax rate independent of whatthe other states do. Let C be the set of ontrats that simply �x some unonditional tax rate.Append to this set of feasible ontrats the reiproal ontrat, all it r, de�ned above. Now modelthe set of feasible ontrats as C ∪ {r}. The reiproal ontrat above is just r, while 'otherwise'means any ontrat with a �xed tax rate. De�ne a normal form game in whih the strategies are
C ∪ {r} and delare the outome if both states o�er r to be (exempt, exempt). Then there is anequilibrium in whih the states mutually exempt (assuming they jointly want to).We would argue that this is unsatisfatory for a number of reasons. First, it is undesirable torestrit the set of feasible ontrats in order to support the outome you are looking for. Theapproah desribed above amounts to little more than saying that r is the only feasible ontrat,then laiming it is an equilibrium for both states to o�er r. A more satisfatory approah isto de�ne a set of ations that seem eonomially meaningful, then to allow the broadest set ofontrats possible. In the same manner that the value funtion emerges endogenously from theeonomi environment, the reiproal ontrat should be derived from eonomi fundamentals.Seond, the approah desribed above misses the essene of reiproity whih is the in�niteregress involved in self referential objets. A ontrat that makes formal sense is the following:C =




exempt if other State exempts any State who exempts any State who exempts. . .don't otherwisewhere the statement in the top line is repeated ad in�nitum. Arguably, the ontrat C is areiproal ontrat sine it would exempt any State o�ering a reiproal ontrat. Yet it simplyisn't feasible under the naive desription given above.Finally, the ad ho approah desribed above simply isn't �exible enough to handle omplexenvironments and inomplete information. For example, making the game asymmetri requires adho extension of the approah above. If State A is supposed to exempt, while state B is supposedto take some other ation, say 'partly exempt', then to support the right outome, the ontratsshould look something like the following:reiproal ontratA ≡




exempt if other State o�ers reiproal ontratBdon't exempt otherwise



4 MICHAEL PETERS AND BALÁZS SZENTESand reiproal ontratB ≡




partially exempt if other State o�ers reiproal ontratAdon't exempt otherwiseNow the ontrats are not diretly self referential, as is the Bellman equation, instead they are rossreferential. A single self referential or reiproal ontrat simply doesn't go far enough. Further-more, the ontrats above de�ne only a single ooperative ation, and use a blanket punishmentfor deviations. Desirable or interesting equilibrium alloations may not look like this. For example,in a general Bayesian game, the most desirable ooperative ation for both players might dependon information that only one of them has. So the ation that State A wants to take might dependon the ontrat that B o�ers. Alternatively, the most e�etive punishment for A to impose on Bmight depend on ations that other states are taking. As the number of possibilities inreases,so does the number of speial words we need to add to our ontrating language to support theoutomes we want.Our approah avoids these problems. We �x a language and require ontrats to be written inthis language. We then show this language already ontains all the speial terms like 'reiproalontrat' that we need, even in very rih eonomi environments where simple notions like 'oop-eration' do not adequately desribe the alloations we are interested in. The ontrating languagethat we desribe is universal in this sense.It is universal in a seond way. Allowing ontrats to speify ations that depend on otherontrats means that ations might depend on whether other players' ontrats depend on theway you make your ation depend on their ontrats, the way you make your ation dependon how their ontrats depend on the way you make your ontrat depend on their ontrats,and so on. In simple prisoner's dilemma problems like the tax problem disussed above, thisproblem is relatively straightforward sine 'dependene' simply means whether or not the otherplayer ooperates. However, in riher environments, 'dependene' is more subtle sine there aremany di�erent ways that players an ondition their ations at eah round in the hierarhy ofdependenies desribed above. The method we desribe below provides a ompat way of dealingwith this.Finally, the Bellman equation style representation of a reiproal ontrat illustrates that thenotion of reiproity depends on the ontrating environment beause the word 'ooperate' appearsin the de�nition of a reiproal ontrat. It isn't obvious how to extend the argument to problemswhere a single 'ooperative' ation doesn't exist. The set of ontrats that we use, on the otherhand, is independent of the underlying game that is being played. Contrats need to map intofeasible ations, but the way that these ations depend on other ontrats doesn't depend on whatthese ations are. Nor does it depend on whether or not players have private information. In thissense, our ontrats are universal in the sense that they an be applied to any strategi situation.



DEFINABLE AND CONTRACTIBLE CONTRACTS 51.0.1. How De�nability Works. Return again to the main purpose of de�nability. Instead of re-ating speial terms like �reiproal ontrat� in an ad ho way to support ooperative outomes inspeial situations, we want to provide a ontrating environment in whih we an show that thespeial terms we need to write the ontrats that players need to enfore their ollusive agreementwill always exist within the language. We do it here to illustrate the method for the very simplease, then generalize the approah in the setions below.Suppose there are m players in a normal form game in whih eah player has a ountablenumber of ations. Endow players with a formal language ontaining a ountable number ofwords or haraters that they an use to write ontrats. Feasible ontrats are �nite sequenes ofharaters in this formal language. As we mentioned above, the set �nite subsets of a ountableset is ountable, so there are bijetions mapping eah �nite text into N. One suh a mapping isalled the Godel Coding. Provided the language inludes all the natural numbers and the usualarithmeti operations, it is possible for players to write ontrats that are de�nable funtions from
NN−1 into that player's ation spae. Sine de�nable funtions an be written as �nite sequenes ofharaters in the language, they have Godel odes assoiated with them. Hene we ould interpretthe de�nable funtions as ontrats that make the players ation depend on the Godel ode of theother player's ontrat.To make the argument easier to relate to onventional ontrat theory, we assume below thatthe ontrat spae for eah player is the set of de�nable funtions from NN−1 into the subsetsof the player's ation spaes. Every de�nable funtion an be assoiated with a unique integer,and onversely if the integer n is assoiated with a de�nable funtion, then it is assoiated witha unique text. Now for eah array of funtions hosen by the players, ompute the Godel Codeof eah suh funtion. Fit the odes of the other players' strategies into eah player's strategy todetermine a unique subset of ations for every player. Then, players simultaneously take ationsfrom these subsets.Our objetive is to try to haraterize the set of equilibria of this game. To see how it works,we might as well restrit attention to a two player prisoner's dilemma. As we illustrated above, wedon't really need our formalism to understand this game. However, it provides a simple illustrationof the methods we use in the general ase. Call the players 1 and 2, and the ations C and D withthe usual payo� struture in whih D is a dominant strategy and both players are stritly bettero� if they both play C than they are if they both play D. A strategy c for a player is a de�nablefuntion from N to {C, D}. One obvious equilibrium of this game ours when both players use astrategy that hooses ation D no matter what the Godel ode of the other player's strategy.Every de�nable funtion has a Godel ode. Let [c] denote the Godel ode of the strategy c andrefer to [c] as the 'enoding' of c. Sine the Godel oding is an injetion from the set of de�nablestrategies to the set of integers. For any pair of strategies c1 and c2, the ation (C or D) taken byplayer 1 is c1 ([c2]) and similarly for player 2. Sine every pair of ations determines a payo�, thisproedure assoiates a unique payo� with every pair of strategies.



6 MICHAEL PETERS AND BALÁZS SZENTESThere are many things that aren't de�nable strategies that also have Godel odes. We want tomake use of some of these other things. In partiular, we want to use de�nable strategies with freevariables. For example, there is a sublass of de�nable strategies for player 1 de�ned parametriallyby
γx (n) =





C n = x,

D otherwise.This is simply a de�nable strategy with a free variable x, where x is the target ode of the otherplayer's strategy that will trigger the ooperative ation. De�nable strategies with free variablesare also de�nable, and so they too have Godel odes. The strategy with free variable that we wantis a slight modi�ation of the one above, in partiular(1.1) cx (n) =





C n =
[
〈x〉(x)

]
,

D otherwise.The mapping < x >(x)is the omposition of two funtions. First, the funtion 〈x〉 is the inverseoperation to the Godel oding. That is, < n > is the text whose Godel ode is n. Seond, if φ isa text with one free variable, then φ(n) is the same text where the value of the free variable is setto be n. Hene, if n is a Godel ode of a de�nable strategy with one free variable, then < n >(n)is itself a de�nable strategy (without a free variable). [〈n〉(n)
] is just the Godel ode of whateverthis de�nable strategy happens to be. Notie that in this ase, [〈x〉 (x)] won't be equal to x sine ade�nable strategy must have a di�erent Godel ode from a de�nable strategy with one free variablebeause of the fat that the Godel oding is injetive.We want to de�ne a strategy by �xing a value for x in (1.1). In partiular, the value of x weare interested in is [cx]. Sine [cx] is the Godel ode of a strategy with a free variable, the righthand side of (1.1) requires that we deode [cx] to get cx, then �x x at [cx] to get the ontrat c[cx].Putting all this together gives

c[cx] (n) =





C n =
[
c[cx]

]

D otherwiseSo
c[cx] ([c2]) =





C [c2] =
[
c[cx]

]

D otherwiseis a the 'reiproal' or self-referential ontrat mentioned above. Now we simply need to verifywhat happens when both players use strategy c[cx].If player 2 uses strategy c[cx], then [c2] =
[
c[cx]

], whih evidently triggers the ooperative ationby player 1. The same argument applies for player 2. Player 2 an deviate to any alternativede�nable strategy c′ that she likes. Sine every de�nable strategy has a Godel ode, the reation ofplayer 1, and onsequently both players payo�s are well de�ned. As the Godel oding is injetive,



DEFINABLE AND CONTRACTIBLE CONTRACTS 7
c′ 6= c[cx] implies the Godel ode of c′ is not equal to [c[cx]

], and the deviation by 2 indues 1 torespond by swithing from C to D.Notie that this argument makes use of an enoding of the strategy with free variable cx, whihisn't a de�nable strategy. One might have expeted the target ode number to be assoiatedwith a strategy instead of a strategy with a free variable. For example, it seems that to enforeooperation there needs to be a de�nable strategy c∗ with enoding [c∗] = n∗ suh that
c∗ =





C [c2] = n∗

D otherwiseOf ourse, for arbitrary n∗ it will be false that [cn∗ ] = n∗. This leads to a �xed point problemthat, in fat, does not have a solution in general. More generally, one ould try to onstrut aself-referential ontrat by �nding a �xed point of the the following problem. For eah n, onsider
cn ([c2]) =





C if [c2] = g (n) ,

D otherwise,where g is a de�nable funtion. If there exists an n∗ suh that [cn∗ ] = g (n∗), then cn∗ is obviouslya self-referential ontrat. Indeed, what we did above is that we hose g (n) to be [< n >(n)] andshowed that n∗ = [cx] is a orresponding �xed point.To see how the strategy with free variable cx works, reall the reiproal tax agreementreiproal ontrat ≡ exempt other State o�ers reiproal ontratdon't exempt otherwiseand its reursive ounterpartC =




exempt if other State exempts any State who exempts any State who exempts. . .don't otherwiseThe 'reiproal ontrat' is c[cx] and the statement �other state o�ers reiproal ontrat� is [c2] =[

c[cx]

].State A wants to exempt any state whose law ful�lls a ondition. For example, if the onditionit is looking for is that the other state simply exempts State S, then it would ompute the Godelode n0 = [C∀n] then use the strategy
cn0

=





C [c2] = n0

D otherwiseIf it does that, then it an't be an equilibrium as explained above. So what it needs to do isto exempt any State whose law ful�lls a ondition that exempts any state whose law ful�lls aondition. For example, if it wanted to exempt State B if and only if State B's law exempts state
A if and only if State A unonditionally exempts state B, then it would adopt the strategy c[cn0 ]

,and so on.



8 MICHAEL PETERS AND BALÁZS SZENTESThis is where the partiular struture of the ontrat cx omes into play. Reall that
cx (n) =





C n =
[
〈x〉(x)

]
,

D otherwise.It spei�es exemption if and only if a ondition is ful�lled, but it doesn't seem to speify what theondition is. However, it does require that whatever the ondition x is, if x in turn depends ona ondition, then the ondition that it depends on must be the same as the ondition itself. Tosee if x depends on a ondition, we �rst deode it and �nd the statement 〈x〉 that the integer xorresponds to. Then if it depends on some ondition, we require that that ondition be x itself,whih is the meaning of 〈x〉(x). So now we an do the in�nite regress. State A adopts a law thatexempts state B if and only if the Godel ode of State B's law is [c[cx]

]. This means that state
B's law must be c[cx], or that B exempt A if and only if the Godel ode of State A's law is [c[cx]

],i.e., the same ondition that A requires.Every olletion of de�nable ontrats uniquely determines a set of ommitments for eah of theplayers. Any sensible desription of the set of feasible ontrats should unambiguously determineplayers' ommitments in this way. We aomplish this by making the ontrats arithmeti. Theset of de�nable funtions is the largest set of arithmeti funtions that an be desribed usinga �nite text in a �rst order language. In this sense, the lass of ontrats that we desribe isuniversal in that any 'sensible' model of ontrats on ontrats should involve a ontrat spaethat is embedded in the one we desribe.2. LiteratureAs we mentioned in the introdution, our paper is not the �rst to show how ontratual deviesan be used to support ooperative play. Muh of the literature in this area follows an ideadeveloped in [5℄ in whih ations are delegated to an agent who is given the appropriate inentivesto arry out ations that might not otherwise be part of a non-ooperative equilibrium. This ideawas developed by [8℄ who used it to prove a 'folk theorem' for a very speialized environment.The idea that the agent might be used to report deviations, thereby allowing prinipals to ommitthemselves to punish a deviator, is developed in [4℄. This idea provides the basis for the menutheorems in ommon ageny, like [9℄, [10℄ and [6℄ whih illustrate how ooperative outomes anbe supported by having the agent trigger punishments. Reently [14℄ provides a very general folktheorem for multiple ageny games in whih prinipals an ommit to follow the reommendationsof (potentially interested) agents.Though this literature shows how ontratual devies an be used to support ooperative be-havior, it relies on the delegation of deision making power to an agent. In this paper, there isno agent, beause ontrats depend diretly on one another. This approah is losely related toideas in the omputer siene literature. One paper that uses this approah is [13℄. He has playerswriting programs that determine their ations. Using an idea due to von Neumann, he allows these



DEFINABLE AND CONTRACTIBLE CONTRACTS 9programs to use other programs as data, whih has the e�et of making the output of eah player'sprogram depend on the other players' programs. The result extends the �reiproal ontrat� ideapresented above to a more general n player game. We have illustrated the basi priniple with our'ross-referential' example above. To support any array of ations, Tennenholz e�etively writesout expliitly a sequene of programming statements resembling the verbal statements we madeabove. These de�ne the keywords that are needed to support any array of ations in whih eahplayer's payo� is at least his or her minmax value.The paper by [7℄ shows how to extend the set of supportable alloations in two player games.They onstrut a set of ommitment devies whih an be used to support orrelated strategies inwhih all players payo�s exeed their minmax payo�s. Spei�ally, in some games their deviessupport outomes in whih all players reeive payo�s that exeed their best payo�s with Tennen-holz's programs. This is aomplished by onstruting ommitment devies that allow players toorrelated their ations while using independent randomizing devies.On the most basi level, our paper di�ers sine we are interested in problems with inompleteinformation. However, the more important di�erene is that our approah is dedutive rather thanonstrutive. We �x a set of ommitment devies, then use this same set of devies to supportindividually rational outomes in all �nite games. The advantage of this is that we are able togive a omplete haraterization of the set of all supportable alloations. Tennenholz theorem doesnot rule out, for example, the possibility that there might be program equilibrium in whih someplayers reeive less than their minmax payo�. With omplete information, this possibility is notritial. For example, [7℄ rule it out by allowing players to reserve the right to pik their ationsin an unonstrained way ex post. They interpret this as giving players the right not to partiipatein the ontrating proess. With inomplete information, there is no simple analog to the minmaxpayo�, so there is no simple trik like non-partiipation that an be used to show whih alloationsannot be supported as equilibria. By providing a more omplete desription of the set of feasibleontrats we are able to overome this di�ulty.It is preisely the ability to pin down alloations that annot be supported as equilibrium thatis ritial to our objetive of showing the limits to whih ontrats an be used to deentralizethe mehanism designer's problem. We use our haraterization to onstrut examples of alloa-tion rules that an be supported by a mehanism designer, but annot be supported as ontratequilibrium.We emphasize that the ontribution here is not intended to be a ontribution to the omputersiene literature. In fat, we view the paper as a very traditional ontrating model in whihplayers have aess to a legal system whih an be used to provide redress when ontrats arenot arried out. Yet redress is all we want. Our purpose is to de�ne a ontrating language suhthat players an write any ontrat that they like in this language. One all the players havewritten their ontrats, they should be able to dedue on their own what ations they need totake in order to ful�ll their ontrats. With omplete information, it isn't ompletely surprising



10 MICHAEL PETERS AND BALÁZS SZENTESthat many alloations an be supported in suh an environment. It is in inomplete informationenvironments where the set of supportable alloations has not been haraterized, and this is howwe view our ontribution here.Finally, the use the Godel oding is simply for onveniene. One one sees that the olletionof all �nite texts onstitutes a ountable set, any de�nable bijetion from �nite texts to integersan be used to do the analysis we do. Any de�nable bijetion an be expliitly written into theontrats we allow, so that a judge (or player for that matter) who doesn't know what it is anexpliitly alulate it. 3. The Language and the Gödel CodingWe onsider a formal language, whih is su�iently rih to allow its user to state propositionsin arithmeti. Furthermore, the set of statements in this language is losed under the �nite appli-ations of the Boolean operations: q, ∨, and ∧. This implies that one an express, for example,the following statement:
∀n, x, y, z {[(n ≥ 3) ∨ (x 6= 0) ∨ (y 6= 0) ∨ (z 6= 0)] → (xn + yn 6= zn)]} .In addition, one an also express statements in the language that involve any �nite number of freevariables. For example, �x is a prime number� is a statement in the language. The symbol x isa free variable in the statement. Another example for a prediate that has one free variable is�x < 4.� One an substitute any integer into x and then the prediate is either true or false. Thispartiular one is true if x = 0, 1, 2, 3 and false otherwise.Let L be the set of all formulas of the formal language. Eah of its element is a �nite stringof symbols. It is well known that one an onstrut a one-to-one funtion L → N. Let [ϕ] be thevalue of this funtion at ϕ ∈ L, and all it the Gödel Code of the text ϕ.In what follows, we de�ne a lass of funtions whih an be represented represented by �nitelymany haraters in our formal language.De�nition 1. The funtion f : Nk → 2N is said to be de�nable if there exists a �rst-order prediate

φ in k + 1 free variables suh that b ∈ f (a1, ..., ak) if and only if φ (a1, ..., ak, b) is true.In the de�nition, the mapping f is a orrespondene from Nk to N. Of ourse, if f (n) is asingleton for all n ∈ Nk, then f is a funtion. If the funtion f is de�nable by the prediate φ thenwe refer to [φ] as the Godel enoding of f . We illustrate the previous de�nition with an example.Example. Consider the following funtion de�ned on N:
f (a) =

{
0 if a is an even number,
1 if a is an odd number.We show that this funtion is de�nable by onstruting the orresponding prediate φ.

φ (x, y) ≡ {{y = 1} ∧ {y = 0}} ∨ {∃z : 2z = y + x} .



DEFINABLE AND CONTRACTIBLE CONTRACTS 11Notie that φ indeed has two free variables. (The variable z is not free beause there is a quanti�erfront of it.) The �rst part of φ states that y is either one or zero. The seond part says that x + yis divisible by two. Notie that f (a) = 0 if and only if φ (a, 0) is true. To see this, �rst notiethat φ (a, b) is false whenever b /∈ {0, 1}. (This is beause the �rst part of φ requires b to be zeroor one.) If b = 0 then φ (a, 0) is indeed true. If b = 1, then the seond part of φ beomes falsebeause a + b is an odd number.4. Complete information Contrating GameSuppose there are m players. Player i has a �nite ation spae Ai. Let A denote ×m
i=1Ai. Thepayo� of Player i is ui (a1, . . . , am). We use the onventional notation that ui (ai, a−i) is the payo�to player i if he takes ation ai while the other players take ation a−i. Eah player simultaneouslysubmits a ontrat, whih is a de�nable orrespondene from Nm to 2N, where `de�nable' is to beunderstood in the sense of De�nition 1. At stage two, players take ations simultaneously fromsubsets of their ations spaes. These subsets are determined by the �rst-stage ontrats. If atstage one player j submitted ontrat cj (j = 1, ..., m), then player i an only take ation ai at stagetwo if [ai] ∈ ci ([c1] , ..., [cm]). We restrit attention to pure-strategy subgame perfet equilibria ofthis game.The pure strategy minmax value for player i is

ui = min
a−i∈A−i

max
ai∈Ai

ui (ai, a−i) ,Let aj be any one of the ations that j uses to attain his minmax payo�. Let us �x an ation aji

ifor player i, suh that, (
aj
1, ..., a

j
m

)
∈ arg min

a−i

uj

(
aj , a−j

) .That is, aj
i is the ation that player i uses to punish player j. For onveniene, de�ne aj

j = aj forall j ∈ {1, ..., m}.Theorem 1. The ation pro�le a∗ = (a∗
1, ..., a

∗
m) ∈ A is supportable as a pure-strategy SPNEoutome in the ontrating game if and only if ui (a∗) ≥ ui for eah i.Before we proeed with the proof of the theorem, we reall two piees notations from theintrodution. First, if n ∈ N then < n > denotes the text whose Gödel ode is n. That is,

[< n >] = n. Seond, for any text ϕ, let ϕ(n1,...,nk) denote the statement where if the letter xistands for a free variable in ϕ then xi is evaluated at ni in ϕ for i = 1, ..., n. For example, if ϕis x1 < x2, n1 = 1, and n2 = 2 then ϕ(n1,n2) is 1 < 2. Consider now the following text in k freevariable: < xi >(x1,...,xk), where i ≤ k. One an evaluate this statement at any k-dimensionalvetor of integers. Sine the Godel oding was a bijetion < ni > is a text for eah ni ∈ N. Inaddition, ϕ(n1,...,nk) is de�ned for all ϕ and (n1, ..., nk). In addition, it is a well-known result inMathematial Logi, that if f (n1, ..., nk) =
[
< ni >(n1,...,nk)

], then f is a de�nable funtion.



12 MICHAEL PETERS AND BALÁZS SZENTESProof. First, we prove the only if part. Fix an equilibrium in the ontrating game. Let cj denotethe equilibrium ontrat of player j (j = 1, ..., m) and let ui denote player i's equilibrium payo�.Notie, that player i an always o�er a ontrat that does not restrit his ation spae. That is,he an o�er c : Nm → 2N, suh that c (n1, ..., nm) = N for all (n1, ..., nm) ∈ Nm. The ontrat c isobviously de�nable. 3 We show that if ui < ui, player i an pro�tably deviate at the �rst stage byo�ering c instead of ci. Let c̃j = cj if j 6= i and c̃i = c. Let Ãj = {aj : [aj ] ∈ c̃j ([c̃1] , ..., [c̃m])}. Thatis, Ãj is the ation spae of player j in the subgame generated by the ontrat pro�le (c̃1, ..., c̃m).Also notie that Ãi = Ai. The payo� of player i in any pure strategy equilibrium of this subgameis weakly larger than
min

a−i∈ eA−i

max
ai∈Ai

ui (ai, a−i) ≥ min
a−i∈A−i

max
ai∈Ai

ui (ai, a−i) .The inequality follows from Ãj ⊆ Aj for all j. Therefore, player i an always ahieve his pureminmax value by o�ering the ontrat c.For the if part, onsider the following ontrat of Player i, ci
xi,x−i

, in m free variables:
ci
x1,...,xm

(
([cj ])

m

j=1

)
=(4.1) 




[a∗
i ] if |{k :

[
< xk >(x1,...,xm)

]
6= [ck]

}
| 6= 1,[

aj
i

] if {k :
[
< xk >(x1,...,xn)

]
6= [ck]

}
= {j}The expression (4.1) is not a ontrat, but rather a ontrat with free variables. Eah suhexpression has a Godel ode, so let γi =

[
ci
x1,...,xm

]. The funtions {ci
γ
1
,...,γm

}
i
have no freevariables, so they onstitute a set of ontrats. We will now show that {ci

γ
1
,...,γm

}m

i=1
onstitutesan equilibrium pro�le of ontrats whih support the outome {a1

k1
, . . . , am

km

}. First observe whathappens when all players use ontrat ci
γ
1
,...,γm

. Notie that
ci
γ
1
,...,γm

(
([cj ])

m

j=1

)
=





[a∗
i ] if |{k :

[
< γk >(γ

1
,...,γm)

]
6= [ck]

}
| 6= 1,[

aj
i

] if {k :
[
< γk >(γ

1
,...,γm)

]
6= [ck]

}
= {j} .Player i needs to hek whether the Godel ode of < γk >(γ

1
,...,γm) is equal to the Godel ode ofplayer k's ontrat, ck. The integer γk is the Godel ode of the ontrat with free variable ck

x1,...,xm
.Player i's ontrat says to take this ontrat with free variable, �x the free variables at γ1, ..., γm(whih gives the ontrat ck

γ
1
,...,γm

), then evaluate its Godel ode. This is what is to be omparedwith the Godel ode of the ontrat o�ered by k. Of ourse, these are the same in equilibriumbeause ck = ck
γ
1
,...,γm

. Sine this is the ase for all m − 1 of the other players, player i ends uptaking ation a∗
i . So these ontrats support the outome we want if everyone uses them.3For example, the prediate

{x1 = x1} ∧ ... ∧ {xm = xm} ∧ {y = y}de�nes c. That is, for all y ∈ N the prediate is true no matter how the free variables are evaluated.



DEFINABLE AND CONTRACTIBLE CONTRACTS 13Player j an deviate to any de�nable ontrat mapping Nm into 2N. However, any suh ontratwill have a di�erent Godel ode, and so will indue the punishment {aj
i

}
i6=j

from the other players.Reall that {aj
i

}
i6=j

is the ation pro�le that players other than player j use to minmax player j.Sine uj (a) ≥ uj any deviation will be unpro�table.One might argue that restriting the spae of ontrats to be de�nable funtions of Godel odesis both arbitrary and unnatural. Indeed, there is no reason for a judge to interpret a ontrat asa desription of a mapping from the Godel odes of the ontrats o�ered by the other players tothe ations spae of the player. For that matter, the judge might not even know about the Godeloding. It is important to note that the salient feature of de�nable ontrats is that they an bewritten as texts that use a �nite number of words in a formal language. The set of �nite textsseems a very natural desription of the set of feasible ontrats. In fat, from this perspetive itseems that any reasonable desription of the set of feasible ontrats should allow any suh text.The ompliation with suh a broad desription of the set of ontrats is that to properly de�nea game, one must fully desribe the mappings from pro�les of texts into payo�s. Many textswill be omplete nonsense and some modelling deision has to be taken about how these wouldtranslate into ations and payo�s. The ontrats that we speify above are de�nable texts thathave two advantages in this regard. First, sine every �nite text has a Godel ode, they tie downthe ation of the player who o�ers suh a ontrat even if the other players in the game o�erontrats involving texts that make no eonomi sense. Furthermore, if all players o�er ontratsfrom the set we speify, an outome for every player is uniquely determined.Finally, sine the Godel oding itself is de�nable, the oding an be embedded diretly into theontrat. So players don't need to agree to use the Godel ode of other ontrats. They an usethe Godel ode unilaterally, and the impliations of the ontrat will be understood by the othersprovide they agree on the underlying language in whih ontrats are written.Generalizations.� Everything about this theorem involves pure strategies. This imposes limitson its appliation. Next, we disuss how to extend our result to the ase when players an mixover their restrited ation spae at the seond stage of the game but annot randomize over theontrats they o�er at the �rst stage. Allowing suh mixing expands the set of payo� pro�lesthat an be supported by equilibria for two reasons. First, sine players an randomize ertainonvex ombinations of payo� pro�les an now be supported. Seond, players an use mixing whenpunishing a deviator, and hene the minmax value of the players will be smaller.Formally, for all S = ×iSi, Si ⊂ Ai, de�ne a game, GS , where the ation spae of player i is Si,and the payo� funtion of player i is the restrition of ui on S. Let E (S) denote the set of mixedequilibria in GS . De�ne the minmax value of player i, u∗
i , as

u∗
i = min

S−i⊂A−i

S−i=×j 6=iSj

max
Si⊂Ai

min
σ∈E(S−i×A)

∫
ui (a) dσ (a) .



14 MICHAEL PETERS AND BALÁZS SZENTESThe idea is that in the ontrating game, players an restrit their ation spaes arbitrarily, hene,when they punish player i they an hoose S−i arbitrarily. On the other hand, their seond-stageations must be best responses, and that is why we have to onsider equilibrium payo�s in therestrited game. An argument idential to the proof of Theorem 1 shows that the random alloation
σ ∈ ∆(A) an be supported as an equilibrium if(i) ∃Si ⊂ Ai for all i, suh that σ ∈ E (×iSi), and(ii) ∫ ui (a) dσ (a) ≥ u∗

i for all i.What happens if players are allowed to randomize over the ontrats they o�er? It is possibleto show that part (i) an be ompletely relaxed. That is, the distribution over the outomes doesnot have to be an equilibrium in GS , and it does not even have to be generated by independentrandomizations of the players. The onstrution of mixed equilibria in our ontrating game thatsupports orrelated outomes is entirely based on Kalai et.al. (2008). The authors onsider two-person games where players submit ommitment devies instead of taking ations. A devie thendetermines the ation of the player as funtion of the other devie. The authors onstrut a setof devies suh that any individually rational orrelated outome an be implemented as a mixedequilibrium in the game. That is, although the players mix independently over their devies, thedistribution over the ations pro�les will be orrelated. It is easy to show that these results extendto n-person omplete information games, and in addition, the the equilibrium ommitment deviesonstruted by Kalai et.al. (2008) are de�nable funtions as long as the probabilities involved ineah mixing are all rational numbers.Theorem 2. Suppose that σ ∈ ∆(A), and σ (a) ∈ Q for all a ∈ A. The distribution σ anbe supported as a mixed-strategy equilibrium outome in the ontrating game if and only if
∫

ui (a) dσ (a) ≥ u∗
i for all i ∈ {1, ..., m}.Another question is why we use de�nable funtions as opposed to programs or Turing mahines.One might want to require that the ontrats must be omputable and assume that the set ofavailable ontrats is the set (or a subset) of Turing mahines. In suh a model, if player i

(i = 1, 2) hooses mahine τ i, then τ i runs on the desription of τ j , and the output will be a subsetof the ation spae of player i. It is well-known, that one an onstrut self- and ross-referentialontrats (mahines) in this spae too.4 In fat, this onstrution is essentially idential to ouronstrution of ross-referential de�nable funtions. Most importantly, the equilibrium ontratswe onstrut to support individually rational alloations are, in fat, reursive funtions, and henethey are omputable by Turing mahines. Therefore, if the reader insists on omputability, he anrestrit attention to the spae of Turing mahines.There are, however, several advantages of our approah over modelling ontrats with Turingmahines. First, Turing mahines do not always halt, and therefore, it is not lear how one an4Suh mahines were onstruted even in the ontext of Game Theory, see Anderlini 1990 and Canning 1992.



DEFINABLE AND CONTRACTIBLE CONTRACTS 15de�ne the restrition on the ation spae of a player, if his mahine does not halt. A way tohandle the halting problem is to restrit the spae of Turing mahines to be the set of mahinesthat always halts. We �nd suh restritions arbitrary. Instead of restriting the spae of reursivefuntions, we expanded it to be the set of de�nable funtions and avoided the halting problem thatway. Seond, another problem with Turing mahines is that they an only ondition on the atualdesription of the mahines submitted by the other players but annot ondition on the funtionswhat the mahines ompute. Take the example of the prisoner dilemma. It is possible to onstruta Turing mahine, τ , suh that
τ ([τ2]) =

{
C if [τ2] = [τ ]

D otherwise.The problem is that if player 2 submits a mahine, say τ ′, whih is omputationally equivalentwith τ , but has a di�erent desription, then player 1 would defet. In fat, it is not possibleto onstrut a mahine whih does not su�er from this problem. We avoid suh problems withde�nable funtions. Indeed, it is possible to express ontrats that do not ondition on the atualway the other ontrat is written, but on the funtion itself that the other ontrat desribes.Consider
c1 ([c2]) =

{
C if c∗2 ⇔ c2,

D otherwise.The ontrat cγ is obviously de�nable, but does not ondition on the atual form of c2. As longas c2 represents the same funtion as c∗2, ooperation is presribed.5. Contrating in a Bayesian EnvironmentIn the previous setion, we showed how ontratible ontrats an be used to support anyalloation for whih every player's payo� is at least his minmax value. Assuming non-partiipationis always an option, this is the set of alloations that is supportable by a entralized mehanismdesigner. In this sense, ontratible ontrats ompletely deentralize the alloation problem. Inthis setion, we show that the same result is not true in the Bayesian ase. We do this by proving atheorem that ompletely haraterizes the set of alloation rules that an be supported as Bayesianequilibrium in the ontrating game. We then onstrut alloations that an be supported by aentralized mehanism designer, but whih annot be supported as equilibria.We also show, however, ontratible ontrats make it possible for one player's ation in aontrat equilibrium to depend on another player's type. The reason is that ontrats expliitlyondition ations on other player's ontrats, whih, along the equilibrium path, an depend ontheir types. We exploit the reiproal ontrating idea desribed above to enfore type ontingentagreements. The idea is that a ontrat will speify a number of 'target' Godel odes, one for eahof the ontrats the other player's di�erent types are supposed to o�er along the equilibrium path.



16 MICHAEL PETERS AND BALÁZS SZENTESAs long as other players o�er a ontrat whose ode is equal to one of these targets, the ontratresponds with a 'ooperative' ation. If any of the others deviate, the ontrat will respond withsome kind of punishment.When information is omplete, a punishment is simply an array of ommitments that non-deviators make. These ommitments are suh that they make all deviations unpro�table. Wewant to extend this idea to the Bayesian ase. There are a number of di�ulties assoiated withthis. First, ontrat o�ers depend on player types, so they reveal information. Potential 'deviators'an ondition their play on non-deviators' ontrats, so they an ondition their ommitments onthe non-deviators' type. Players may not want to reveal their type information at the ontratingstage for this reason. Nonetheless, they will want at on this type information ex post. Soontrats will typially bind players to subsets of their ations, leaving some disretion for themto vary their ations with their types ex post. So it is important to think of ontrat o�ers asommitment orrespondenes, rather than simple ommitments to ations as would su�e withomplete information.Seondly, non-deviators have the ability to respond to deviations ontratually. They an maketheir punishments more severe by exploiting residual unertainty that the deviator has abouttheir type ex post. They would do this, again, by ommitting to a subset of ations instead of asingle ation. The punishment for a deviation onsists of two parts for this reason: a punishmentorrespondene, that restrits the non-deviator's ex post hoie to a subset of his ations, and aseond stage strategy that depends on the non-deviator's type (onstrained by the information thenon-deviator reveals about his type with his on path ontrat).Perhaps the most omplex part of ontrating equilibrium is that non-deviators' responses de-pend on the deviator's ontrat. As suh they ould, in priniple, depend on the deviation insophistiated way. The simple logi that we developed for the reiproal ontrating argumentabove relied on the idea that non-deviators ould punish deviators by minmaxing them. Theminmax ation doesn't depend on exatly how the non-ooperative player hooses to be non-ooperative. With inomplete information, there is no natural analog for the minmax punishment.The ability to ontrat on other ontrats suggests the possibility that non-deviators ould reat todeviations in a way that depends on exatly what the deviation is thereby holding on path payo�sto something below the orresponding min max payo�.A remarkable property of our theorem is to show the sense in whih punishments an be un-derstood to be invariant to the manner in whih a player hooses be non-ooperative. We showthat any ontrat equilibrium an be supported by having non-deviators respond to a deviationwith a ontratual ommitment that is independent of what the deviator hooses to do. Ex posthoies that non-deviators make from their ontratual ommitment orrespondenes will typiallydepend on the deviation. However, these ex post hoies aren't part of the non-deviator's on-trats. This result allows us to extend the reiproal ontrating idea to Bayesian games. If aplayer o�ers a ontrat that is onsistent with equilibrium play by one of his types, then the other



DEFINABLE AND CONTRACTIBLE CONTRACTS 17players respond ooperatively. Otherwise, there is a single punishment orrespondene that thenon-deviators impose, just as in the omplete information ase.This property of ontrat equilibrium is a onsequene of restriting players to de�nable on-trats. It is the part of our theorem that allows us to show the limits of ontratible ontrats,sine we an show the kinds of alloations that an't be supported as equilibrium. This is thepart of our theorem that we use to provide examples of alloations supportable by a mehanismdesigner but not by ontratable ontrats. This is the advantage we derive from speifying theontrat spae very preisely. An abstrat ommitment spae suh as the one provided in [7℄, or aspae of ontrats that is onstruted to have desirable properties, suh as programs in [13℄, an beused to show that a large set of alloations an be supported as equilibrium alloations. However,in the Bayesian ase, a omplete haraterization requires a demonstration that ertain alloationsannot be supported. To provide this, a omplete desription of the set of feasible ontrats isrequired. Our Lemma illustrates that de�nability provides just suh a omplete desription.The model is the same as in the previous setion, with the addition of player types. There are
m players. Player i's ations spae is a �nite set denoted by Ai. Eah player i has a type ti drawnfrom a �nite set T i. The joint distribution types is ommon knowledge. The payo� of player i is
ui (ai, a−i, t) where t ∈ T1×· · ·×Tm. Notie that a strategy rule for player i in the Bayesian gamethe players might otherwise be involved in is an element of A

|Ti|
i .Our haraterization of the set of alloations that an be supported as ontrat equilibriumhinges on the information that equilibrium play reveals about players' types. Our argument refersrepeatedly to the information that is revealed through equilibrium play. Most things that happeno� the equilibrium path depend on this information. A natural way to inorporate this is touse the information partition indued by these ontrats. Fix an equilibrium, and de�ne theorrespondene τ i : Ti → 2Ti to mean the set of types of player i who o�er the same ontrat astype ti. One other players see the ontrat o�ered by player i of type ti, they should ommonlybelieve that i's type lies in the set τ i (ti). The orrespondene τ i is an information partition.Similarly, the orrespondene

τ−i (t−i) =
∏

j 6=i

τ j (tj)desribes the information available to player i about the types of the other players.Eah ontrat spei�es a set of ations from whih players subsequently hoose. In this sense,equilibrium ontrats support a ommitment orrespondene for eah player. As ontrats dependon other ontrats, whih in turn depend on other players' types, this ommitment orrespondenean be written as a mapping ri : T → 2Ai . Sine the set from whih i hooses his ation an onlydepend on some other player's type to the extent that the other player's ontrat varies with histype, ri should be measurable with respet to the information partition τ−i.Contrats speify sets of feasible ations. Ultimately, payo�s are determined by players' hoiesfrom these sets in the �nal stage of the game. Let si : T → Ai denote the outome funtion



18 MICHAEL PETERS AND BALÁZS SZENTESassoiated with the seond stage strategies.5 These outome funtions must have the propertythat si (t) lies in the set ri (t) for eah t. It might seem strange that this outome funtion shoulddepend on t instead of ti. The reason that player i's equilibrium ations depend on the types ofother players is twofold. First, player i gets to see the ontrats o�ered by eah of the other players.His beliefs vary as the other players' ontrats vary, so his ations in the seond stage will varywith the other players types. Seondly, his own ommitments depend on the ontrats, and thusthe types of the other players. Evidently, player i only observes types imperfetly by observingthe ontrats that are o�ered. This is aptured simply by observing that this indued outomefuntion must be measurable with respet to the information partition τ−i.Eah o� equilibrium ontrat o�ered by a deviator spei�es a ommitment for eah array ofontrats o�ered by the other players. Sine the ontrats the other players o�er depend on theirtypes, a deviation implies a ommitment orrespondene fi : T−i → 2Ai . Sine these types arerevealed only through the ontrats that the others o�er, this orrespondene should be measurablewith respet to the information partition τ−i that aptures this information. Let Fi be the set ofall ommitment orrespondenes available to the deviator, i.e., Fi is the set of all τ−i measurablemappings from T−i into 2Ai .In a ontrat equilibrium, a deviation leads to two sorts of 'punishments'. First, sine the otherplayers' ontrats spei�ally ondition on the ontrat o�ered by the deviator, the non-deviatorswill hange their ommitments. As mentioned above, we are going to show that the punishmentorrespondene assoiated with this hange in ommitments an be taken to be independent of thedeviation fi. However it is possible that the way that the non-deviators hoose from sets to whihthey have ommitted themselves will depend on fi.Write the 'punishment' that player j imposes when player i deviates as pi
j : T−i → 2Ai and

pi =
∏

j 6=i pi
j . In a ontrat equilibrium, this punishment is the onsequene of the ontrat that

j has written, so the punishment an only vary with j's type to the extent that j's ontrat does.As a onsequene, this punishment will be measurable with respet to the information partition
τ−i.Finally, we need to desribe the non-deviators' behavior in the ex post stage, let si

j : Fi ×

T−i → Aj . The non-deviator j an no longer ondition his behavior on information revealed by i'sequilibrium behavior. However, he does observe i's ommitment orrespondene in the sense thathe observes the deviator's ontrat. He also observes the on equilibrium ontrats of the others.This is aptured, as always, by requiring that his behavior be measurable with respet to τ−ij . The5To simplify the argument slightly, we fous on pure strategy outomes here. It is ompletely trivial to extendthis argument to outomes that involve randomization at the seond stage by having the outome funtions bemappings from T into △ (Ai), restriting the supports of these mappings to lie in ri (t), then letting ui (s (t) , t) bethe expeted utility assoiated with the randomization. With this notation, the inequalities that haraterize theequilibrium remain unhanged.
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j (fi, t−i) should be ontained in pi

j (t−i) for every t−i ∈ T−i and fi ∈ Fi.6 Let si =
∏

j 6=i si
jbe the outome funtion assoiated with a deviation. for eah i = 1, . . .m,The theorem is based on a pair of inequalities that are based on the objets de�ned above. The�rst aptures the idea that no player wishes to mimi the equilibrium behavior of another of hisown types. For eah i = 1, . . .m, and eah ti and t′i

Et−i
(ui (s (t) , t) : ti)(5.1) ≥ Et−i

(
max

ai∈ri(t′
i
,t−i)

Et′−i

(
ui

(
ai, s−i

(
t′i, t

′
−i

)
,
(
ti, t

′
−i

))
: t′−i ∈ τ−i (t−i)

)
: ti

)
.The ommitment orrespondene ri results in a olletion of ations from whih player i is ommit-ted to hoose in the seond stage. This hoie set an depend on the types of the others beausetheir ontrats do. The max operator on the right hand side requires the player to hoose a bestreply from this set given posterior beliefs. Taken together, these onstraints for all the playersrequires that play in the seond stage onstitutes a Bayesian equilibrium of the game in whiheah player hooses an ation from the set of ations to whih he is ommitted, given posteriorbeliefs about players' types.To deal with deviations at the ontrating stage of the game, we require that for eah ti ∈ T

Et−i
(ui (s (t) , t) : ti) ≥(5.2) max

fi∈Fi

Et−i

(
max

a∈fi(t−i)
Et′−i

(
ui

(
a, si

(
fi, t

′
−i

)
,
(
ti, t

′
−i

)
, t
)

: t′−i ∈ τ−i (t−i)
)

: ti

)
.A deviation implies a ommitment orrespondene fi. The inequality says that even if the deviatorhooses a best reply from the set of ations to whih he is ommitted, he annot gain by deviating.So far we have imposed no restritions on seond stage punishment behavior. In appliations itis natural to want behavior in the seond stage to be onsistent with some re�nement like perfetBayesian equilibrium. Our theorem works with most standard re�nements but does not dependon them. To illustrate, let Ã1, . . . , Ãm be a olletion of subsets of the players ation sets and let

T̃−i be a subset of T−i. The interpretation of these objets is that some player i has deviated froman equilibrium. Contrats onstrain the players to hoose from the sets Ãi in the seond stage,while it is ommon belief that the non-deviators' types lie in T̃−i. Let Ri

[
Ã1, . . . , Ãm, T̃−i

] bethe subset of ations in Ã−i that are onsistent with some re�nement. For example in a (unre-�ned) Bayesian equilibrium, Ri

[
Ã1, . . . , Ãm, T̃−i

]
= Ã−i. A slightly stronger re�nement mighthave Ri

[
Ã1, . . . , Ãm, T̃−i

] ruling out ations that are stritly dominated given that players areonstrained to hoose ations in Ã1, . . . , Ãm. Finally, onsistent with the idea of perfet Bayesianequilibrium, Ri might ontain only ations that are onsistent with Bayesian equilibrium in the6If mixing is allowed in the last stage, then the support of si
j (fi, t−j) should be ontained in pi

j (t
−i).



20 MICHAEL PETERS AND BALÁZS SZENTESgame de�ned by subsets Ã1, . . . , Ãm , ommon belief that the non-deviators' types lie in T̃−i andsome belief about the deviator i. We will all a Bayesian equilibrium in ontrats an R-equilibriumif following eah array of ontrat o�ers for whih player i's ontrat is inonsistent with his equi-librium strategy and all other players ontrat o�ers are onsistent with the equilibrium strategiesof players whose types lie in T̃−i, ontinuation play lies in Ri

[
Ã1, . . . , Ãm, T̃−i

] where the Ãj arethe ontratual ommitments of eah of the players. We an now state our main theorem.Theorem 3. An alloation rule s : T → A an be supported as anR-equilibrium in ontrats if andonly if there is a ommitment orrespondene r, a olletion of information partitions {τ i}i=1,...,m,punishments {pi
}

i=1,...,m
, and outome funtions {si

}
i=1,...,m

suh that r is measurable withrespet to τ =
∏

τ i, eah pi is measurable with respet to τ−i, the support of s (t) is ontainedin r (t) for eah t, si (fi, t−i) ∈ Ri

[
fi (t−i) , pi (t−i) , τ−i (t−i)

] for eah fi and t−i , and (5.1) and(5.2) are satis�ed.One of the key properties of this theorem is to show that when ontrats are de�nable, equi-librium must support a single punishment orrespondene of exatly the kind we have desribed.Spei�ally, it is a punishment orrespondene that is independent of f . This is entral to thereiproity idea that we developed at the beginning of the paper. Unooperative behavior by oneplayer provokes a punishing ontratual response from the others that doesn't depend on exatlyhow the deviator goes about being unooperative. We want to show that it is the seond stageommitments that apture this property of reiproity.7 This property of ontrat equilibrium isalso very surprising. It might seem that ontrat equilibrium ould be supported with very om-pliated ontrats that punish deviators in a way that is sensitive to exatly how they deviate. Weshow that this is not the ase.Finally, the theorem is written assuming that players use pure strategies at every stage. Theprimary reason we assume away mixed strategies is so that we an use an information partition torepresent players knowledge at the seond stage instead of a more omplex measure of information.We assume pure strategies in the seond stage simply for onsisteny. It is ompletely trivial toextend the theorem to allow randomization at the seond stage. This involves nothing more thanassuming that si
i (fi, t−i) are mixtures on Aj whose support is ontained in pj

j (t−i), then rede�ning
ui (s, t) to be expeted utility assoiated with the mixture s when s ∈ △ (A). The theorem andproof then proeed verbatim. 6. Proof of Theorem 3We write the proof in three parts. The �rst part shows the 'if' part of the theorem. It is ageneralization of the reiproal ontrating idea presented above. Before going on to the moredi�ult 'only if' part, we prove the Lemma that is interesting for its own sake, and whih formsthe basis of the seond part of our proof. Finally, we give the proof of the only if part.7Care here is needed to observe that seond stage behavior does depend on the deviation in the �rst stage.



DEFINABLE AND CONTRACTIBLE CONTRACTS 216.1. If Part:Proof. Suppose that {s, τ , r,
{
pi
}

,
{
si
}} satisfy (5.1) and (5.2). We onstrut a Bayesian equilib-rium in the ontrating game whih implements the alloation s. Let x denote (xtj

j

)
j∈{1,...,m}, tj∈Tj

,where x
tj

j denotes a free variable. Consider the following ontrat in |T | free variables:
cti
x ([c1] , ..., [cm])

=





ri (t) if ∀k∃xtk

k ∈
{
xtk

k : tk ∈ Tk

} s.t. [< xtk

k >(x)
]

= [ck] ,

pj
i (t−j) if {k : ∄xtk

k ∈
{
xtk

k : tk ∈ Tk

} s.t. [< xtk

k >(x)
]

= [ck]
}

= j,

Ai otherwise and if k + 1 > k if k ∈ {j : τ (tj) = τ (ti)} ,The last statement is in the third line is always true. Suh a statement, however, makes it possiblethat a player with two di�erent types o�ers two di�erent but omputationally equivalent ontrats.Let γti

i denote the Godel Code of this ontrat and let γ =
(
γti

i

)
i,ti . The equilibrium ontrato�ered by player i with type ti will be: cti

γ . Then
cti

γ ([c1] , ..., [cm])

=





ri (t) if ∀k∃tk ∈ Tk s.t. [< γtk

k >(γ)
]

= [ck] ,

pj
i (t−j) if {k : ∄tk ∈ Tk s.t. [< γtk

k >(γ)
]

= [ck]
}

= j,

Ai otherwise and if k + 1 > k if k ∈ H (ti) ,Notie that < γ
tq

q >(γ)= c
tq

γ . Therefore, the previous ontrat an be rewritten as
cti

γ ([c1] , ..., [cm])(6.1)
=





ri (t) if ∀k∃tk ∈ Tk s.t. [ctk
γ

]
= [ck] ,

pj
i (t−j) if {k : ∄tk ∈ Tk s.t. [ctk

γ

]
= [ck]

}
= j,

Ai otherwise and if k + 1 > k if k ∈ H (ti) ,Next, we speify the strategies of the players at the seond stage. If for all j there is a tj ∈ Tjsuh that player j o�ers a ontrat c
tj

γ , then Player i takes ation si (t). Suppose now that oneplayer deviated, say Player k, and he o�ered a ontrat ck, and player j o�ered c
tj
γ for all j 6= k.De�ne fk : T−k → 2Ak as follows:(6.2) fk (t−k) = ck

([
ck
]
,
[
ctj

γ

]
j 6=k

) ,where [ctj

γ

]
j 6=k

denotes the vetor of the Godel odes of players other than k. De�ne player i'sstrategy as sk
i (fk, t−k). Notie that by (6.1) these seond-stage strategies are onsistent with therestritions imposed by the ontrats and the re�nementRk, that is, si (t) ∈ ri (t) and sk (fk, t−k) ∈

Rk

[
fk (t−k) , pk (t−k) , τ−k (t−k)

]. (We do not have to speify the strategies if more than oneplayers deviate at the ontrating stage.)We shall argue that the strategies desribed above onstitute an R−equilibrium in the ontrat-ing game. First, we show that the strategies {si}
m
i=1 are optimal in the seond stage. Consider



22 MICHAEL PETERS AND BALÁZS SZENTESonstraint (5.1) with ti = t′i. This onstraint requires si (t) to be a best response to the strategiesof the other players. It remained to show that players do not have inentive to deviate at theontrating stage. Suppose that player k with type tk o�ers a ontrat ck whih is di�erent from
ctk
γ . We shall onsider two ases. Case 1: ck = c

t′k
γ but τk (tk) 6= τk (t′k). Then, by (5.1), thisdeviation is not pro�table no matter what the strategy of player k is at the seond stage. Case 2:

ck 6= c
t′k
γ for all t′k ∈ Tk. Suh a deviation indues player i with type ti to take ation sk

i (fk, t−k).Hene, by (5.2) suh a deviation annot be pro�table.6.2. Invariant punishment orrespondene. The point of this setion is to show the existeneof the punishment orrespondene pi. A deviator ontemplates di�erent ommitment orrespon-denes fi. What this Lemma shows is that there has to existene some �xed punishment orre-spondene pi (t−i) suh that no matter whih ommitment orrespondene the deviator want toimplement, there must be a way for him to write his ontrat in suh a way that the response of thenon-deviators is exatly the same, and is given by this orrespondene pi. This is a onsequeneof the fat that ontrats are required to be de�nable funtions.Let cti

i denote the ontrat of Player i with type ti. De�ne τ (t) =
{
t′ ∈ T : ∀i cti

i = c
t′i
i

}.Lemma 4. For any array {cti

i

}
i=1,...,m, ti∈T i of ontrats and every i, there are τ−i measurablefuntions, pi

k (t−i) for all k 6= i, suh that for any τ−i measurable funtion fi : T−i → 2Ai , thereis a ontrat c∗i suh that(6.3) c∗i

(
[c∗i ] ,

([
c
tj

j

])
j 6=i

)
= f (t−i)and for all k 6= i(6.4) ctk

k

(
[c∗i ] ,

([
c
tj

j

])
j 6=i

)
= pi

k (t−i) .In a ontrat equilibrium, a player expets his opponents to o�er the ontrats c
tj

j . Eahalternative ontrat that he o�ers against this array indues a ommitment orrespondene f (t−j)and eliits some kind of response. The Lemma shows that provided the ontrats the others o�erare all de�nable funtions, there must exist some olletion of punishment orrespondenes {pi
k

}suh that for any ommitment orrespondene that player i wants, he an write his own ontratin suh a way that the others respond with exatly the same punishment {pi
k

}.First, we reformulate the statement of the lemma. Let (Ai)
|T−i|
τ denote the set of |T−i| dimen-sional vetor of subsets of Ai whih are measurable with respet to τ−i, that is,

(Ai)
|T−i|
τ =

{(
A

t−i

i

)
t−i∈T−i

: A
t−i

i ∈ Ai and A
t−i

i = A
t′−i

i if τ−i (t−i) = τ−i

(
t′−i

)}
.For all (Aτ−i(t−i)

i

)
t−i

⊂ (Ai)
|T−i| de�ne S

((
A

τ−i(t−i)
i

)
t−i

) as follows:
{(

A
τ−i(t−i)
−i

)
t−i

: A
τ−i(t−i)
−i ⊂ A−i, ∃ci s. t. ci

(
[ci] ,

[
c
t−i

−i

])
= A

τ−i(t−i)
i , c

t−i

−i

(
[ci] ,

[
c
t−i

−i

])
= A

τ−i(t−i)
−i

} .
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τ−i(t

t−i)
−i

)

t−i

∈ S

((
A

τ−i(t−i)
i

)
t−i

). By the de�nition of S,there exists a ontrat, ci, available for player i suh that if the type pro�le of the other playersis t−i, then if player i o�ers ci then his restrited ation spae will be A
τ−i(t−i)
i and players −i'srestrited ations spae will be A

τ−i(t−i)
−i . We laim that the statement of the lemma is equivalentto(6.5) ∩

A
τ−i(t−i)
i

ff

t−i

S

({
A

τ−i(t−i)
i

}
t−i

)
6= {∅} .To see this, suppose �rst that the previous displayed statement is true, and (Aτ−i(t−i)

−i

)
t−i

isan element of the intersetion. De�ne pk
i (t−i) to be A

τ−i(t−i)
−i for all k 6= i and t−i ∈ T−i.For a τ−i measurable funtion fi : T−i → Ãi, onsider S
(
(fi (t−i))t−i

). Sine (pk
i (t−i)

)
t−i

∈

S
(
(fi (t−i))t−i

), and by the de�nition of S, there exists a c∗i suh that (6.3) and (6.4) are satis�ed.Conversely, suppose that (6.5) is not true. Then, for all {pk
i (t−i)

}
k 6=i

τ−i measurable funtionsthere exists {A
τ−i(t−i)
i

}
t−i

∈ (Ai)
|T−i|, suh that

(
p−i

i (t−i)
)
t−i

/∈ S

({
A

τ−i(t−i)
i

}
t−i

) ,where pi
i (t−i) =

(
pk

i (t−i)
)
k 6=i

. Then if fi (t−i) is de�ned to be A
τ−i(t−i)
i for all t−i ∈ T−i, theredoes not exist a ontrat c∗i suh that (6.4) is satis�ed.Proof. Suppose by ontradition that ∩

A
τ−i(t−i)
i

ff

t−i

S

({
A

τ−i(t−i)
i

}
t−i

)
= {∅}. Then, for all

{
A

τ−i(t−i)
−i

}
t−i

⊂
(
A−i

)|T−i| there exists an {A
τ−i(t−i)
i

}
t−i

⊂
(
Ai
)|T−i| suh that {A

τ−i(t−i)
−i

}
t−i

/∈

S

({
A

τ−i(t−i)
i

}
t−i

). Let us �x a funtion f : 2(A−i)|T−i|

→ 2(Ai)|T−i| suh that
∀
{
A

τ−i(t−i)
−i

}
t−i

⊂
(
A−i

)|T−i|
:
{
A

τ−i(t−i)
−i

}
t−i

/∈ S

(
f

({
A

t−i

−i

}
t−i

)) .Let fτ−i(t−i) denote the projetion of f orresponding to t−i. That is, f =
{
fτ−i(t−i)

}
t−i

. De�ne
cx as follows:

cx (c) =





ft′−i

({
cτ−i(t−i) ([< x > (x)])

}
t−i

) if ∃t′−i ∈ T−i st. c = c
τ−i(t′−i)

,

Ai otherwise.Sine f and cτ−i(t−i) are de�nable funtions, cx is a de�nable funtion in one free variable. Let γdenote its Godel ode. Then
cγ (c) =





f
τ−i(t′−i)

({
cτ−i(t−i) ([cγ ])

}
t−i

) if ∃t′−i ∈ T−i st. c = c
τ−i(t′−i)

,

Ai otherwise. .



24 MICHAEL PETERS AND BALÁZS SZENTESNotie that(6.6) {
cτ−i(t−i) ([cγ ])

}
t−i

∈ S
({

cγ

([
cτ−i(t−i)

])}
t−i

)by the de�nition of S. On the other hand,
{
cγ

([
cτ−i(t−i)

])}
t−i

=

{
ft−i

({
c
τ−i(t′−i)

([cγ ])
}

t′−i

)}

t−i

= f
({

cτ−i(t−i) ([cγ ])
}

t−i

)
,and therefore,(6.7) {

cτ−i(t−i) ([cγ ])
}

t−i
/∈ S

({
cγ

([
cτ−i(t−i)

])}
t−i

)by the de�nition of f . Notie that (6.6) and (6.7) ontradit to eah others, and hene the (6.5)holds.6.3. Only if part of the proof of Theorem 3.Proof. Fix an equilibrium in the ontrating game. We shall onstrut the objets τ , s, {ri}
m
i=1 ,

{
si
}m

i=1
,and {pi

}m

i=1
suh that the onstraints (5.1) and (5.2) are satis�ed. Denote the equilibrium ontratof Player i with type ti by cti

i . De�ne the partition, τ , as follows:
τ (t) =

{
t′ ∈ T : ∀i cti

i = c
t′i
i

} .Next, we onstrut the funtions {ri}
m
i=1. Let(6.8) ri (t) = cti

i

([
cti

i

]
,
([

c
tj

j

])
j 6=i

)
,for all i ∈ {1, ..., m}. Notie that ri (t) ∈ 2Ai. In addition, ri is measurable with respet to τ−i bythe de�nition of τ . The seond-stage strategies depend on the ontrats o�ered at the �rst stage.First, we deal with strategies on the equilibrium path. Let qti

i

(([
c
tj

j

])
j 6=i

) denote the seondstage strategy of Player i with type ti. Observe that(6.9) qti

i

(([
c
tj

j

])
j 6=i

)
∈ cti

i

([
cti

i

]
,
([

c
tj

j

])
j 6=i

)must be satis�ed aording to the rules of the ontrating game. De�ne si (t) to be qti

i

(([
c
tj

j

])
j 6=i

).The funtion si (t) is obviously measurable with respet to τ−i. In addition, si (t) ∈ ri (t) by (6.8)and (6.9). Let s (t) denote (s1 (t) , ..., sm (t)).We are ready to show that the triple (τ , {ri} , s) satisfy (5.1). First, onsider this onstraint with
t′i = ti. Then, this onstraint requires qti

i

(([
c
tj

j

])
j 6=i

) to be a best-response of player i to thestrategies of the other players. Sine qti

i was an equilibrium strategy, it has to be a best responseand hene, (5.1) is indeed satis�ed. Seond, onsider (5.1) with t′i 6= ti. Then, this onstraintrequires player i with type ti to prefer to o�er ontrat cti

i instead of c
t′i
i . Indeed, the left-hand-sideis just his equilibrium payo� and the right-hand-side is the maximum payo� of player i with type
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ti if he o�ered c

t′i
i . Sine, cti

i was an equilibrium ontrat, suh a deviation annot be pro�tableand hene, (5.1) is satis�ed.It remains to onstrut {pi}
m
i=1 and {si

}m

i=1
and show that (5.2) is also satis�ed. De�ne pi

k (t−i)for all k 6= i and for all i ∈ {1, ..., m} aording to the statement of Lemma 4. In addition, let cfi

idenote the ontrat of Player i suh that
cfi

i

([
cfi

i

]
,

([
c
tj

j

]
j 6=i

))
= fi (t−i)and for all k 6= i

ctk

k

([
cfi

i

]
,

([
c
tj

j

]
j 6=i

))
= pk

i (t−i) .Let qi
k

(
fi,

([
c
tj

j

]
j 6=i

)) denote the o�-equilibrium strategy of player k when player i unilater-ally deviates to ontrat cfi

i . De�ne si
k (fi, t−i) to be qi

k

(
fi,

([
c
tj

j

]
j 6=i

)). The funtion si
k ismeasurable with respet to τ−ik (t−ik). Given these notations, (5.2) requires that player i an-not pro�tably deviate by o�ering an o�-equilibrium ontrat in the form of cfi

i , and hene, thisonstraint is satis�ed. Finally, sine qi
k is an o� equilibrium strategy in an R-equilibrium, so

{
qi
k

(
fi,

([
c
tj

j

]
j 6=i

))}

k 6=i

∈

Ri

[
cfi

i

([
cfi

i

]
,

([
c
tj

j

]
j 6=i

))
, c

t−i

−i

([
cfi

i

]
,

([
c
tj

j

]
j 6=i

))
, τ−i (t−i)

]
=

Ri [fi (t−i) , pi (t−i) , τ (t−i)]and the re�nement ondition is satis�ed.6.4. Example 1 - making ations depend on types. The following examples illustrate theproperties of the ontrating equilibrium in the Bayesian ase. The �rst example, illustrates howontrating equilibrium an be used to make one player's ation depend on another player's type.This is something that annot be aomplished in the Bayesian equilibrium of the original game.In this example, the row player is privately informed and has one of two equally likely types, t1and t2. Eah player has two possible ations in the default Bayesian game, {a1, a2} for the rowplayer, {b1, b2} for the olumn player. The payo�s for eah of the row player's types are given inthe following tables:
b1 b2

a1 3, 3 −1, 4

a2 0,0 0, 0

b1 b2

a1 0,0 0,0
a2 −1, 4 3, 3

.This is a relatively simple oordination problem, save two things - the way the players want tooordinate depends on the row player's type, and if the olumn player learns the row player's type,his weakly dominate ation is inonsistent with the oordinated outome. The unique Bayesianequilibrium has player 1 using ation a1 if his type is t1 and ation a2 if his type is t2. The olumn



26 MICHAEL PETERS AND BALÁZS SZENTESplayer randomizes with equal probability between his two ations. The expeted payo�s to theolumn player are 3
2 , the expeted payo� to the row player is 1 for eah of his types.A mehanism designer an implement the oordinated outome s (t1) = (a1, b1) and s (t2) =

(a2, b2) by simply asking the informed agent his type, then instruting the uniformed agent whihof his ations to take. If either player refuses to partiipate, then they simply play the Bayesianequilibrium desribed above. The alloation is inentive ompatible and individually rational fromthe mehanism designer's perspetive.To show that the alloation rule s is implementable as a ontrat equilibrium, de�ne the om-mitment orrespondene r1 (t1) = {a1}, r1 (t2) = {a2}, r2 (t1) = {b1}, r2 (t2) = {b2}. Thisommitment orrespondene is measurable with respet to full information and implements thealloation s sine players never have any hoies to make ex post. It is inentive ompatible soit will be implementable if there is a type ontingent punishment that the row player an imposethat makes it unpro�table for the olumn player to try to exploit this type information.8 This isevidently the punishment p1 (t1) = {a2} and p1 (t2) = {a1}, sine this holds the olumn player'spayo� to zero no matter what he does.It might help at this point to desribe the way the ontrat equilibrium works in this example.The informed player writes a di�erent 'reiproal' ontrat for eah of his possible types. Theseontrats both speify the same target Godel ode, say n∗. The ontrat for type t1 says that ifthe Godel ode of the uninformed player's ontrat is n∗, then the informed player will ommit toation a1. If the Godel ode of the uninformed player's ontrat is anything else, then the informedplayer of type t1 will ommit to ation a2. The ontrat for t2 is similar with the ations reversed.Enoding these ontrats gives a pair of Godel odes, say m1 and m2, orresponding to eah ofthe informed player's possible ontrats. The uninformed player writes a ontrat that says thatif the Godel ode of the informed player's ontrat is m1, then he will ommit to b1, if the Godelode of the informed player's ontrat is m2, then he will ommit to b2, otherwise he will ommitto {b1, b2} and hoose among them ex post. The theorem above shows that there is a triple ofintegers (n∗, r1, r2) suh that the Godel ode of the uninformed player's ontrat is n∗.6.5. Example 2: ontrat equilibrium doesn't do as well as a mehanism designer.In the example just desribed, the ontrat equilibrium supports everything that a mehanismdesigner might want to implement. However, as we mentioned in the introdution to this setion,ontrat equilibrium imposes a restrition on feasible alloations. When a player deides to deviate,he knows that he will learn something about the types of the other players when he sees theirontrats. In addition, sine he an ondition his behavior on ontrats, he an make his deviationdepend on this type information.To illustrate the limitations that this imposes, onsider the following variant of the examplegiven above. There are again two players eah with two possible ations. The row player has8Of ourse, the uninformed player must also speify a punishment. For simpliity, we speify it below.



DEFINABLE AND CONTRACTIBLE CONTRACTS 27two possible types, either t1 or t2, whih are equally likely. The olumn player has no privateinformation. The payo�s for eah of the informed player's possible types are given in the followingtables:
b1 b2

a1 3, 3 −1, 4

a2 0, 4 2,−1

and b1 b2

a1 2,−1 0, 4

a2 −1, 4 3, 3

.The Bayesian equilibrium of this default game has eah player randomizing with equal probabil-ity over eah of his ations no matter what his information. The informed (row) player has payo�1 in this equilibrium no matter what his type, while the uninformed olumn player has payo� 5
2 .The Myerson mehanism designer has no problem implementing the alloation s (t1) = (a1, b1) and

s (t2) = (a2, b2). He does this by inviting the players to partiipate in a mehanism in whih heasks the row player to report his type. If he reports t1 then he instruts the players to use ations
a1 and b1, and similarly when type t2 is reported. By agreeing to partiipate, the players ommitthemselves to follow the mehanism designer's instrution. This is inentive ompatible beausethe row player's payo� falls from 3 to 2 if he misreports his type. The alloation is individuallyrational in the usual mehanism design sense as long as a refusal to partiipate by either playerresults in both players playing the (unique) Bayesian equilibrium of the original game.This alloation rule annot be implemented as a ontrat equilibrium. Aording to Theorem 3,to implement it, there must be a type ontingent ommitment that the row player an make, andsome spei�ation of the row player's ations ex post that hold the olumn players payo� below
3 when he simply ommits to hoose his from his possible ations b1 and b2 ex post. To see thatthere is no suh punishment, observe that if π is the probability with whih the row player usesation a1 in the ex post game, then the olumn player's payo� when the row player has type 1 is

max [π3 + (1 − π) 4, π4 − (1 − π)] =

max [4 − π, 5π − 1] ≥
19

6
.The argument is idential when the row player has type 2. No suh punishment exists. Thus byTheorem 3, there is no ontrat equilibrium that supports this outome.As before, if there were a ontrat equilibrium that ould support this outome, then the olumnplayer has to take an ation that depends on the row player's type. In priniple, he an do thisbeause he an ommit himself to an ation that depends on the row player's ontrat, whih inturn depends on the row player's type. However if the olumn player knows that the ontrat willreveal the row player's type, then a deviation to a ontrat that simply allows the olumn playerto take his ation ex post has to be pro�table.6.6. Payo�s lie between the Bayesian equilibrium and those implementable by a meh-anism designer. This �nal example is intended to illustrate a number of things. First, it showsthat the ontrat equilibrium implements stritly more than the Bayesian equilibrium of the default



28 MICHAEL PETERS AND BALÁZS SZENTESgame, but less than what is implementable by a mehanism designer. Seond, it has non-degenerateommitment and punishment orrespondenes, both of whih are type dependent.The example also illustrates how randomization an be inorporated into the �nal stage of theontrating proess when players hoose ations from their ommitment orrespondenes. We haveignored randomization in the statement of our main theorem to simplify. This example illustrateshow the extension works.The row player has three equally likely types supporting payo�s given in the following tables:
t1 b1 b2

a1 3, 3 −1, 4

a2 0, 4 2,−1

t2 b1 b2

a1 2,−1 0, 4

a2 −1, 4 3, 3

t3 b1 b2

a1 −2,−2 4,−1

a2 0, 4 2, 11
4The payo�s in the �rst two boxes are the same as they were in the seond example disussedabove. The unique Bayesian equilibrium for this game has the uninformed player randomizingequally between b1 and b2. The informed player randomizes equally when his types are t1 and

t2, but hooses a1 with probability 5
9 when his type is t3. The payo� to the informed player is 1no matter what his type, while the payo� to the uninformed player is 2. A Myerson mehanismdesigner an implement the alloation rule s (t1) = (a1, b1), s (t2) = s (t3) = (a2, b2) exatly as hedoes in the �rst example, by asking the informed player his type, then telling both players whatations to take. This alloation an't be supported as a ontrat equilibrium. The argument isexatly as in the seond example above, sine the ontrat equilibrium has to enfore di�erentations when the row players types are t1 and t2.However, the alloation in whih both players randomize equally between their ations whenthe row player has type 1 or type 2, while the ations a2 and b2 are taken when the row playerhas type 3 an be supported as a ontrat equilibrium. This alloation is measurable with respetto the information partition {{t1, t2} , {t3}} so the ommitment and punishment orrespondenesan depend on the row player's type. In partiular, the ommitment orrespondene we want is

r1 (t1) = r1 (t2) = {a1, b1}, r1 (t3) = {a2}, while r2 (t1) = r2 (t2) = {b1, b2} and r2 (t3) = {b2}. Thepunishment orrespondene for the row player is again multi-valued p1 (t1) = p1 (t2) = {a1, a2},while p1 (t3) = {a1}. The olumn player punishes with {b1, b2} for all deviations.The behavior to be supported involves randomization among the hoies in the ommitmentorrespondene. This an be inorporated in a straightforward way by requiring that the mappings
s (t) and si (t−i) have their range in the set of mixtures over ations whose support lies within theappropriate ommitment orrespondene. So in the example, si (t1) =

{
1
2 , 1

2

}
= si (t2) while

si (t3) = {0, 1} for i = c, r. The behavior during the punishment phase is de�ned similarly.Consider the ase where the olumn player deviates. Let sc (f, t1) = sc (f, t2) =
{

1
2 , 1

2

} foreah f , and sc (f, t3) = {1, 0} as is required by the punishment orrespondene. A deviationis a type ontingent ommitment f that has to be measurable with respet to the informationpartition {{t1, t2} , {t3}}. As an example, take f (t1) = {b1, b2} = f (t3) while f (t3) = {b1}. The



DEFINABLE AND CONTRACTIBLE CONTRACTS 29punishment has to make this and all other measurable type ontingent ommitments unpro�tablegiven the olumn player's interim beliefs. It is straightforward to hek that it aomplishes this.One way to implement this in a ontrat equilibrium is to have the row players types t1 and t2both o�er the same ontrat whih ommits them to {a1, a2} whatever ontrat the olumn playero�ers. When the row player has type t3 he o�ers a ontrat that ommits him to a2 if the olumnplayer o�ers a ontrat whose Godel ode is equal to some target n∗
c , but ommits to a1 againstany other Godel ode. The Godel ode of this ontrat is, say n∗

3. The olumn player o�ers aontrat that ommits to b2 if the Godel ode of the row player's ontrat is n∗
3, but ommits to

{b1, b2} against any other ontrat.7. Independent Private ValuesAn environment that is of some interest in appliations is the independent private value en-vironment. The lassi �rst or seond prie aution models are typial examples. However, thetratability of suh models makes them popular. For the independent private value environmentwe an use our theorem to provide something that looks like a folk theorem for Bayesian equilib-rium. For our purposes, this 'folk theorem' is interesting beause it suggests an environment whereontrats an be used to fully deentralize the mehanism designer's problem.Players have private values if ui (a, (ti, t−i)) = ui

(
a,
(
ti, t

′
−i

)) for all a ∈ A, t−i, t′−i ∈ T−i(players' payo�s don't depend on other players' types). Types are independently distributed if
E (f (t−i) : ti) = E (f (t−i) : t′i) for every i, ti, t′i and every integrable funtion f .Theorem 2. Let s : T → A be an alloation rule that is implementable by a entralized mehanismdesigner in an independent private value environment. Then the alloation s an be supported asa Bayesian equilibrium in ontratable ontrats.Proof. An alloation rule is implementable by a mehanism designer if there is a olletion ofpunishments si : T−i → A−i, where si

j is the punishment partiipants will impose on player i if hehooses not to partiipate suh that for eah ti and t′i

Et−i
(ui (s (t) , t) : ti) ≥

Et−i

(
ui

(
ai, s−i

(
t′i, t

′
−i

)
,
(
ti, t

′
−i

))
: ti
)
;and

Et−i
(ui (s (t) , t) : ti) ≥

max
ai∈Ai

Et−i

(
ui

((
ai, s

i (t−i)
)
, (ti, t−i)

)
: ti
)
.We prove the theorem by onstruting the various omponents required by Theorem 3.Begin with the punishment si (·). We have from the private value and independene assumption

max
ai∈Ai

Et−i

(
ui

((
ai, s

i (t−i)
)
, (ti, t−i)

)
: ti
)

=

max
ai∈Ai

Et−i

(
ui

((
ai, s

i (t−i)
)
, ti
))

.



30 MICHAEL PETERS AND BALÁZS SZENTESLet g̃i be the distribution on A−i indued by the funtion si and the distribution of t−i and de�nethe punishment
s̃i (f, t−i) = g̃ifor eah t−i and every orrespondene f : T−i → Ãi that is measurable with respet to fullinformation (a set whih ontains all orrespondenes whih are measurable with respet to anyinformation struture). Then we have

Et−i
(ui (s (t) , t) : ti) ≥

max
ai∈Ai

Et−i

(
ui

((
ai, s̃

i (fai
, t−i)

)
, ti
))

=

max
ai∈Ai

E
(
ui

((
ai, g̃

i
)
, ti
))where fai

(t−i) = {ai} ∀t−i ∈ T−i. The important aspet of this punishment is that it does notdepend on t−i. Let τf
i be the full information partition of Ti with τ f =

∏
i τf

i . De�ne theommitment orrespondene ri (t) = {si (t)} and the punishment orrespondene pi
j (t) = Aj .These orrespondenes are both trivially measurable with respet to τ f . Furthermore, (5.1) holdstrivially sine the alloation must be inentive ompatible, and ri is always a singleton. Now forany ommitment orrespondene f measurable with respet to the full information partition τ f

−i,
Et−i

(
max

a∈fi(t−i)
Et′−i

(
ui

(
a, s̃i

(
fi, t

′
−i

)
, ti
)

: t′−i ∈ τ−i (t−i)
)

: ti

)
≤

(
max
a∈Ai

E
(
ui

((
a, g̃i

)
, ti
)))

≤

Et−i
(ui (s (t) , t) : ti) .So (5.2) is satis�ed. Then by Theorem 3, the alloation s is supportable as a ontrat equilibrium.From the proof above, it should be apparent that what makes the theorem work is the fat thatthe punishment that the mehanism designer uses to enfore partiipation has the same impat onthe non-partiipant no matter what he learns about the partiipants' types. This is a onsequeneof the private value assumption. Some interdependent value problems will also have this property.For example, in a trading problem, not being able to trade may be worse for a player than tradingno matter what he learns about the types of the others. Similar folk theorems are possible in suhenvironments. 8. ConlusionThis paper shows how the ontrats on ontrats approah an be extended to environmentswith inomplete information by restriting players to use de�nable ontrats. De�nable ontratsonstitute the largest lass of arithmeti ontrats whih an be written as a �nite text in a �rstorder language. In this sense de�nable ontrats embed most other interesting lasses of feasibleontrats as subsets.
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