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Abstract

Genes are assumed to generate choice behavior in an environment where there are

intertemporal tradeoffs. A gene survives the evolutionary process if it is not possible for

a rare mutant gene to grow at a faster rate. Our goal is to represent the choice behavior

of the surviving genes by a preference relation. We show that if choices affect the

number of offspring but not the descendants’ reproductive ability, this representation is

time consistent, the discount factor is the inverse of the population growth factor, and

the felicity functions are the products of the reproduction functions and the survival

probabilities.

We also show that if newborn offspring are heterogeneous, for example due to

transfers from parents, the preference representation is more subtle. The discount

factor is still the inverse of the population growth factor, but the felicity function is

essentially the sum of the expected discounted reproductive values of the individuals

whom the parents’ choices affect.
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1 Introduction

Most models in economics take preferences as given and derive the choices induced by

these preferences. We do just the opposite. We characterize the choice behavior that

would survive evolution and then represent this choice behavior with preferences. That

is, we identify the preferences that induce evolutionarily stable choice behavior.

We identify each choice behavior with a gene. Hence, the choices an individual makes

during her lifetime are determined by her genes, where these are inherited from her parents.

In the simplest case, without sexual reproduction, populations can be defined as a group of

individuals having the same genes. Populations with different genes may grow at different

rates. Only those genes that induce the highest possible population growth rate given the

physical environment survive evolution.

Our focus is on time preferences. Hence, individuals in our model face intertemporal

trade-offs: Their current choices affect their lives in the future. In particular, current

choices affect not only current reproduction but also reproduction in the future. We show

that the behavior associated with the gene that survives evolution has a simple utility

representation. The surviving gene has a time-consistent utility representation in which the

discount factor is the inverse of the population growth factor and the instantaneous utility

functions are the products of the reproduction functions and the survival probabilities. A

simple example illustrates our approach and some of our results.

Example. Suppose that an individual survives for sure from age zero to age one, and

survives with probability p from age one to age two, but then dies. She has one unit of

endowment which she can split between the ages one and two. In each of these periods, if

she is alive, she transforms her endowment into offspring according to a concave, increasing

reproduction function f . That is, if an individual is alive and uses x of her endowment

in a certain period, then she produces f (x) expected offspring in that period. Assume

that f 0 (0) = ∞. Each individual faces the same environment. A gene is a decision rule
x ∈ [0, 1], determining the use of the endowment in the first period. The endowment
available in the second period is 1−x. Since offspring have the same gene as their parents,
they use the same rule.

Fix a gene, x, and denote the number of individuals who are one year old at time t by

yt. The following equation recursively defines the law of motion of yt:

yt+1 = f (x) yt + pf (1− x) yt−1.
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Indeed, all one year old individuals at time t, yt, allocate x to reproduction. Hence, the

number of one year old individuals at time t+ 1 who had one year old parents at birth is

f (x) yt. Similarly, pf (1− x) yt−1 is the number of one year old individuals at time t+ 1

whose parents were two years old when they were born.

Dividing both sides by yt yields

yt+1
yt

= f (x) + pf (1− x)
yt−1
yt

.

It can be shown that there exists a value of g such that yt+1/yt = g asymptotically. That

is, no matter what the initial proportions of one-year-old and two-year-old individuals in

the population, the gene x generates a constant asymptotic growth factor g. Therefore,

the previous equation can be rewritten as

g2 = gf (x) + pf (1− x) .

Let g (x) denote the positive solution of this equation for g. Then

g2 (x)− f (x) g (x)− pf (1− x) ≡ 0 for all x ∈ [0, 1] .

After differentiating this identity,

2g (x) g0 (x)− f (x) g0 (x)− f 0 (x) g (x) + pf 0 (1− x) = 0.

Let x∗ denote the gene generating the largest possible growth rate and set g∗ = g (x∗).

Since x∗ maximizes g, it satisfies the first-order condition g0 (x∗) = 0. The previous

displayed equation for x = x∗ becomes

f 0 (x∗) = pf 0 (1− x∗) /g∗.

This equation implies that the optimal decision x∗ solves

max
x

f (x) +
pf (1− x)

g∗
. (1)

Equation (1) means that when an individual makes choices, she behaves as if she

maximizes the expected discounted value of her offspring, with the discount factor equal

to the inverse of the population growth factor.1 The intuition behind this observation is

the following. If the population is in steady state growth, with growth factor g, the value

1 In this example, the optimal choice is just one point. The representation in (1) cannot then be unique.

3



of an offspring today, measured by her relative contribution to the gene pool, is g times

as high as that of an offspring tomorrow. Thus offspring born a period later should be

discounted by g.

The paper substantially generalizes the result in the example. In particular, the re-

production function and the choice set of an individual are allowed to depend on previous

decisions, the age of the individual, and random variables. We also sketch why, if the

set of choice problems an individual might face during her lifetime is rich enough, the

preferences are uniquely identified.

We generalize the argument by introducing a carrying capacity constraint into our basic

model. The constraint means that per capita reproduction is a decreasing function of total

population and converges to zero as the total population goes to infinity. Such a constraint

forces the long-run growth factor to be one. Nonetheless, the choice behavior that survives

evolution still maximizes the growth factor. With this constraint, our model still predicts

that utility functions are identical to reproduction functions, but the discount rate is forced

to be zero. Hence, impatience depends merely on variations in expected fertility.

Offspring in the example are homogeneous. An individual’s decision affects only the

number of her offspring, not their reproductive ability. We also consider a model where

individuals’ choices influence the reproductive abilities of their descendants and, as a result,

offspring are heterogeneous. For example, a parent might donate some of her resources to

her offspring. Offspring with rich parents are likely to reproduce more than offspring with

poor parents. In the presence of such altruism, the surviving gene no longer maximizes

the discounted present value of offspring, and the utility representation becomes more

subtle. An individual’s reproductive value must be generalized beyond just the discounted

present value of the expected number of offspring. We show that the surviving gene still

has a time-consistent expected utility representation. The discount factor is the inverse

of the population growth factor. The utility function at age t is the weighted sum of the

generalized reproductive values of all individuals affected by the choices an individual

makes at age t.

As a final key step towards greater realism, we introduce sexual reproduction into our

model. This has substantial implications for which gene survives. To see this, suppose that

parents can transfer resources to their offspring, and the reproductive value of offspring

depend on these transfers. Further assume that an offspring inherits the gene of one of her

parents, with equal probabilities for that of each parent. A parent cannot recognize the

gene of the offspring. The surviving gene tends to make a smaller transfer to her offspring
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because this offspring may not share this gene with the parent. The parent would rather

use the resources released to improve her own reproductive value.

In this case, the surviving choice behavior maximizes its growth rate as if its frequency

was zero in the population. The reason is the following. Take a population with a given

gene. Under what conditions is it impossible for this population to be invaded by a

mutant? Suppose then that an arbitrarily small proportion of the population is replaced

by mutants. Mutants grow fastest initially if they maximize their growth rate taking

into account that their frequency in the population is zero. Also notice that mutants can

grow as fast as the original population just by following the same choice behavior. Hence,

the only way to ensure that the mutants cannot grow strictly faster than the original

population is for the choice behavior of the original population to maximize the growth

rate of the associated gene as if its frequency was zero.

This implies that individuals still maximize the discounted present value of the sum

of the expected reproductive values of all individuals affected by the choices, but they

discount their offspring by an additional factor of two, their grandchildren by four, etc.

This is because, if a gene’s frequency is zero in a population, then the probability of the

other parent having the same gene is zero, and hence, the probability that the offspring

has the same gene is one half. This argument provides a rationale for why individuals

discount their grandchildren twice as much as their children. This discounting arises even

though, in the evolutionary equilibrium, all individuals have the same gene.2

Literature Review

Numerous papers contain the idea that evolution can at least partially explain prefer-

ences. The first is probably Becker (1976), who uses an evolutionary argument to explain

altruism. Most papers on the evolution of preferences focus on attitudes towards risk and

altruism. Overviews of the theories on the relationship between biology and economic

behavior can be found in Robson (2001 and 2002). Here we review only some papers

concerned with the evolution of time preferences.

The paper most closely related to ours is Rogers (1994). The author has exactly the

same goal as we do: to explain time preferences by natural selection. Unfortunately,

there are several problems with Rogers’ model and analysis. Most importantly, perhaps,

2Bergstrom (1995) analyzes games played by siblings. He concludes that the strategy that cannot be

invaded by a mutant chooses an action as if the opponent mimics this action with probability half. This

is the same principle as here. That is, although, in equilibrium, siblings have the same genes and take the

same actions, they behave as if this probability was only a half.

5



the preferences pinned down by Rogers do not generate evolutionarily optimal choice

behavior, because his analysis applies the wrong notion of reproductive value. We discuss

these issues in detail in Section 4.3. Robson and Szentes (2007) analyzes an example that

fits to the framework of Rogers and provides a detailed discussion about the problems

associated with Rogers (1994).

Hansson and Stuart (1990) consider a neoclassical growth model in which clans compete

for shares of resources. A clan’s production depends on the stock of clan-specific capital

and on the total population of all clans. The clans face a carrying capacity constraint,

meaning that per capita production decreases as total population rises. An individual

is active for only one period, and a clan’s behavior is described by a consumption-saving

decision. Higher consumption results in higher immediate population growth but a smaller

capital stock, and hence smaller output, for the next generation. The carrying capacity

constraint means that the clans’ size must be constant in the long-run equilibrium. As a

result, evolution selects clans with a zero rate of time preference. Agents maximize the

per capita steady state consumption of current and future generations.

Robson and Wooders (1997) also derive a zero rate of time preference in a growth

model where total output depends on capital and labor. Both labor and capital in the

model can be of many types. The per capita income of each type of labor determines its

growth rate. The authors show that when the balanced growth rate is maximized, income

must be distributed across individuals in accordance with marginal product pricing.

Both Hansson and Stuart (1990) and Robson and Wooders (1997) contribute to under-

standing the discounting of future generations. However, the choice problems that these

papers investigate are not sufficient to characterize individual preferences and to establish

a tight relationship between utility functions and fertility. In particular, the conclusion

regarding the zero rate of time preference is an artifact of the simplicity of the choice

problems.

Two recent papers conclude that evolution might produce time-inconsistent prefer-

ences. Samuelson and Swinkels (2005) assume that agents cannot process information

perfectly. Agents make decisions based on incorrect priors. As a result, time-inconsistent

preferences can survive evolution because they compensate for faulty information process-

ing.

Dasgupta and Maskin (2005) argue that, during the evolutionary process, individuals

could have faced the following type of typical choice problem. There are two random

options, A and B. At time zero, option A is more attractive than option B. However, if A
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has not yielded fruit after some time, option B becomes more attractive. As a result, an

individual rationally chooses option A at time zero and switches to option B after some

time. The authors argue that in modern times, individuals face atypical situations, which

they did not face during the evolutionary process. They associate each modern option

with an option more typically available before, perhaps A or B, for example. This may

generate actual time inconsistency. In other words, Maskin and Dasgupta (2005) take the

view that although evolution optimally shaped behavior, individuals behave suboptimally

in civilized society. Unlike Samuelson and Swinkels (2005) and Maskin and Dasgupta

(2005), we assume that neither the information structure nor individuals’ choice problems

change over time.

2 The Basic Environment

2.1 The Model

Time is discrete, and an individual lives for at most T periods. In every period, the

individual has to make a choice from a certain set. These choices affect three objects

related to the life of this individual: her choice sets in the future, her probabilities of

survival, and the expected number of her offspring.

The Choice Sets.– The choice set at age t is a subset of Ω and is determined by the

history of previous decisions and a stochastic variable. Let ct denote the choice of an

individual at age t, and ct the history of choices up to age t, (c1, ..., ct). Let st be the

realizations of a random variable that affects the choice set of the individual at age t. The

random variables,
©
st
ªT
1
, can be autocorrelated and can be influenced by previous choices.

Let βt denote
¡
ct−1, st

¢
and let Bt denote the set of all possible realizations of βt. Finally,

bt (βt) ⊂ Ω denotes the set from which an individual chooses at age t.

Fertility and Survival Probabilities.– An individual’s choices and other random vari-

ables determine her survival probabilities and the expected number of her offspring. As-

sume that a newborn survives to age one with probability p0. The survival probability

from age t to age t+ 1 is pt (ct, αt), where αt =
¡
ct−1, st

¢
, and st is a realization of a ran-

dom variable age t. The expected number of offspring at age t, conditional on being alive,

is denoted by ft (ct, αt). We refer to ft as the age-t reproduction function. The random

variables,
©
st
ªT
1
, can again be autocorrelated and influenced by previous decisions. We

also allow st and st to be correlated. Let At denote the set of possible realizations of αt.
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The Genes.– Let Ct denote At×Bt, and γt = (αt, βt). Let µt
¡· : γt−1, ct−1¢ denote the

probability measure over Ct conditional on
¡
γt−1, ct−1

¢
.3 We define a gene as a collection of

choice functions, {ct}Tt=1, where ct : Ct → Ωt, such that ct (αt, βt) ∈ bt (βt) for all βt ∈ Bt.

That is, if an individual with a gene {ct}Tt=1 faces a choice set b at age t, and γt = (α, β),

she chooses ct (α, β) ∈ b. Since offspring have the same genes as their predecessors, they

make the same choices.

We have set up an abstract model to illustrate the generality of the results in this

section. The following examples might illuminate the set-up here.

Example 1. Suppose that T = 2 and there is a single consumption good that can be

transformed into offspring. The individual receives endowments according to a random

process. Let Ii denote the endowment at age i (i = 1, 2). She can save at an interest factor

R (≥ 0). The individual survives until the age of two for sure, that is, p0 = p1 ≡ 1. The
number of offspring at age one is (h1c1)

θ where c1 is the consumption in the first period,

h1 (∈ R) is a realization of a random variable determining the health of the individual at

age one, and θ is a constant. The number of offspring at age 2 is (ϑc1 + c2)
θ, where c2 is

the consumption at age two and ϑ is a constant.

The choice set of the individual at age one is determined by I1, that is, s1 = β1 = I1.

She can choose to consume anything in [0, I1], therefore b1 (β1) = [0, I1]. Her second

period choice set depends on her endowments, I1 and I2, and also on her consumption in

the first period, c1, that is, β2 = (c1, I1, I2) and b2 (β2) = R (I1 − c1) + I2. The fertility of

the individual at age one is determined by h1 and, at age two, it is influenced only by c1.

Therefore, α1 = s1 = h1 and α2 = c1.

The next example shows that our model is general enough to accommodate the follow-

ing trade-off of central biological interest. If an individual allocates more of her resources

to reproduction her probability of survival decreases.

Example 2. Suppose that T = 2, and the individual receives random resources at

ages one and two. Let y1 and y2 denote the amounts of these resources, and assume that

y1, y2 ∈ (0, 1). These resources represent the energy the individual has to allocate among
different activities. The individual survives from age zero to age one with fixed probability

p0. At age one, the individual allocates energy e1 ≤ y1 to self-preservation, so surviving

3This notation allows events more than one period before age t to influence the distribution of γt,

because γt−1 can summarize those events. We do not need any Markovian restriction on the distributions

of random variables.
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from age one to age two with probability e1. The individual at age one also allocates

energy r1 ≤ y1 − e1 to reproduction, so her expected number of offspring at age one is

A (r1)
θ, where A, θ > 0. The expected number of offspring of the individual at age two

conditional on being alive is simply A (y2)
θ. Thus, the only choice the individual has is to

allocate y1 between e1 and r1.

The choice set of the individual at age one is determined by y1, that is, s1 = β1 =

y1. She can choose any (e1, r1) ∈ R2+ as long as e1 + r1 ≤ y1, therefore c1 = (e1, r1)

and b1 (β1) = {(e1, r1) ∈ R+ : e1 + r1 ≤ y1}. The fertility of the individual at age one is
determined by r1 alone, so α1 = s1 = ∅. At age two, the fertility is influenced only by y2,
so α2 = y2.

Our objective is to analyze the genes that induce the highest population growth rate.

We assume that at time zero there is a measure λt (∈ (0, 1)) of individuals of age t, all
having the same gene. To apply the law of large numbers, we assume that the random

variables described above are independent across individuals. Thus, although individuals

face uncertainty, there are no aggregate shocks. We shall argue that the population growth

rate corresponding to a gene is asymptotically constant and does not depend on the initial

conditions, {λt}Tt=1.
Population growth. – Fix a gene c = {ct}T1 . Let at (c) denote the expected number of

offspring of a t-year-old individual having gene c, where the expectation is formed at age

zero.4 Let yτ denote the measure of newborns at time τ . The law of motion of yτ is:

yτ =
TX
i=1

yτ−iai (c) . (2)

Pollard (1973), in Chapter 4.6, shows that if an equation like (2) describes the evolution of

generations, then the population asymptotically grows at a fixed rate, so yτ/yτ−1 ≡ g (c)

asymptotically. Hence (2) can be rewritten as

g (c) =
yτ
yτ−1

=
TX
i=1

yτ−i
yτ−1

ai (c) =
TX
i=1

i−2Y
j=0

yτ+j
yτ+j+1

ai (c) =
TX
i=1

ai (c)

g (c)i−1
. (3)

Given a gene c, the polynomial defined by (3) has T complex roots. The population

growth factor is the largest modulus of any of these roots. Indeed, the root with the largest
4Formally,

at (c) =

Z
· · ·
Z

p0
t−1Q
i=1

pi (ci (γi) , αi) ft (ct (γt) , αt)µt
¡
γt : γt−1, ct−1

¡
γt−1

¢¢ · · ·µ1 (γ1) .
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modulus is itself a positive real number (Pollard (1973) Chapter 4.6). Given equation (3),

we can restate our objective formally: We seek to identify the gene, c, that maximizes

g (c) defined by (3).

In order to guarantee that the integrals defining {at (c)}Tt=1 exist and that there exists
a gene that maximizes the growth rate we need additional assumptions on the primitives

of our model. It is clearly sufficient to assume that Ω and Ct are compact and pt, ft are

continuous for t = 1, ..., T .5

2.2 Results

Our goal in this section is to find a utility representation for the choices of the surviving

genes. That is, we want to find a function, mapping from choices to real numbers, that is

maximized by the surviving gene.

Recursive utility representation. – The collection of utility functions {Ut} represents
the collection of choices {ct}Tt=1 if

cT (γT ) = arg max
c∈bT (βT )

UT (c, αT ) ∀ γT ∈ CT (4)

and, for all t < T and γt ∈ Ct,

ct (γt) = arg max
c∈bt(βt)

Ut (c, αt) +Et

Ã
TX

i=t+1

Ui (ci, αi) | γt, c
!
. (5)

A recursive utility representation automatically implies a certain form of time con-

sistency. The solution to an individual’s maximization problem at age t involves her

expectations about her decisions at ages t + 1, . . . , T . These expectations must be cor-

rect. Since the vector βt directly influences only the choice sets, we do not allow the

instantaneous utility to directly depend on this vector.6

Theorem 1 The surviving gene has this utility representation:

Ut (ct, βt) =
p0
Qt−1

i=1 pi (ci, αi) ft (ct, αt)

(g∗)t
, (6)

where g∗ is the largest growth factor satisfying (3).
5Alternatively, one can assume that Ω and Ct are finite sets for t = 1, ..., T .
6Allowing βt to influence ft would be similar to letting prices enter preferences in standard consumer

theory.

10



Theorem 1 implies that an individual who has the surviving gene behaves as an ex-

pected utility maximizer with geometric discounting. The age-t instantaneous utility func-

tion is the age-t reproduction function multiplied by the survival probability to age t. The

discount factor is the inverse of the population growth factor.7

Note that an age-t individual then maximizes

E
TX
i=t

Qi−1
j=t pj (cj , αj) fi (ci, αi)

(g∗)i−t
. (7)

This expression is the discounted present value of the expected number of offspring, con-

ditional on being alive at age t. Fisher (1958) refers to (7) as the reproductive value of an

individual.

Proof. Let C denote the set of genes that have recursive utility representation defined by

(6). Let C denote the set of those genes that maximize the growth factor, g, characterized

by (3). It is obviously enough to show that C = C.

The definition of recursive utility representation yields that {Ut}Tt=1 represents the gene
c = {ct}Tt=1 if and only if c is a solution for a T -period stochastic dynamic programming
problem where the return function at time t is Ut and there is no discounting. It is

well-known that c is a solution for this problem if and only if c maximizes

E0

Ã
TX
i=1

Ui (ci, αi)

!
,

when subject to the same constraints that appear in (4) and (5). Therefore, c = {ci}Ti=1 ∈
C if and only if c maximizes the discounted age-one value of offspring, where the discount-

ing is done according to g∗, and the expectations are formed at age zero. The discounted

age-one value of the expected number of offspring of an individual is the right-hand-side

of (3),
PT

i=1 ai (c) / (g
∗)i−1.

Suppose that c = {ci}Ti=1 ∈ C and c = {ci}Ti=1 ∈ C. We show that c ∈ C and c ∈ C.

Let g (ec) denote the growth factor induced by ec. Then
g∗ =

TX
i=1

ai (c)

(g∗)i−1
≤

TX
i=1

ai (c)

(g∗)i−1
≤

TX
i=1

ai (c)

g (c)i−1
= g (c) .

7This discount factor is not the familiar discount factor in economics associated with the pure rate of

time preference. This is a convenient way to proceed here with no substantive implications. For one thing,

the pure rate of time preference is often taken to incorporate mortality. But it is convenient that the

present discount factor does not vary with age, despite mortality rates and reproduction functions that

may well do so. Indeed, this age dependence implies it is not possible to even define a pure rate of time

preference here in a straighforward way.
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The first inequality follows from c ∈ C, that is, c maximizes the discounted age-one value

of offspring at age zero. The second inequality follows from the observations that the

right-hand side of (3) is weakly decreasing in g and g∗ ≥ g (c). The equalities are (3)

for c = c and c = c respectively. Since g∗ is the maximum growth factor, it follows that

g∗ ≥ g (c), and hence, both inequalities must hold with equality. But

TX
i=1

ai (c)

(g∗)i−1
=

TX
i=1

ai (c)

(g∗)i−1

implies that c ∈ C. Finally, g∗ = g (c) implies that c ∈ C.

Identification of preferences. – A natural question is: Under what circumstances is the

utility representation unique? Recall from standard consumer theory that the preferences

of a consumer can be deduced from her behavior only if she faces enough choice problems.

That is, to identify a consumer’s preferences, one must observe the choices she makes from

various budget sets. Similarly, our utility representation of the surviving gene is unique

if and only if there is enough variation in the resource constraints. Instead of developing

a general uniqueness theorem, we show by example that the representation is unique if

there is enough variation in the resources an individual potentially has.

If {Ut}Tt=1 is a utility representation of the surviving gene and Vt = θUt + θt, where

θ, θ1, . . . , θT ∈ R+, then {Vt}Tt=1 is also a utility representation of the gene. Hence we show
uniqueness only up to these linear transformations.

Example 3. We modify the example described in the introduction as follows. An

individual still lives for two periods and has the reproduction function f and survival

probability p (> 0). However, a newborn individual has endowment b ∈ (0,∞) to allocate
between the two periods and faces a saving technology characterized by R ∈ (0,∞). The
numbers b and R are realizations of independent random variables with full support on R+,
and are independent across individuals. If an individual saves b− x of her resources, she

receivesR (b− x) one period later. In this example, a gene is a function c : (0,∞)2 → [0, 1].

That is, if an individual has endowment b and can save at interest factor R, she uses c (b,R)

of her endowment in the first period and R (b− c (R)) in the second period.

An argument identical to the one used in the example in the introduction yields that

the following first-order condition uniquely identifies the surviving gene:

f 0 (c (b,R)) =
Rpf 0 (R (b− c (b,R)))

g∗
for all (b,R) ∈ (0,∞)2 , (8)

where g∗ is the largest possible growth factor.
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For all x, y ∈ (0,∞), there existR, b ∈ (0,∞) such that c (b,R) = x andR (b− c (b,R)) =

y.8 Let R (x, y) denote the interest factor corresponding to x and y. The first-order con-

dition, (8), can be rewritten as

f 0 (x) =
R (x, y) pf 0 (y)

g∗
for all x, y ∈ (0,∞) .

Now suppose that {U1, U2} are the instantaneous utilities in the preference repre-
sentation. Then, by (8), {U1, U2} must satisfy the following first-order condition for all
x, y ∈ (0,∞):

U 01 (x) =
R (x, y)U 02 (y)

g∗
. (9)

Fix x0 ∈ (0,∞). Since the utilities can be determined only up to a linear transformation,
normalize U 01 (x0) to be f 0 (x0). To establish uniqueness up to linear transformations, we

now show that U 01 = U 02 = f 0. Indeed, for all y ∈ (0,∞),

U 02 (y) =
g∗U 01 (x0)
R (x0, y)

=
g∗f 0 (x0)
R (x0, y)

= pf 0 (y) ,

where the first equality follows from (9), the second one from the normalization of U 01 (x0),

and the third one from (8). Then from (9), for all x ∈ (0,∞),

U 01 (x) =
g∗U 02 (y)
R (x, y)

=
g∗pf 0 (y)
R (x, y)

= f 0 (x) .

Commonly used preferences. – Next, we investigate the conditions under which The-

orem 1 implies various restrictions on preferences that are often used by economists. A

desired and often required property of preferences in dynamic models is time separability.

Remark 1 The utility representation of the surviving gene is time separable if and only

if the reproduction functions and survival functions do not depend on previous choices.

Although, in general, utilities do depend on past choices, they never depend on fu-

ture choices because future choices do not influence an individual’s reproductive output.

Therefore, our theory rejects those behavioral preferences in which the anticipation of

future events directly enters into the felicities.

In addition to time separability, most models assume that an agent’s utility function

is age invariant.
8To see this, note that, if R = f 0 (x) / [g∗pf 0 (y)] and b = x + y/R, the first-order condition in (8) is

satisfied.
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Remark 2 The utility representation of the surviving gene is time separable and the in-

stantaneous utility function is the same at all ages if and only if the reproduction functions

and survival functions depend on neither previous decisions nor age.

Most economic models also assume that the realization of states of the world has no

impact on utility. Our model predicts that this is true only as long as the state of the

world has no impact on fertility.

Remark 3 The instantaneous utilities in the preference representation of the surviving

gene are state independent if and only if the reproduction function and survival function

do not depend on these states.

A carrying capacity constraint.–A simple way to model a carrying capacity constraint

is as follows.9 Assume that the reproduction function depends on total population, N ,

so the expected number of offspring at age t is ft (ct, αt, N), where ∂ft/∂N < 0 and

limN→∞ supct,αt ft = 0.

If, for a fixed N , a choice behavior induces a growth factor larger than one, the to-

tal population increases, which slows reproduction. Hence the population’s growth rate

declines and eventually is forced to be zero. Therefore, in a steady state, the total pop-

ulation must be constant, say at N∗. The choice behavior that survives evolution still

maximizes g subject to (3). There is an additional constraint, however–-N∗ must be

such that the g defined by (3) is equal to one.

The recursive utility representation with a carrying capacity constraint is identical to

the representation described in Theorem 1, with g∗ = 1. Any impatience is due to the

age dependence of expected fertility. For example, individuals might prefer immediate

rewards if fertility declines with age, so they can transform resources into offspring more

efficiently today than tomorrow.

3 Altruism and Sex

This section develops the basic model further to provide a richer theory of intertemporal

choices. So far, we have assumed that an individual’s choices affect only the number of her

offspring. In the first place, then, we consider a model in which an individual can transfer

some of her endowment to her offspring, which increases their reproductive ability at the
9Hansson and Stuart (1990), for example, also introduce such a constraint.
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cost of reducing her own. Such transfers derive from a parental endowment that may

vary with parental age. Second, we explore the consequences of sexual reproduction. This

reduces the level of parental concern for offspring. Both of these extensions have serious

implications for the preferences representing the evolutionary optimal behavior.

3.1 Altruism

The utility representations in this section differ from those above because newborn indi-

viduals are no longer identical. As a consequence of the ability to transfer resources to

future generations, individuals with wealthy parents are likely to receive more transfers

and reproduce more. We shall show that the surviving gene therefore does not behave as

if it maximizes the discounted present value of the expected number of descendants. Two

offspring produced by a given individual at different ages may have different reproductive

abilities and make different asymptotic contributions to the gene pool, so their value is

different.

Suppose that an individual lives for at most T periods. In each period, the individual

produces (asexually) exactly one offspring if she is still alive. Furthermore, at age t, an

individual receives endowment It. The endowment It is a random variable distributed on

R+ according to a c.d.f. Gt. An individual of age t survives until the next period with

probability pt (ct), where ct is the individual’s consumption at age t, and pt is increasing.

A newborn offspring surely survives until age one. A parent can transfer part of the

endowment to her newborn offspring, who will certainly save it to age one, given that

survival to age one is automatic. Let st (It) denote the parental transfer to an offspring

produced at age t if the parental endowment is It. The parent consumes whatever she

does not transfer. One period later, the now one year old offspring receives Rs (It), where

R ∈ R+. For simplicity, when a one-year-old individual determines her transfer to her
current newborn, she observes neither the income derived from her parent nor her parent’s

age. This one year old then consumes all of her remaining income and the transfer from

her parent. A gene is a profile of saving decisions, {st}T−11 , where st : R+ → R+.
Each individual in this model faces a trade-off: Consuming more increases the individ-

ual’s own survival probability but decreases the probability that her newborn child will

survive from age one to age two.

From the evolutionary perspective, it is often plausible that parents can only make

transfers to their newborns but not to their older offspring. Indeed, parents in most
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species are only in contact with their children at very early ages. Note also that one could

interpret saving, in general, as body fat accumulation.

We could have specified a more complicated model in which individuals might have

more than one offspring in each period, save for their own future, transfer resources to

offspring older than one, or where consumption affects not only survival probabilities but

also fertilities. However, the simple model is enough to demonstrate some of the subtleties

associated with choices that have effects on the reproductive abilities of offspring.

Population growth and the surviving gene. – Fix a gene {si}T−11 . Introduce the fol-

lowing notation:

p1 (s) =

Z
R+

p1 (I1 − s1 (I1) +Rs) dG1 (I1) .

That is, p1 (s) denotes the ex-ante probability that a newborn offspring survives until age

two, given that her parent transferred s to her. Further, let

P j
1 =

Z
R+

p1 (sj (Ij)) dGj (Ij) , j = 1, ..., T

then denote the ex-ante probability that a newborn offspring survives until age two, given

she had a parent of age j.10. Let µj denote the steady state probability that an individual’s

parent is of age j. Then the unconditional probability of surviving until age two is

P1 =
TX
j=1

µjP
j
1 .

Furthermore, let

Pj =

Z
R+

pj (Ij − sj (Ij)) dGj (Ij) , j = 2, . . . , T − 1,

be the probability that an individual of age j (j ≥ 2) survives until age j + 1. Let yτ
denote the number of newborn offspring at time τ . The following equation defines the

motion of yτ :

yτ = yτ−1 + yτ−2P1 + yτ−3P1P2 + · · ·+ yτ−TP1 · · ·PT−1. (10)

We show in the Appendix that the growth factor of the population in steady state is

10Recall, an offspring certainly survives until age one.
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implicitly defined by the following equation11

g = P 11

 1

g (g − 1) +
TX
j=3

j−1Q
k=2

Pk

gj−1 (g − 1)

+
TX
j=2

P j
1

gj−1

j−1Y
k=2

Pk. (11)

Recall that, in the case of homogenous offspring, the right-hand side of the growth equa-

tion, (3), could be interpreted as the reproductive value of a newborn. We now show that

the right-hand side of (11) has a similar natural interpretation.

Intuition and reproductive values. – It is less clear how one should define an indi-

vidual’s reproductive value in this model. A newborn individual with a wealthy parent

receives a high transfer and is more likely to survive from age one to age two. How, then,

can one compare the reproductive values of two newborns? Notice that at age two, before

the realization of I2, all individuals are identical. Hence, a candidate for measuring the

reproductive value of an individual is the discounted present value of the expected number

of all two-year-old descendants, where the discounting factor is again the growth factor.

Fix a gene s = {st}T−11 . Let Vt (g, s) denote the reproductive value of an individual at

age t, the discounted value of the expected number of two-year-old descendants, discounted

by the factor g. At age T , an individual has one offspring who will survive until age two

with probability PT
1 . Since the offspring will turn two years old in two years, she must be

discounted by g2. At age one, the offspring also produces its own offspring, who survives

until age two with probability P 11 . Further, each of these offspring produces one offspring

at age one, and each such offspring survives with probability P 11 . Altogether,

VT (g, s) =
PT
1

g2
+ P 11

∞X
i=3

g−i =
PT
1

g2
+

P 11
g3

g

g − 1 . (12)

Now consider the value of an individual at age t < T :

Vt (g, s) =

·
P t
1

g2
+

P 11
g3

g

g − 1
¸
+

Pt
g
Vt+1. (13)

The first and second terms correspond to the discounted present value of the two-year-

old descendants of the individual’s newborn offspring as in (12). The last term is the

individual’s own expected, discounted reproductive value. Equations (12) and (13) imply

11 In what follows, we adopt the following convention:
Qb

i=a xi = 1 if a > b.
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that

Vt (g, s) =
TX
j=t

j−1Q
k=t

Pk

gj−t

Ã
P 11
g3

g

g − 1 +
P j
1

g2

!
. (14)

Suppose that an individual at age t has endowment It. Intuitively, when making

choices, she should maximize the properly discounted reproductive value of the individuals

whom her choices affect. That is, she should solve the following maximization problem:

max
s∈[0,It]

pt (It − s)
Vt+1 (g, s)

g
+ p1 (s)

V2 (g, s)

g2
. (15)

The first term in the maximization problem is the individual’s own survival probability

times her discounted reproductive value. The second term is the survival probability of

her newborn until the age of two times the discounted reproductive value of this offspring.

Let g∗ denote the largest possible growth factor and S denote the set of genes that

solves (15) with g = g∗ for all t and It. Let S denote the set of those genes that maximize

g subject to (11).

Lemma 1 S = S.

Proof. According to (14), the reproductive value of a two-year old individual is

V2 (g, s) =
P 11

g2 (g − 1) +
P 21
(g)2

+ P 11

TX
j=3

j−1Q
k=3

Pk

(g)j (g − 1) +
TX
j=3

P j
1

j−1Q
k=2

Pk

gj−2

= P 11

 1

g2 (g − 1) +
TX
j=3

j−1Q
k=2

Pk

gj (g − 1)

+
TX
j=2

P j
1

gj

j−1Y
k=2

Pk.

Hence, the growth equation (11) can be rewritten as

g (s) = g (s)V2 (g (s) , s) . (16)

Suppose now that s = {si}T−11 ∈ S and s = {si}T−11 ∈ S. Then

g∗ = g∗V2 (g∗, s) ≤ g∗V2 (g∗, s) ≤ g (s)V2 (g (s) , s) = g (s) .
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The equalities are just (16) for s and s respectively. The first inequality follows from

s ∈ S, that is, s maximizes V2 (g∗, .). The second inequality follows from gV (g, s) being

decreasing in g. Since g∗ ≥ g (s) both inequalities must hold with equality. From

g∗V2 (g∗, s) = g∗V2 (g∗, s)

it follows that s ∈ S. Since g∗ = g (s) it follows that s ∈ S.

Recursive utility representation. – We again can find a utility representation for the

surviving gene, that is, for the behavior defined by the maximization problems in (15). It

is useful to compute the reproductive value, V0 (s), of a newborn whose parent transferred

s to her. Notice that

V0 (s) =
P 11
g∗3

g∗

g∗ − 1 +
p1 (s)

g∗2
.

The reason is the following. First, V2 (g, s) = 1 by (16). At age one, each individual

produces one offspring, who survives until age two with probability P 11 . In addition, each

of the newborn offspring also produces one of her own offspring at age one, and each

such offspring survives with probability P 11 . This explains the first term. Furthermore,

the individual survives until the age of two with probability p1 (s), when her reproductive

value is one.

Proposition 1 The surviving gene has this utility representation:

Ut (st, s1, ..., st−1) =
p1 (s1) · · · pt−1 (st−1)

g∗t
V0 (st) . (17)

Proof. See the Appendix.

This representation implies that at age t, an individual with income It maximizes

V0 (st) + pt (It − st)E

"
V0 (st+1)

g∗
+

TX
i=t+1

pt+1 · · · pi
(g∗)i−t+1

V0 (si+1)

#
. (18)

It is worth comparing the utility functions in (7) and (17). In the former case, the utility

at age t is the number of offspring produced at age t. Since offspring are identical, their

reproductive values are the same and can be normalized to be one. Hence, the discounted

sum of expected offspring is also the discounted sum of the expected reproductive values of

offspring. That is, the utility at age t is the discounted sum of the expected reproductive

values of those descendants directly affected by the individual’s age-t choices.
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It follows that (17) can be viewed as a generalization of (7). The expression V0 (st)

is exactly the reproductive value of the offspring of an individual who gave birth to the

offspring at age t and transferred st to this off spring. In the maximization problem (17),

this term is multiplied by p1 · · · pt−1, the probability that this offspring will actually be
born. Hence, the age-t utility of an individual is again the discounted sum of the expected

reproductive values of all descendants directly affected by the individual’s choices at age

t.12

Measuring reproductive value. – In the model of this section, all two-year-old individ-

uals are identical. That is why a natural measure of reproductive value is the discounted

present value of the expected number of two-year-old descendants. Of course, in a more

general setting, individuals are heterogenous. In general, the reproductive values should

be defined as the relative shares attained in the population, in the limit as the time into the

future tends to infinity. For a discussion on generalized reproductive values, see Robson

and Szentes (2007).

3.2 Sex

Consider the following modification of the model of this section. Suppose that, in each

period, individuals of the same age are matched, and each match produces two offspring.

An offspring inherits the gene of one of her parents, with equal probabilities for that of

each parent. Each parent is randomly assigned to one of the newborn offspring.13 The

offspring receives a transfer from the parent who is assigned to her.14 When the parent

decides how much to save for her newborn child, she does not know whether the child

inherited her gene or that from the other parent.

The goal in this section is to characterize the gene that cannot be invaded by any

mutation. Consider a population with a gene s̄. A small proportion of the population is

then replaced by a mutant gene s. The question becomes: For what gene s is it true that

no matter what s is, the mutant gene s grows no faster than the original gene s?

An intuitive description of the surviving gene. –We claim that the gene that survives

12 In the model of this section, the choice on an individual at a certain age directly affects only her newborn

offspring. Had the choices affected many offspring, the utility would be the sum of the reproductive value

of all these offspring.
13This assignment is independent of the gene of the offspring.
14Thus, this model becomes comparable to the one analyzed in the previous section. We could have also

assumed that the transfer from each parent is shared equally between each of the two offspring.
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evolution maximizes the growth factor of its population as if its frequency in the population

was zero. In other words, although each individual may have the same gene in equilibrium,

this gene maximizes its growth factor as if it was rare.

We now explain why this is so. Consider an arbitrary homogenous population. Color

an infinitesimal fraction of the population green, where offspring inherit this color with

probability half. Since the choice behavior of the green individuals has not changed,

the green fraction of the population grows exactly at the same rate as the rest of the

population.

Now, let us instead color an infinitesimal fraction of the population yellow. This color

is tied to a possibly different choice of savings and the combination is inherited as described

above. Consider the initial growth rate induced by the various possible choices made by the

yellow population, given it remains a small fraction of the original population. Consider

now the choice behavior that maximizes this growth rate. Clearly, this choice behavior

maximizes the growth rate of the yellow population when we take into account its zero

frequency in the total population. If this optimal behavior is different from that made

by the original population, it must be that the yellow population outgrows the original

population. This follows since one option is always to mimic the green population, which

does exactly as well as the original population. If this optimal behavior is the same, on the

other hand, then any yellow mutant that makes a different choice will be strictly outdone.

Therefore, the original population cannot be invaded if and only if it behaves exactly as

does the yellow gene.

The formal characterization of the surviving gene. – Consider a population described

by the gene s. Suppose that this population is invaded by a small proportion of mutants.

The behavior of the mutants is governed by the gene s. We characterize the gene s that

grows fastest in the original population. Define

P
j
1 =

Z
R+

Z
R+

p1 (I1 − s1 (I1) +Rsj (Ij)) dG1 (I1) dGj (Ij) .

That is, P
j
1 denotes the ex-ante probability that a newborn mutant survives until age two,

if she had a parent of age j, and received a transfer from her non-mutant parent. We can

again use the growth equation to characterize the optimal behavior of the mutant gene.

The motion of the mutant population can be described by the equation

yτ = yτ−1 + yτ−2 eP1 + yτ−3 eP1P2 + · · ·+ yτ−T eP1 · · ·PT−1, (19)
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where eP1 =PT
t=1 µt

³
P t
1 + P

t
1

´
/2. Here, µt is the proportion of i−year-olds in the mutant

gene pool, ignoring newborns. (These proportions need not match those in the general

population.) The only difference between (10) and (19) is that eP1 replaces P1 throughout.
The reason is that a mutant offspring receives transfer from her mutant parent only with

probability one half. With probability one half the offspring receives the transfer from the

other parent. The growth equation of the mutant population is

g =
P 11 + P

1
1

2

 1

g (g − 1) +
TX
j=3

j−1Q
k=2

Pk

gj−1 (g − 1)

+
TX
j=2

P j
1 + P

j
1

2gj−1

j−1Y
k=2

Pk. (20)

The growth rate of the mutant population is maximized if and only if s maximizes g

subject to (20). Notice that if s = s, the mutant population grows exactly as fast as the

original one. Therefore, in the evolutionary equilibrium, s = s, and hence, P j
1 = P

j
1 for

all j = 1, ..., T − 1, for otherwise the mutants would invade the original population.
We emphasize that the gene that maximizes g subject to (20) is different from the one

that maximizes g subject to (11). The reason is that, in the former maximization problem,

the terms P
j
1 (j = 1, ..., T − 1) are treated as constants.

Intuition and reproductive values. – The maximization problem corresponding to the

surviving gene is:

max
s∈[0,It]

pt (It − s)
Vt+1 (g

∗, s)
g∗

+ p1 (s)
V2 (g

∗, s)
2g∗2

, (21)

for all t and It ∈ R. The function Vt is the same as the function of the previous subsection,
defined by (14). The first term is the individual’s own survival probability times her

discounted reproductive value, the same as in (15). The second term is the survival

probability of her newborn until the age of two times half of the discounted reproductive

value of this offspring. The reproductive value of the offspring is multiplied by half in (21)

because the gene of the offspring is inherited from the parent making the transfer only

with probability half. This is because when the frequency of a gene is zero in a population,

the probability that an offspring inherits this gene from a parent is one half, conditional

on one of the parent having this gene.

It is easy to show that s maximizes (21) for all t, It, if and only if, s maximizes g

subject to (20) with s = s.15

15Since the proof of this result is identical to the proof of Lemma 1, we ommit it.
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The argument above implies that, although, in the evolutionary equilibrium, each

individual has the same gene, she behaves as if their offspring inherit their genes with

only probability one half. Individuals still maximize the discounted present value of the

reproductive value of those descendants who are affected by their choices. But now, they

further discount the reproductive value of their offspring by half. In a more general model,

they would discount the reproductive value of their grandchildren by one fourth etc.

Recursive utility representation. – We again can find a utility representation for the

surviving gene, that is, for the behavior defined by maximization problems in (21). The

surviving gene has this utility representation:

Ut (st, s1, ..., st−1) =
p1 (s1) · · · pt−1 (st−1)

g∗t

·R
R V0 (st (It)) dGt (It) + V0 (st)

2

¸
.

This representation implies that at age t, the individual maximizes

V0 (st)

2
+ pt (It − st)E

"
V0 (st+1)

g∗
+

TX
i=t+1

pt+1 · · · pi
(g∗)i−t+1

V0 (si+1)

#
. (22)

We omit the proof because it is essentially identical to the proof of Proposition 1. Notice

that the only difference between (18) and (22) is that in the latter formula the reproductive

value of the newborn offspring is discounted by two.

3.3 Discussion of Rogers

Rogers (1994) is a path-breaking paper deriving time preferences from natural selection.

Here we summarize several problems that nevertheless arise in his analysis.

Domain of choice problems. – Rogers (1994) analyzes a deterministic model in which

an individual faces a single choice problem.16 Any two individuals at the same age face the

identical decision problem. This makes it impossible to identify the relevant indifference

curves. A contribution of the present paper is to show how the introduction of suitable

idiosyncratic uncertainty can help in this regard.

The two following issues are addressed in detail by Robson and Szentes (2007), who

show they are sufficient to invalidate Rogers’ key results.

16 In Section III, Rogers (1994) introduces uncertainty, but even in that model, individuals face only a

single choice problem.
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Reproductive value and felicities. – Rogers assumes that the reproductive value of an

individual is the discounted present value of the expected number of descendants. That

is, Rogers assumes in his model of altruism what we derive in our model without altruism.

With altruism, however, reproductive value must be extended, as we have explained it in

this section. Robson and Szentes (2007), indeed, show that the preferences characterized

by Rogers induce too little savings.

Long-term interest rate. – Rogers (1994) considers the key combination of transfers

and savings to involve a sacrifice by a parent in favor of an offspring one generation later.

That is, the recipient’s age when she receives the benefit is the same as the donor’s age

when she gave it away, so the reproductive values of the donor and the recipient are the

same. Rogers further assumes that there is an interior solution for the optimal transfer.

Under this assumption, Rogers derives a numerical value for the real rate of interest.

However, Robson and Szentes (2007) show that, in Rogers’ model, such solutions are

generally not interior, and no such clear-cut prediction for the real rate of interest can be

made.

4 Concluding Remarks–Further Research

This paper seeks to understand what structure evolution imposes on time preferences.

We have shown that one can always find a utility representation for choice behaviors that

survive evolution. We have established strong relationships between utilities and fertilities,

and between discount factors and population growth factors. In particular, we have shown

that if offspring are indistinguishable then, in the utility representation, the instantaneous

utility function is weighted sum of reproductive values and the discount factor is the

inverse of the population growth factor. In our representation, utilities have a natural

cardinal interpretation: When newborn individuals are identical, the instantaneous utility

at a certain age is simply the expected number of offspring at this age. More generally, the

utility of an individual is generated by the reproductive values of the descendants affected

by the individual’s choices.

Extrapolation. – Our theory implies that time preferences surviving evolution must

be time consistent. We think that one must be careful when using evolutionary arguments

to analyze consumption-saving decisions in modern times. It is not straightforward to

draw conclusions based on evolutionary arguments about individuals’ choices unless sim-

ilar choices were offered during the evolutionary process. Nonetheless, there is a strong
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evolutionary force in favor of time-consistent behavior. Perhaps time-inconsistent be-

haviors were associated with choices that populations have not faced before, so that the

optimal behavior has not yet evolved.

To extrapolate results based on evolutionary arguments to choice problems faced only

in modern civilizations, one must go beyond interpreting a gene merely as a choice behav-

ior. One way to extrapolate is to assume a principal-agent relationship between gene and

individual. The gene is interpreted as a principal that rewards and punishes the individual

(agent) for her choices. The individual’s objective is to maximize rewards. One can think

of rewards as food, sexual satisfaction, etc. The utility identified in this paper can be

interpreted as the reward scheme corresponding to the surviving gene. Extrapolation then

becomes less problematic. By way of illustration, suppose that during evolution, individu-

als could save only at a zero interest rate and the optimal reward for consumption turned

out to be the reproduction function. In modern times, individuals might have access to

better saving technology. However, if the reward scheme is hardwired in individuals, they

could adapt the new regime, if they intelligently accounted for the novel effect of positive

interest.

Social discounting. – Our model also has important implications for social discount-

ing. An interesting yet unsettled question in economic theory is: How should a social

planner weight future generations?

In our model, in the absence of sex, individuals who have the surviving gene make

choices that maximize the population growth rate. When making choices, individuals

appropriately account for the impact of their decisions on future generations. In this case,

there may be no divergence between the private and social rate of discount.

Sexual reproduction, however, seems to introduce a motive for private discounting that

is absent from social discounting. Namely, individuals also deflate the worth of resources

that are transferred to offspring in the future by the degree of relatedness. Perhaps, then,

the appropriate social rate of discount might be less than the private rate of discount.

Social norms. –We have maintained a literally biological interpretation in our deriva-

tion of intertemporal preferences–choice behavior is genetically hard-wired into individ-

uals. An alternative interpretation might be that learning from parents shapes individual

behavior. Corresponding to the most general model here, with altruism and sex, each off-

spring would then copy the behavior of a randomly chosen parent with respect to transfers

to descendants. Although some such process is inherently plausible, malleable preferences
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in this sense are far from conventional economics, and we have not yet considered this

alternative interpretation in detail.

5 Appendix

The Derivation of Equation (11)

In steady state, the population grows at a fixed factor g, and µt (t = 1, . . . , T ) does

not change. Notice from (10) that

µ1 =
yτ−1
yτ

=
1

g
.

Furthermore,

µt =

µ2
t−1Q
ι=2

Pi

gt−2
, t = 3, . . . , T .

Since µ1 + · · ·+ µT = 1, it follows that

µ2

1 +
TX
t=3

t−1Q
ι=2

Pi

gt−2

 = 1− 1
g
=

g − 1
g

.

Let Q denote the coefficient of µ2 in the previous equation. Then (10) can be rewritten

as follows:

g = 1 +

µ
P 11
g
+

P 21 (g − 1)
gQ

+ · · ·+ PT
1 (g − 1)P2 · · ·PT−1

gT−1Q

¶µ
1

g
+

P2
g2
+ · · ·+ P2 · · ·PT

gT−1

¶
= 1 +

µ
P 11
g
+

P 21 (g − 1)
gQ

+ · · ·+ PT
1 (g − 1)P2 · · ·PT−1

gT−1Q

¶
Q

g

= 1 +
P 11Q

g2
+

P 21 (g − 1)
g2

+ · · ·+ PT
1 (g − 1)P2 · · ·PT−1

gT
.

After multiplying both sides by gT :

gT+1 = gT + P 11Qg
T−2 + (g − 1)P 21 gT−2 + · · ·+ (g − 1)PT

1 P2 · · ·PT−1.

Finally, using the definition of Q yields

gT+1 = gT + P 11

gT−2 +
TX
j=3

gT−j
j−1Y
k=2

Pk

+ (g − 1) TX
j=2

P j
1 g

T−j
j−1Y
k=2

Pk.
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After substructing gT from both sides and dividing through by gT−1 (1− g) we get (11).

Proof of Proposition 1. By Lemma 1 it is enough to show that the maximization

problems in (15) with g = g∗ and in (18) are identical. Notice that

V0 (s) = p1 (s)
V2 (g, s)

g2
+

P 11
g∗3

g∗

g∗ − 1
and by (13)

Vt+1 (g, s) = pt (It − st)E

"
V0 (st+1)

g∗
+

TX
i=t+1

pt+1 · · · pi
(g∗)i−t+1

V0 (si)

#
.

Since
¡
P 11 /g

∗3¢ / (g∗/ (g∗ − 1)) does not depend on st the solutions to the two problems

are indeed identical.
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