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ABSTRACT

We provide a model that links the high return to venture equity to the impatience
of the VCs. VCs are scarce, and hence, they have market power and a high return on
their investments. As a result, VCs are eager to terminate non-performing ventures
so they can move on to new ones. The scarcity of VCs enables them to internalize
their social value, and the competitive equilibrium is socially optimal. We estimate
the model and back out the return of solo entrepreneurs which is always below that
of the return of VCs.
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1 Introduction

This paper builds and estimates a model that explains several facts:

1. Venture investments yield returns several points above what their risk charac-
teristics would warrant. Cochrane (2005) estimates Alpha at over 30 percent,
Ljungqvist and Richardson find it to be at least five percent, Kaplan and Schoar
(2005) argue that it may well be four or five percent, and Hall and Woodward
(2007) estimate it at around two percent.4

2. Founders are more attached to and more patient with their projects than VCs
who, according to Sahlman (1990), Wright and Robbie (1998) and Jones and
Rhodes-Kropf (2004), behave as if their discount rates were as high as 30 to 50
percent,

3. VC-backed companies are worth more at IPO (Megginson and Weiss 1991,
Hochberg 2004),

4. The survival of VC-backed companies is not any higher than that of solo ven-
tures (Manigart, Baeyens, and Van Hyfte 2002, Goldfarb, Kirsch, and Miller
2006)

Our model explains these facts in the following way:

1. VCs and, hence, operating VC funds are scarce compared to the number of
proposals they see; this raises the rents that VC funds get from the projects
that they finance, and raises the quality of projects that they accept. We do
not explain why VCs are scarce, we only trace the consequences of that scarcity
for the variables of interest.

2. Because the VC can always move on to a new company, looking after a non-
performing company entails for him a foregone-earnings cost that a founder
does not face, and this makes the VC less patient.

3. The impatient VC imposes a higher quality hurdle than the founder does, and
this selection effect raises the IPO values of VC-backed firms above those of
other firms.

4. The VC has a deeper pocket than the founder, but he is less patient. The net
effect on terminations is ambiguous.

4If the U.K. betas on venture are in the same ballpark as U.S. betas — say around the 1.7 percent
that Hall and Woodward (2007) estimate — then the U.K. Alpha on Venture is even higher than
the U.S. alpha. Writing in the early 90s (i.e, before the really high market returns of the late 90s
which would, in the usual calculations imply a higher required rate of return) Bygrave (1994) says
that “...VC returns have most often been in the teens, with occasional periods in the 20-30 per cent
range and rare spikes above 30 per cent.
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The main actors in the model are VCs5 who have unlimited wealth, and entre-
preneurs who are endowed with limited wealth and with projects. A project entails
start-up and continuation costs. The start-up cost must be paid before any infor-
mation about the project’s quality can come in. After that, continuation costs must
be paid until the project succeeds or is terminated. Start-up costs entail only capi-
tal, but continuation costs entail capital and effort: funds must be supplied and the
entrepreneur must exert effort without interruption until the project yields fruit.
Project quality has two dimensions: Payoff size, and the waiting time until the

payoff is realized. Neither dimension is known before a contract between a VC and
entrepreneur is signed, after which the payoff is learned, but not the waiting time.
Either party can, at any time, terminate the project. The entrepreneur can do so
by withholding effort, the VC by withholding capital. The optimal contract is set
up so that when a project is terminated, both are better off: The entrepreneur no
longer wishes to exert effort, and the VC no longer wishes to lend. The VC is in
the model a supplier of capital and is also able to recognize project quality in a way
that banks cannot (in reality a good VC must have a hybrid of skills; he must be
able to evaluate technology, demand, and managerial talent). Thus the VC does not
add value to the project directly. We shall show that our model is consistent with
Sørensen (forthcoming) who finds that the bulk of the observed positive association
between VC quality and project quality is due not to direct VC influence on the
payoff, but to sorting.
Because entrepreneurs have some wealth, some will opt to run their projects alone,

“solo”. Bank lending is unprofitable because banks lack the expertise of the VCs in
assessing project quality. A solo entrepreneur may run out of money before the
optimal termination date, which forces a poor entrepreneur to use VC funding or
abandon her project.
The outcome is efficient for a wide range of parameter values. Efficiency pertains

to both (i) contracting between VCs and entrepreneurs and the resulting termination
rules, and to (ii) entrepreneurs’ choices over whether to seek VC backing, whether to
develop the project on their own, or whether to abandon the project altogether.
We fit a seven-parameter version of the model to panel data on 1355 firms from the

1980s and ’90s, and display the results in a series of graphs. The model matches reality
along several dimensions, such as the project-success hazard, the project-termination
hazard, equity shares, and up-front investment costs. The fit is remarkable given the
number of parameters is less than the number of variables fitted. The model empha-
sizes the behavior of real variables: Project duration, project value and age-related
rate of return, rate of termination, and the equity share of the VC and entrepreneur.
We only predict the equity shares, and not the finer features of contracts such as
the use of convertible debt. In this stylized setting, the focus is on whether we see

5We do not analyze how the rents that the VC funds earn are divided of rents among the general
partners and the limited partners of a VC fund. Our paper is not about the division of these rents.
In fact, the VC in our model should be thought of as the general and limited partners together.
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rather debt or rather equity contracts. The result is that only equity can give the
right incentives to both parties at the margin.
Venture capital is now exported to other countries, but there are significant bar-

riers to its flow, even within the U.S.. The model therefore has meaningful cross-
economy implications. The model says that places where venture capital is scarcer
should not have appreciably different contractual forms as long as the nature of the
projects is the same. For a wide range of distributions of project quality and of
wealth (the latter affects an entrepreneur’s ability to self finance and to bypass VCs)
and for a wide range of VC supply, the observed contracts should be the same. Any
differences in contracts that did arise should show up in just two dimensions: The
share of up-front costs that the VC finances, and the VC’s share in the equity of the
project.
Notes on the literature.–Bergemann and Hege (2005), deal with a single VC and

a single entrepreneur, with their outside options taken as given. Holmes and Schmitz
(1990) analyze a market equilibrium and determine the rewards of founders relative
to managers of firms, but do not model venture capital. Inderst and Muller (2004)
model the market for venture capital as do Michelacci and Suarez (2004) who, in
addition, analyze the termination decision and link it to the equilibrium value of
a VC, but who do not look at data. Ueda (2004) analyzes the mode-of-financing
decision in a model where one cost of VC financing is the threat that the VC use the
information to set up a competing business. Cochrane (2005) deals with the valuing
the income streams to VC portfolios but does not derive optimal termination rules.
We discuss some of these papers and others further in the body of the paper.
Plan of the paper.–The next section describes the model, and Section 3 derives

the equilibrium contract and shows that the competitive outcome is efficient. Section
4 derives several empirical implications of the model and discusses evidence. Section
5 solves an example by hand and fits it to longitudinal data on VC investments,
spanning 1989-2000, and their performance outcomes. Section 6 concludes the paper
and the Appendix describes the data and the estimation procedure.

2 Model

There is a measure x of infinitely lived VCs, each able to raise a sufficient amount of
money at the rate r. There is also an inflow at the rate λ of potential projects, each
in the possession of a different entrepreneur. The entrepreneurs cannot borrow, and
have initial wealth w which is distributed according to the C.D.F. Ψ. An entrepreneur
can have at most one project, ever.

A Project
For a project to succeed, it requires an immediate payment of a cost C, and after

that it also requires k units of investment and a units of effort by E at every instant
up until the project yields a payoff. A project can be undertaken by an entrepreneur
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(E) alone, in which case she must rely on her own wealth only, or together with a
VC. The project yields a payoff π at time τ , where π and τ are random variables
independent of each other. Let G be the C.D.F. of π, and g its density. Let F be
the C.D.F. of τ , and f its density. Both G and F are supported on R+. Assume
that the hazard rate f/ (1− F ) = h is bell shaped: It first increases up to the modal
age, τm,, then decreases. In other words, as time passes without realization of τ , the
agents first become more optimistic about a quick realization of τ , then increasingly
pessimistic.6

If the project is either not invested into or effort is not exerted, the project cannot
yield a positive payoff, ever. Neither party knows π and τ , but their distributions
are common knowledge. In a VC-backed firm, after the contract is signed and after
E incurs C, π becomes known to both parties. However, no information about τ is
received. In a solo venture, E alone incurs C at the outset, and thereby she learns π.
The expected social value to developing projects is assumed to be positive. That

is, if financing decisions regarding the project are made optimally, it yields a positive
payoff in expectation.

Preferences
All agents are risk neutral and discount the future at the rate r. Utility is ad-

ditively separable in consumption and leisure. The VC maximizes the expected dis-
counted present value of his net income. The entrepreneur maximizes the expected
discounted present value of her income minus the stream of her exerted efforts.

Market Structure
When E gets an idea, she has to decide whether to abandon her project, to seek

VC-backing, or to go solo, i.e., to implement her project alone. This decision is
irreversible.
Suppose that at time t there is a measure n of VCs who is not in a contractual

relationship with entrepreneurs and a measure of m of entrepreneurs who wishes to
be financed by a VC. Then the number min {n,m} of VCs and entrepreneurs are
randomly matched and can enter into a contract.

Timing
Events occur in the following sequence:

1. Entrepreneur chooses whether to (i) abandon her project, (ii) develop her
project on her own, or (iii) sign a contract with a VC,

2. Under option (ii) or (iii) , C is incurred immediately,

6Jeremy Stein suggested the name “waiting-at-the-altar” hazard: The bride is unlikely to show
up early, and the chances of her showing up rise at first. But after a certain point it starts to look
like the bride will not show up at all. Our results would follow more easily if the hazard were to
decline monotonically throughout. The bell-shape assumption conforms better to facts.
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3. π is then revealed.

Contracting
Feasible Contracts.–The contract the VC can offer consists of two positive num-

bers: (p, s). The number p is a lump sum the VC pays E right after signing a contract.
In that case E bears only C − p of the up-front cost. The number s specifies how
to share the payoff if the project succeeds. If the project yields payoff π, E gets
sπ and the VC gets (1− s)π. Neither E’s effort nor the VC’s subsequent invest-
ment are contractible. On the other hand the payments p and the sharing rule s are
enforceable.
After the transfer p, this is a pure equity contract. We could allow for more

complicated contracts in which s would depend on τ and π. We shall show, however,
that these simple contracts already induce socially efficient decisions. Moreover, the
equilibrium outcome of a game with more complicated contracts would be identical
to ours.
Timing of the Contractual Relationship –First, the VC offers a contract, (p, s) ,

to E. If E refuses the contract the game between these two parties ends; E then has to
abandon the project, whereas the VC seeks to be matched with another entrepreneur.
If E signs the contract she receives p from the VC up front. We interpret p as
the amount that the VC pays towards financing C. The entrepreneur finances the
remaining part of C and both parties then immediately learn the value of π.
At each date, if the payoff has not yet been realized, E has to decide whether to

exert effort and the VC has to decide whether to invest. One can assume that the
parties can observe the history of investments and effort up to time t, when making
these decisions.7 If the VC decides not to invest into the project, he is free to devote
his time to another project. If E decides not to exert effort anymore, she leaves the
market.
If the project yields a payoff π at time t, E gets sπ the VC gets (1− s)π and the

game ends between the two parties. Again, the VC seeks a new match, and E leaves
the market.

Banks
In our model, banks guarantee a risk-free interest rate, but they do not finance

projects. This is because VCs are assumed to have two advantages over banks. First,
banks lack the expertise of the VCs and entrepreneurs; banks can learn π only at
the date of success, τ , not before. Second, banks also lack the monitoring ability of
the VCs which ensures that Es do not divert investment to private consumption. As
a result, banks do not offer contracts to entrepreneurs, for otherwise anybody could

7So as to avoid coordination problems, we assume that at time t the VC observes the history
of efforts on the interval [0, t) and that the entrepreneur observes the history of investments on the
interval [0, t]. Our equilibrium remains an equilibrium even if neither party observes whether the
other is supporting the project.
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pretend to be an E and divert the borrowed funds for personal use, so that banks
would make negative profits.

3 Analysis

First, we characterize the socially optimal outcome of our economy. Then we show
that this outcome is the unique outcome in the competitive market conditional on
some distributional assumption on the wealth of Es.

3.1 Socially Optimal Decisions

We proceed as follows. First, we analyze the optimal decision regarding how long a
project should be supported. This decision depends on whether the project is VC
backed or supported by a solo entrepreneur. Second, we characterize the socially
optimal decision whether E should go solo, seek VC backing, or abandon her project.

3.1.1 The termination problem and the social value of a VC

The VC faces no budget constraint, that is, he is able to finance a project at any
moment of time no matter what the payoffs of previously supported projects were. He
can, however, handle only one project at a time. The social value of a VC is positive
because he is able to support projects that otherwise would not be implemented.
The Social Value of a VC.–In what follows, we assume that VCs finance only

those entrepreneurs who would otherwise abandon their projects. (Later this becomes
a result.) Denote the social value of a free VC byW . A free VC immediately matches
with an E, the cost C is incurred, and π is revealed. Then the planner decides how long
to support the project if it does not yield fruit, T (π). As soon as the project succeeds
or is terminated, the VC becomes free and generates a value of W as of then. Hence,
the social value of the VC can be expressed as the sum of the discounted expected
payoff from a project and the discounted continuation value he generates after he is
again free8:

W = −C+max
T (π)
π∈R+

Z Z T (π)

0

µ
π +W − a+ k

h (t)

¶
e−rtdF (t)+We−rT (π) (1− F [T (π)]) dG (π) .

(1)
Let us explain the RHS of (1). First the benefit: Suppose that π is revealed after C is
sunk and that the planner supports the project up to time T . The expected benefit
from this project isZ T

0

(π +W ) e−rtf (t) dt+ e−rT (1− F [T ])W ,

8This equation has a unique solution for W . This is because the RHS is positive at W = 0 since
the social value of the project is positive, and its slope is less than one by the Envelope Theorem.
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Figure 1: The determination of T ∗ (π)

because it yields π at time t with likelihood f (t) if t ≤ T , in which case the benefit
is π +W . If the project does not succeed until time T it is then terminated with
probability (1− F [T ]) and its only benefit then is W . Second, the cost: What
measure of projects will require investment at time t? If t > T then the project
surely exited already and no investment is made. If t ≤ T then a proportion F (t)
of the projects succeeded, and therefore only a measure of 1 − F (t) of them need
investment. Total cost then isZ T

0

(a+ k) e−rt (1− F (t)) dt =

Z T

0

(a+ k) e−rt
1− F (t)

f (t)
dF (t) =

Z T

0

e−rt
a+ k

h (t)
dF (t) .

The Optimal Stopping Time of a VC-backed Project.–Once π is revealed, the
planner solves

max
T

½Z T

0

µ
π +W − a+ k

h (t)

¶
e−rtdF (t) + e−rT (1− F [T ])W

¾
. (2)

An interior solution for this problem, T ∗ (π), must solve for t the first-order condition

a+ k + rW = πh (t) . (3)

The LHS of (3) is the cost of waiting another instance: The physical cost, a+ k, and
the opportunity cost, rW . The RHS is the expected benefit. The local second-order
condition is h0 (T ∗ (π)) < 0. Since h is bell shaped, this condition is also sufficient, as
Figure 1 shows.
Notice however, that π may be so low that the project yields a negative expected

payoff for all T > 0. Let πmin be the smallest value of π for which it is worth
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supporting the project for a strictly positive T . Then, as Figure 1 shows, the optimal
termination age, T ∗ (π) , for a project of quality π, is

T ∗ (π) =

½
h−1

¡
a+k+rW

π

¢
if π > πmin,

0 otherwise.
(4)

3.1.2 The solo entrepreneur’s termination problem

A solo entrepreneur may run out of money and have to terminate her project. Con-
sider an E with wealth w. Since utility is linear in consumption, E will optimally
defer all her consumption until the project is completed.9 Let wt denote E’s wealth
at time t given that her project did not succeed up to time t. Then wt is defined by
the differential equation ẇt = rwt−k. The initial condition is w0 = w−C because C
must be incurred immediately. In addition, at each instance of time, E has to invest
k and receives interest on her remaining wealth. The solution for wt is

wt =
k

r
+

µ
w0 − C − k

r

¶
ert.

Let τ (w) be the date at which this entrepreneur’s wealth runs out. Then τ (w) solves
for t the equation wt = 0, that is

τ (w) =

(
1
r
ln
³

k
k−r(w−C)

´
if w < k

r
+ C

∞ if w ≥ k
r
+ C.

(5)

The unconstrained entrepreneur.–Suppose first that w ≥ k/r + C, that is, E
has enough money to finance her project forever. Since new ideas occur only to
new entrepreneurs, if she terminates the project prior to success E gets zero as her
terminal payoff. Therefore, she solves the following maximization problem:

max
T

Z T

0

µ
π − a+ k

h (t)

¶
e−rtf (t) dt.

The solution, TE (π), is either equal to zero, or solves for t the first-order condition
a + k = πh (t) and the second-order condition h0

¡
TE [π]

¢
< 0. Let πEmin denote the

smallest realization of π that the unconstrained entrepreneur should support. Then

TE (π) =

½
h−1

¡
a+k
π

¢
if π > πEmin,

0 otherwise.
(6)

9In general entrepreneurs save more in order to get around liquidity constraints — see Buera
(2004) and Basaluzzo (2004).
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The wealth-constrained entrepreneur.–Suppose now that w < k/r + C. After
paying the cost C and learning π, the expected value of the project is

q (π,w) ≡ max
T∈[0,τ(w)]

Z T

0

µ
π − a+ k

h (t)

¶
e−rtf (t) dt. (7)

At an interior solution, the optimal stopping time, TE
w (π), solves for t the following

first-order condition:
πh (t) ≥ a+ k

and it holds with equality whenever TE
w (π) ≤ τ [w]. Therefore, if the project is worth

pursuing further after incurring C, then the solution is min
¡
τ [w] , TE (π)

¢
, otherwise

it is zero. Let πEmin (w) be the smallest payoff for which it is worth starting to support
the project. Any project with quality below πmin (w) would be terminated at once.
Hence, TE

w is defined as follows

TE
w (π) =

½
min

©
τ [w] , h−1

¡
a+k
π

¢ª
if π > πmin (w) ,

0 otherwise.
(8)

3.1.3 The Socially Optimal Financing Mode

The expected surplus, after incurring the cost C, of a solo entrepreneur with wealth
w is

QE (w) =

Z
q (π,w) dG (π) .

The next lemma characterizes some important features of the curve QE.

Lemma 1 (i) For w < k/r + C, ∂QE/∂w > 0. (ii) For w ≥ k
r
+ C, ∂QE/∂w = 0

and QE (w) > C.

The intuition behind statement (i) of this lemma is the following. A budget-
constrained entrepreneur can use an additional dollar to prolong the time of support-
ing her project, instead of using it to consume. Since sometimes it is socially efficient
to finance the project longer than the budget-constrained entrepreneur can afford,
she can generate a positive surplus.
An entrepreneur with w > k/r+C can already support her project as long as it is

socially optimal. She would invest her additional dollar at the rate r. This additional
dollar does not generate excess return over the interest rate of a bank, explaining why
the slope of QE is zero in this region. Since the expected social value of a project is
positive by assumption, QE (w) > C whenever w > k/r + C. This explains part (ii)
of the lemma.
Going solo or abandoning the project. –Suppose, first, that VC backing was not

an option. The payoff to going solo with wealth w is w − C + QE (w). We now
explain why this payoff must look as drawn in Figure 2. It is not defined for w < C
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w – C + QS(w) 

w
w*

C
r
k
+

Lifetime 
value 

Payoff 
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abandon 
project  

 C 0 

σ 
450

Figure 2: The determination of w∗

because E cannot pay C. At w = C, it is zero because after paying C, E has no
money left to invest in the project. Thereafter, by part (i) of Lemma 1, the slope
exceeds unity. As w reaches k/r + C, w − C + QE (w) reaches w + σ, where σ > 0
because QE (k/r + C) > C by part (ii) of Lemma 1. The payoff is continuous in
w, hence from the Intermediate Value Theorem it follows that there exists a value
of wealth, denoted by w∗, were the payoff curve intersects with the 450 line, that is,
QE (w∗) = C. Moreover, at any intersection, the slope of w − C +QE (w) is strictly
larger than unity, and therefore the intersection, w∗, is unique. The entrepreneur
with wealth w∗ is indifferent between going solo and abandoning the project.
Who should get VC-backing?–We shall assume that there are many poor entre-

preneurs, with wealth below w∗ who, in the absence of VCs, would abandon their
projects. Then, it is socially optimal for VCs to back only entrepreneurs that have
wealth less than w∗. The average duration of a VC-backed project is

t̄ =

Z Z ∞

0

min (t, T ∗ [π]) f (t) dtdG (π) .

At any point in time, the rate at which free VCs flow in is x/t̄. The inflow of
entrepreneurs is λ and, of these, a measure λΨ (w∗) would abandon their projects
unless they could turn to a VC. When VCs are sufficiently scarce in the sense that

x

t̄
< λΨ (w∗) , (9)

we have the following result:
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Proposition 1 If (9) holds, the socially optimal outcome is described as follows:
(i) An entrepreneur with initial wealth w > w∗ goes solo. A measure of x/t̄

entrepreneurs gets VC-backing at every instance of time, each of them with wealth
less than w∗. The rest abandon their projects.
(ii) The termination of a VC-backed project is determined by (4), and that of the

solo project by (8).

3.2 The Competitive Outcome

We now derive conditions under which the social optimum is a competitive equilib-
rium.
For the VC to take socially optimal decisions, his market value must, as we shall

show, coincide with his social value. But this can happen only if VCs can extract all
the surplus from projects. They will have such market power if they support only
projects that would otherwise be abandoned. The latter, in turn, arises if there are
more poor entrepreneurs than there are free VCs.
But this is not the whole story. Since investment and effort are not contractible,

the VCs must be able to provide contracts to Es that induce socially efficient ter-
mination by both parties while, at the same time, transferring all the surplus to the
VC. We shall show that such contracts exist.

The Equilibrium Contract.–Recall that a contract consists of two numbers (p, s),
where p is paid by the VC to E before π is realized, and s is the sharing rule upon
the realization of π. We shall show that if the sharing rule is

s∗ =
a

a+ k + rW
, (10)

the termination rules of both parties are indeed socially optimal.

But how can the VC extract the whole surplus from the entrepreneur? The VC
enjoys all the rents if and only if the entrepreneur enjoys none. The entrepreneur’s
payoff from the contract (p, s∗) conditional on both parties supporting the project up
to T ∗ (π) is

p− C +

Z Z T∗(π)

0

µ
s∗π − a

h (t)

¶
e−rtf (t) dtdG (π) .

Hence, the VC extracts all the rents if

p∗ = C −
Z Z T∗(π)

0

µ
s∗π − a

h (t)

¶
e−rtf (t) dtdG (π) . (11)

Moreover, once terminated by a VC, the entrepreneur would not wish to continue
the project alone (either through self finance or bank finance) because the VC retains
his equity in the project even after ceasing to invest in it. Thus the entrepreneur’s
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wealth, w

Frequency dist’n of wealth

Abandon

project Go solo
Abandon 

or VC

d (w)

w*C - p*

Ψ

Figure 3: The equilibrium allocation of entrepreneurs to activities

reward would not rise, but her costs would, and so she would strictly prefer to stop
right away.
The selection of entrepreneurs into activities.–Entrepreneurs’ choices of the mode

of investment are described in Figure 3. If p∗ < C, the VC does not pay the entire fixed
cost. The entrepreneur must pay C − p∗ up front, and some potential entrepreneurs
will have wealth insufficient to cover this amount. These are people with wealth
below C − p∗ in Figure 3. The fraction of entrepreneurs that wish to get VC backing
is Ψ (w∗). But the fraction that can also afford to pay the cost of C − p is just
Ψ (w∗) − Ψ (C − p). This is the area “Abandon or VC” in Figure 3. Hence the
distributional assumption we need is

Ψ (w∗)−Ψ (C − p∗) >
x

λt̄
. (12)

If the previous inequality holds, then (i) there are enough poor entrepreneurs who
prefer to go with a VC and, (ii) among these there are enough who have enough
wealth to finance their share of C. Notice that (12) requires w∗ to be larger than
C − p∗. In addition, in order to interpret p∗ as the part of the cost C paid by the
VC, we need p∗ > 0. Both of these inequalities turn out to be true as we prove in the
following

Lemma 2
max {0, C − w∗} < p∗. (13)

Proof. See Appendix A.
Finally, we are ready to claim the following
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Figure 4: The determination of p when s = s∗.

Theorem 1 (The Welfare Theorem) If (12) holds, the socially optimal outcome
coincides with the unique competitive equilibrium outcome in which the allocations
are supported by the following strategies:
(i) A VC always offers the contract (p∗, s∗) given by (10) and (11). If the contract

is accepted, he follows the socially optimal decisions, defined by (4).
(ii) An entrepreneur with wealth w ≥ w∗ goes solo and follows the socially optimal

termination rule defined by (8).
(iii) An entrepreneur with wealth w ∈ (p∗, w∗) seeks VC-backing with probabil-

ity x/ (t̄λ [Ψ (w∗)−Ψ (C − p∗)]) and abandons her project otherwise. Entrepreneurs
seeking VC backing accept the contract offered by the VC, and follow the socially
optimal decisions defined by (4).
(iv) An entrepreneur with wealth w ≤ C − p∗ abandons her project.

The equilibrium is further described in Figure 4. In the figure, as p varies, s is
held fixed at s∗. The vertical axis measures the up-front cost to E. The Figure shows
the following:

1. If there were no VCs, Ψ (w∗) entrepreneurs would abandon their projects, and
the remaining 1−Ψ (w∗) would go solo as shown in Figures 2 and 3.

2. Since abandoning her project offers E zero rents, Es’ demand for VCs is infinitely
elastic at C − p∗ up to the point Ψ (w∗)−Ψ (C − p∗) (The poorest Ψ (C − p∗)
entrepreneurs cannot afford the up-front cost).
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3. As p rises above p∗ some of Es that would otherwise go solo would start switching
to VCs. In addition, some other Es, who had insufficient liquidity to pay their
part of the fixed cost earlier, can now afford to contract with VCs instead of
abandoning their projects.

3.3 Proof of the Welfare Theorem

First, we prove that given the decision about the financing mode, Es’ as well as the
VCs’ decisions regarding the termination time of a project are indeed socially optimal.
That is, we prove the second parts of claims (i), (ii), and (iii) of Theorem 1. If E
decides to go solo, then she is the one who incurs all the costs related to the project,
but she also enjoys all the potential benefits. In other words, her costs and benefits
are identical to the social costs and benefits, hence she follows the socially optimal
decision rules described by (8). Therefore, we only have to show these claims for
VC-backed projects.
Second, we show that given the termination times, the decisions regarding the

financing mode are as described in the first parts of claims (ii), (iii), and (iv) of the
theorem.
Since the VC extracts all the surplus, he has no incentive to offer a different

contract. For the same reason, Es with w ∈ [C − p∗, w∗] are indifferent between the
three options.

Incentive Compatibility and Optimality of the Contract (p∗, s∗)
We now analyze the incentives of the agents to support the project after a contract

(p, s) is signed and both parties learn the value of π.
Entrepreneur.–If E trusts that the project is always financed by the VC, and that

she will get s∗π if the project is successful, she solves the following problem:

max
T

Z T

0

µ
s∗π − a

h (t)

¶
e−rtf (t) dt. (14)

If the solution, TE (π), is interior it is defined by the corresponding first-order condi-
tion:

h
¡
TE (π)

¢
=

a

s∗π
. (15)

The local second-order condition, which is also is also the sufficient condition, is again
h0
¡
TE [π]

¢
< 0. Finally, if π is below a cutoff, denoted by πEc , she does not start to

exert effort.

VC.–In equilibrium, the market value of a free VC is just W . If VC trusts that
E will always support the project, and that he, VC, gets (1− s∗)π if the project
succeeds, his maximization problem after signing the contract is

max
T

Z T

0

µ
(1− s∗)π +W − k

h (t)

¶
e−rtf (t) dt+ e−rT (1− F [T ])W. (16)
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If the solution, T V C (π), is interior, it must solve the first-order condition

h
¡
T V C (π)

¢
=

k + rW

(1− s∗)π
. (17)

The sufficient condition is again h0
¡
T V C [π]

¢
< 0. If π is lower than a cutoff, denoted

by πV Cc , the VC does not invest in the project.
Incentive compatibility.–E and the VC stop supporting the project at the same

moment if and only if h
¡
T V C (π)

¢
= h

¡
TE (π)

¢
and πEc = πV Cc . First, suppose that

the solutions for both (14) and (16) are interior. Equations (15) and (17) define the
same termination rules if and only if

a

s∗π
=

k + rW

(1− s∗) π
.

But this requires that
s∗ =

a

(a+ k + rW )
, (18)

which is exactly the definition of s∗. It remains to show that the solution to (14) is
interior if and only if the solution to (16) is interior. That is, the cutoffs, under which
agents refuse to support the project, are the same for E and the VC. We show more:
we prove in Appendix A that both cutoffs coincide with the socially optimal cutoff,
πmin.

Lemma 3 πEc = πV Cc = πmin.

Optimality.–We argue that the termination decisions described above are the
socially optimal ones. First of all, by Lemma 3, those projects which are socially
efficient to abandon right after paying C are also abandoned in equilibrium. Second,
from (4) the socially optimal termination decision, T ∗ (π), regarding a project which
is worth starting to support, satisfies h (T ∗ (π)) = (a+ k + rW ) /π. Hence, in order
to prove efficiency of the rule (15) (or equivalently (17)), we need that

a

s∗π
=

a+ k + rW

π
,

which is satisfied by (18).
The Choice of Financing Mode of an Entrepreneur
We now show the first parts of claims (ii), (iii), and (iv) of Theorem 1.
Suppose first, that E has initial wealth w ≤ C − p∗. Then, she cannot contract

with a VC, because she cannot finance C − p∗ up-front. By Lemma 2 w < w∗, hence
she is better off abandoning than going solo.
Suppose that w ∈ (C − p∗, w∗). Since w < w∗, E is still better off abandoning

than going solo. However, she has enough wealth to finance C − p∗ of the fixed

16



cost. Since the VCs extract all the surplus from the projects, these Es are indifferent
between seeking VC-backing and abandoning. So they can randomize according to
claim (iii) of Theorem 1.
If w > w∗, E goes solo, since her payoff, w − C + QE (w), is larger than w, and

her other options all provide her with a payoff of w.
Uniqueness of the competitive equilibrium actions.–The project-acceptance and

termination decisions are uniquely determined, as is the equilibrium contract (p∗, s∗).
The proof of uniqueness goes as follows. In any equilibrium, the VC-backed entre-
preneurs do not enjoy any rent. Furthermore, at the equilibrium stopping time, both
parties are indifferent between supporting and abandoning the project. These two
observations imply that the Bellman equation defining the market value of a VC is
identical to (1). Since (1) had a unique solution, the market value of a VC is also
uniquely determined, and equals his social value. If the VC were to offer any other
contract it would have to attain this value W and implement the actions (πmin, T ∗).

3.4 Discussion of the Welfare Theorem

There are two reasons why here the validity of the First Welfare Theorem might
seem surprising. First, agency problems could arise, since neither VC investment
nor E’s effort is contractible. Second, agents are not price-takers — VCs are strategic
when offering contracts. Next, we explain why the competitive equilibrium is efficient
despite of these problems.
Discussion of the Equilibrium Contract
We emphasize that the validity of the Welfare Theorem in our model is due to

the existence of institutions and not a natural feature of the world. More precisely, it
is the contractibility of the profit sharing rule that makes it possible for both E and
the VC to make socially optimal decisions.
Intuition for the equilibrium contract.–The VC and E must be given the incen-

tive to both support the project exactly up to T ∗ (π). The equity s∗ in (10) provides
both the right incentives because the marginal cost of a VC-backed project is shared
correctly between the VC and E. The VC invests k and incurs an opportunity cost
of rW , while E exerts effort a. Then E cares only about her own cost, a, and not
the social cost a + k + rW . However, if s = a/ (a+ k + rW ), then E’s benefit is
[a/ (a+ k + rW )]π, instead of the social benefit π. This means that the objective
function of E is the objective function of the social planner down-scaled by the con-
stant a/ (a+ k + rW ). Similarly, the objective function of the VC is down-scaled by
(k + rW ) / (a+ k + rW ). Scaling does not affect decisions, however, and the VC and
E both choose the same T as the planner would. Therefore, our model explains why
we observe equity contracts between VCs and Es, and not, e.g., debt-contracts.
Debt contracts.–If the VC and E signed a debt contract, E would have to incur

the total cost of a project on the margin. But if, as we assume, E would have to
repay that debt from the project’s payoff, π, her marginal benefit from a succeeding
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project would be less than π, i.e., strictly less than the social marginal benefit. This
would induce E to terminate the project too early. Thus, debt contracts would induce
inefficient terminations.
Labor contracts.–If effort were observable, the VC could hire E as a worker and

induce the efficient outcome. If E were to receive a wage of a at each instant, she
would be exactly compensated for her effort, and would hence be willing to accept
such a contract. The VC would then internalize the social costs and benefits of the
project, and both parties would make socially optimal decisions. Such a contract,
however, is not robust to the observability of E’s effort. Had the VC not been able to
observe E’s effort, E would strictly prefer to shirk for two reasons. First, if she shirked,
she would not incur the disutility of working. Second, by shirking she would prevent
the project from succeeding, and would thereby prolong the time during which she
received the wage. In our equilibrium, on the other hand, the observability of the
effort (and even the observability of the project still being alive) plays absolutely no
role because s∗ gives E and the VC exactly the right incentive to support the project.

Discussion of the VC’s market value
In order to achieve efficiency, the social value of a VC must coincide with his

market value. Condition (12) contains two assumptions: (A) There must be fewer
VCs than there are Es that seek VC-backing, and (B) Among these Es there must be
sufficiently many that can afford to pay C − p∗ up-front. (A) is crucial to our result,
for it provides the VCs with market power and with the ability to offer contracts
that enable them to extract the full surplus from a project. That is why the market
value and the social value of a free VC are the same. But (B) is less important
and can be easily relaxed by introducing more complicated contracts. The VCs could
extract surplus frommore liquidity constrained entrepreneurs if the sharing rule s was
increasing over time. Recall that we have restricted attention to time-independent
sharing rules, and hence the entrepreneur was only indifferent between exerting effort
and shirking at the time of termination, but strictly preferred to exert effort anytime
before. If s was allowed to change over time, the entrepreneur could have been
made indifferent between working and shirking at times before the termination of
the project, and by such contracts surplus could have been extracted from poorer
entrepreneurs without violating incentive constraints.
In the search-matching models of Inderst and Muller (2004) and Michelacci and

Suarez (2004), Nash bargaining divides the rents between the VC and E. The “Hosios
condition” (which states that factor shares in the constant-returns-to-scale matching
function should equal the factors’ relative bargaining strength) must hold for the
equilibrium to be efficient. It is pure coincidence if that equality should obtain,
and so generically these models imply inefficiency of equilibria — policies that change
incentives for entry by one side or the other can generally improve the sum of the
payoffs. In our model, by contrast, efficiency holds on an open set of all parameter
values; since w∗, p∗, and t̄ are continuous in the parameters of the model, condition
(12) holds for a large range of parameters. It is true that our model takes the relative
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numbers of Es and VCs as exogenous. Since VCs get the full social value of their
capital, if we endogenized venture capital we would expect that an optimal amount
of it would be created.

Bergemann and Hege (2005, henceforth BH) argue that dynamic contracts be-
tween Es and VCs are inefficient relative to first best. In their model the project
succeeds with some probability in each period, and the payoff is proportional to the
invested funds. As in our setup, as time passes without success, agents become more
and more pessimistic but, in contrast to our model, E can divert the invested funds to
private consumption (with or) without the VC observing it. The authors show that
the project is supported for a time that is shorter than would be socially efficient, and
it gets less funds. The explanation is that in order to provide E with proper incentives,
the optimal contract must specify a decreasing stream of investment funds. While in
BH incentives cause early and inefficient terminations of VC-backed projects, in our
model the VC’s high opportunity cost result in early, yet efficient, terminations. In
any case, it would seem that the closeness of VC oversight makes it hard for E to
divert funds to consumption.

4 Empirical implications

This section discusses some qualitative implications and assumptions of the model
and compares them with evidence.
1. The market power of the VC.–(12) implies that in Figure 4 the supply of VCs

is to the left of the kink in the demand curve. Small shifts in supply should leave
the equilibrium return to venture capital unchanged. In support of this, Kaplan and
Schoar (2005, Table 13) find that the entry of new funds does not significantly reduce
returns on venture funds. But a small shift in the supply of VCs should also not
affect the terms of the contracts, their duration, or the total amount invested, and
here the evidence is less favorable: Gompers and Lerner (2000) find that outward
shifts in the supply of venture capital act to raise the total amount that VCs pay
into the companies they oversee, and Hochberg, Ljungqvist, and Lu (forthcoming)
find that the likelihood of getting to IPO rises after a positive shock to the supply of
funds.
2. The excess rate of return to VCs and Es.–Having estimated the model’s

parameters exclusively from the data on VC-backed projects, we can calculate the
excess return that solo Es earn on their investments. This excess return depends on
E’s wealth. Figure 5 is based on our estimated model in which E’s excess return
which never reaches that of the VC. At w∗, E is indifferent between going solo and
abandoning the project, hence there her excess return is zero. It then rises with E’s
level of wealth, becoming flat when w = C + k/r, i.e., the point where the solo E
ceases to be liquidity constrained in any state of the world, i.e., for any realization of
π. The formulas are in the Appendix. The second panel of Figure 5 is the estimated
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Figure 5: The excess return of solo entrepreneurs

analog of Figure 2. At $28 million, w∗ is quite large. This estimate comes about
because we estimate C to be $6.4 million. In our model a solo E expects to earn
at least the market rate, and therefore she cannot have a negative alpha. There
is evidence of negative alphas for some Es (Moskowitz and Vissing-Jorgensen 2002)
and independent inventors (Astebro 2003), and further work should reveal what may
explain such patterns. Recently, however, Hopenhayn and Vereshchagina (2004) and
Miao and Wang (2005) have argued that when one factors in the option value of the
project, the alphas are nonnegative. This exercise should be qualified by noting that
the types of ventures that VCs fund are high-tech and require more funding than the
average small business.
3. Terminations.–VCs are less patient with their projects than rich Es, and

therefore are more likely to terminate a non-performing venture. We cannot rank
terminations of VC-backed firms and those of poor Es because on the one hand, the
VC is less patient, but on the other, the poor entrepreneur may run out of money.
This may explain why Manigart et al. (2002) and Goldfarb et al. (2006) find no
significant difference between the failure hazards in the two populations. In contrast,
Ber and Yafeh (2004) find that the probability of survival until the IPO stage is higher
for VC-backed companies. Nevertheless, based on Figure 6, we know that VC-backed
firms must have higher termination hazards initially.
4. Value at IPO.–Hochberg (2004) finds that the stock-market value of IPO is

higher when a VC is present, and Megginson and Weiss (1991, Table III) find this to
be true even when one controls for book values. In our model, book value presumably
is C + tk, so that, given t, the book values of VC-backed and solo firms would be the
same. The average market value of a VC-backed company that succeeds at age t is
E
¡
π| T V C (π) ≥ t

¢
, and its counterpart for the value of a solo firm run by a rich E is
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Figure 6: Date-zero terminations by VC and solo firms

E
¡
π| TE (π) ≥ t

¢
. Since T V C and TE are both increasing in π, E

¡
π| T V C (π) ≥ t

¢
will exceed E

¡
π| TE (π) ≥ t

¢
given the following result, proved in Appendix A:

Proposition 2
T V C (π) ≤ TE (π) . (19)

The proof first shows that the VC is more selective at age zero than E, that is, his
cutoff for starting to support a project is higher than that of a wealthy solo E:

πEmin ≤ πV Cmin. (20)

This is because the VC only starts supporting a project if it yields at least an expected
payoff ofW , while for a rich solo E it suffices that it yield a positive profit. The proof
then shows that the VC is more selective at all ages than the rich E, because —
while the marginal benefit of waiting is the same for a VC and E — for the VC the
marginal cost is higher by the amount rW. Figure 6 illustrates (20) about age-zero
terminations, and it portrays πEmin (w) for all w, the shape of which is based on the
following result, also proved in Appendix A:

Proposition 3 TE
w (π) is increasing in w and constant on [C + k/r,∞).

Therefore poor Es are also more selective than rich Es at age zero, and, according
to (8), equally selective afterwards, as long as their funds last. Therefore expected
market-book ratios of VC-backed firms exceed those for rich Es, but not necessarily
those of poor Es.
5. Age at IPO.–VC-backed IPOs should be stochastically younger, in the first-

order sense, than the rich-solo IPOs, but they can be stochastically older than the
IPOs of liquidity-constrained Es; the latter is true, roughly, if the liquidity constraint
bites earlier than the VC’s impatience constraint. The data on age of IPOs since firm
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Figure 7: distribution of age (since founding) at IPO

founding on the NYSE and Nasdaq shown in Figure 7 turn out to be somewhere in
between — it excludes spinout and rollup (i.e., consolidation) IPOs in the plots, but
including them would not change the results.
6. Financing is staged and good projects receive more investment rounds.–The

VC infuses further capital at various points if and only if E has exerted effort —
capital infusions are a part of an incentive contract to help elicit good behavior from
E. Moreover, the duration of investment depends on π. Gompers (1995) finds that
bad VC-backed projects are dropped and that good projects get more investment.
This happens in our model; the duration of investment rises with π: Projects with
π ≤ πmin get no investment beyond C, and from (3),

dT ∗ (π)

dπ
= −

h
¡
T V C [π]

¢
h0 (T V C [π])π

> 0,

because at the point of intersection h0 < 0. Since T ∗ = T V CM, this proves the claim
for the VC-backed projects, and differentiation in (8) establishes the same property
for TE

w .

5 Adding random delay to the signal on π

The model says that all projects for which π ≤ πmin are dropped at once. Our data
show that while some terminations do occur early, they don’t occur immediately.
This could be because it takes time to learn π and so we shall now introduce a delay
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in receiving the signal about π. This extension does not affect our theoretical results
and our welfare theorem still holds, but the modified model will fit the data better.
Suppose that a perfect signal on π arrives at date x, and that x has distribution

B and density b.
VC-backed projects.–If x = 0, the planner’s problem is the same as that in Section

3.1.1, and conditional on W, the solution, T ∗, is again (4), with πV Cmin still being the
cutoff π. But for x > 0, the cutoff is different from πV Cmin for two reasons. First, the
costs incurred for t ∈ [0, x] are now sunk and, second, the waiting time to success is
now F (t | t > x) . Therefore the cutoff, call it πmin (x), is the largest value of π that
solves

W = max
T

Z T

x

µ
π +W − a+ k

h (t)

¶
e−r(t−x)

f (t)

1− F (x)
dt+e−r(T−x)

µ
1− F (T )− F (x)

1− F (x)

¶
W.

(21)
The marginal condition for T is still (3), and so if x < T ∗ (π) and if π > πmin (x), the
project is still terminated at time T ∗ (π). But if x ≥ T ∗ (π) or if π ≤ πmin (x), the
project is terminated at x, i.e., at once. To sum up: The optimal stopping time of a
project with payoff π whose signal arrived at age x is

T ∗ (π, x) =

½
T ∗ (x) if π > πmin (x) ,
x otherwise.

Let T0 denote the age at which the planner terminates a project about which no
signal has yet come in. If the payoff is π and if x < T0, the social payoff of that
project is

VT0 (π, x) = −C +
Z T∗(π,x)

0

µ
π +W − a+ k

h (t)

¶
e−rtdF (t) + e−rT (1− F [T ∗ (π, x)])W.

But if the payoff is π and if x ≥ T0, the social payoff of the project is

VT0 (π,∞) = −C +
Z T0

0

µ
π +W − a+ k

h (t)

¶
e−rtdF (t) + e−rT0 (1− F (T0)W.

Hence, the Bellman equation defining W is

W = max
T0

½Z T0

x=0

Z
VT0 (π, x) dG (π) dB (x) + (1−B (T0))

Z
VT0 (π,∞) dG (π)

¾
.

(22)
where T0 denotes the termination time of a project with unknown π. Let T ∗0 denote
the solution to the maximization problem on the right-hand side of (22). Appendix
A proves

Lemma 4 The First-Order Condition corresponding to (22) is

a+ k + rW = h (T ∗0 )

Z
πdG (π) + δ (T ∗0 )

Z
VT∗0 (π, T

∗
0 )− VT∗0 (π,∞)

1− F (T ∗0 )
dG (π) , (23)

where δ = b/ (1−B) denotes the hazard rate of the signal.
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The LHS of (23) is the marginal cost of waiting. The RHS, the marginal benefit,
decomposes into two terms: First, the project might succeed in the next instant; the
likelihood of this event is h (T ∗0 ) , and the expected payoff is just

R
πdG (π), since

no selection on π has yet occurred. Second, the signal on π may arrive in the next
instant; the likelihood of this event is δ (T ∗0 ), and the project’s value changes from
VT∗0 (π,∞) to VT∗0 (π, T

∗
0 ).

Solo Es.–A rich solo E solves the same problem as the one above, except W = 0
in all formulas. An E facing budget constraint again terminates either at the same
time as a rich solo E would, or when he runs out of money. This is true for x above
the mode of h. To the left of the mode, however, πmins depend on both x and w, and
they solve the analog of (21). We shall plot πmin (x,w) in Appendix B.

6 Fitting data

Data description.–The data comprise VC investments in U.S. portfolio companies
founded between 1989 and 1993. Follow-on investments in these companies extend to
2001. The data are from the VentureXpert database provided by Thompson Venture
Economics. They follow 1745 companies. After dropping inconsistent, irrelevant, and
missing data, the final data cover $27 billion of venture capital investment in 1355
portfolio companies, of which 25% exited through an IPO, 19% were acquired, 32%
ceased to receive venture capital financing (terminated)10

Data Summary
age ipo acq term #evnts #left suc. hzd fail hzd
0 12 8 0 20 1355 0.01 0.00
1 39 19 119 177 1335 0.04 0.09
2 54 49 103 206 1158 0.09 0.09
3 65 42 61 168 952 0.11 0.06
4 67 47 50 164 784 0.15 0.06
5 27 24 36 87 620 0.08 0.06
6 22 23 20 65 533 0.08 0.04
7 16 11 19 46 468 0.06 0.04
8 5 10 17 32 422 0.04 0.04
9 0 5 6 11 390 0.01 0.02
10 2 4 6 12 379 0.02 0.02
11 0 1 1 2 367 0.00 0.00
12 0 0 1 1 365 0.00 0.00

10We infer that a termination has occured 462 days after the last reported VC investment in a
terminal period of inactivity. Thus a ‘termination’ annot occur in the first year of a firm’s life and,
hence, the ‘zero’ in the first row of column 4. This termination criterion was imposed on this sample
in Guler (2003) and on its update in Guler (2007).
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and 19% of companies in the sample were private companies still in the process
of receiving venture capital financing, and for them the possibility of an IPO or
acquisition was still deemed to exist as of 2001. The Table summarizes the data
focusing on the relation between the firm’s age in the first column, and the three
events that may befall the firm.
Estimated example.–We shall fit the following example to the data:

G (π) = 1−
µ
π

π0

¶−λ
π ≥ π0 (24)

B (x) = 1− e−δx x ≥ 0 (25)

F (τ) =
ρ

2 + ρ

µ
min (τ , τm)

τm

¶2
+ I[τm ,∞)

2

2 + ρ

"
1−

µ
τ

τm

¶−ρ#
τ ≥ 0 (26)

Thus π has a Pareto distribution, x has a constant hazard, δ, and τ has an increasing
density below τm and a Pareto density above τm. Thus we have eight parameters:
π0, λ, δ, ρ, τm, C, k, and r. We set τm = 4.5 since this is the peak of the empirical
success-hazard rate. We set r = 0.127, which would be the rate of return required by
the CAPM model given the β of VE returns and given the S&P 500 return over the
period. See the Appendix for details. This leaves us with only six free parameters:
π0, λ, δ, ρ, C, k. We fit the following eight features of the data:
1. the excess return,
2. the VC’s rate of return conditional on age,
3. the cost profile,
4. the cumulative cash flow,
5. the equity share of E,
6. the survival function,
7. the success hazard,
8. the termination hazard.
We now discuss how each of these eight features are determined by the data, and

how we constructed their theoretical counterparts in our example. We present the
formulae for the case δ = ∞, i.e., where the signal arrives immediately. Extending
them to the case where the signal is delayed is done in the Appendix. Figure 8
represents the fit of our numerical example. We start with the first panel of Figure 8:
Panel 1 : Excess Return.–We constrain the parameters to yield α = 4.8% and we

penalize highly any deviation from this value and so we end up with an α̂ very close
to the desired value.
Panel 2 : The rate of return profile.–Among projects that succeed at t, the VC’s

return, call it R (t), solves the equation

exp {Rt} = (1− s∗)
e−rt

R
πdΓt

C + k
r
(1− e−rt)

. (27)
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where Γ is The distribution of π among projects that succeed at time t. This is
an arithmetic return, because we first average the payoffs and then take the return.
The RHS is the ratio of the present values of revenues (averaged over the whole
portfolio) to those of costs. To derive it, note that projects with π < πmin are
terminated at once. Between date zero and date t = h−1 ([a+ k + rW ] /πmin), none
are terminated, and successes come from the distribution G (π | π ≥ πmin). At t =
h−1 ([a+ k + rW ] /πmin), the truncation point, (a+ k + rW ) /h (t) starts to move to
the right. Thus the distribution of π among projects that bear fruit at date t is just

Γt (π) ≡

⎧⎨⎩ G (π | π ≥ πmin) for t < h−1
³
a+k+rW
πmin

´
G
³
π | π ≥ a+k+rW

h(t)

´
for t ≥ h−1

³
a+k+rW
πmin

´
.

(28)

The vertical axis in Panel 2 measures R (t) in (27). The horizontal axis measures
the firm’s age as of the date of the first VC investment. The highest returns are
on projects that succeed early. We stop at the seventh year as data become sparse
beyond that point and are heavily influenced by outliers.
Panel 3: The cost profile.–We shall fit C and k to the data on the investment

profile, i.e., the sequences of investment rounds, but converted to flows of investment
as a function of time. The predicted first-period investment relative to subsequent
investment is

VC’s first-period investment
investment in other periods

=
k + p∗

k
= 1 +

k + rW

a+ k + rW
.

We see some modest decline in the empirical series, but it comes several years later
than the predicted, second year.
Panel 4 : The cumulative cash flow.–Let J (t) be the VC’s cumulative net income.

It obeys the ordinary differential equation

dJ

dt
=

Ã
−k + h (t) (1− s∗)

Z ∞

a+k+rW
h(t)

πdΓt (π)

!
S (t) , (29)

and the initial condition J (0) = −p∗, where p∗ is given in (11). For both the model
and the data in this case, we plot medians and not means so as to minimize the effect
outliers at high ages.
Panel 5 : E’s equity.–Once E signs the contract with the VC, her share of the

project drops from unity to s∗, where it remains until the end. We fit s∗ = a
a+k+rW

to Kaplan and Strömberg’s (2003, Table 2) numbers on cash flow rights, i.e., claims
on equity shares. Pooled over rounds, the claim of founders is 31.1%, of VCs 46.7%,
and of non-VC investors 22.2%. Since our model does not include non-VC investors,
we constrain s∗ to equal the share of founders in claims other than those of non-VC
investors, i.e.,

s∗ ≈ 31.1

31.1 + 46.7
= 0.40. (30)
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Figure 8: Fit of the Pareto model when targeted α = 0.048
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The model underpredicts s∗ because it needs a large k in order to lessen the predicted
decline in Panel 3, and the final estimate is a compromise.
Panels 6, 7 and 8: Hazards and survivorship.–A project “survives” through date

t if it has neither succeeded (τ > t) nor been terminated (T (π) > t).We first need to
define terminations. By (3), π = (a+ k + rW ) /h (T ) , and so the fraction of projects
terminated by date t conditional on no success until date t, i.e., Pr (T ≤ t | τ ≥ t), is

Φ (t) =

⎧⎪⎪⎨⎪⎪⎩
0 for t = 0

G
¡
πV Cmin

¢
for t ∈

³
0, h−1

h
a+k+rW
πV Cmin

i´
G
³
a+k+rW

h(t)

´
for t ≥ h−1

³
a+k+rW
πV Cmin

´
.

(31)

whence the termination hazard ψ (t) ≡ Φ0(t)
1−Φ(t) , is

ψ (t) =

⎧⎪⎪⎨⎪⎪⎩
∞ for t = 0

0 for t ∈
³
0, h−1

h
a+k+rW
πV Cmin

i´
(a+ k + rW ) θ

³
a+k+rW

h(t)

´³
−h0(t)
[h(t)]2

´
for t ≥ h−1

³
a+k+rW
πV Cmin

´ , (32)

where θ (π) ≡ g (π) / (1−G (π)) is the hazard rate of G. Since τ and π are indepen-
dent random variables, the CDF of t is 1− S (t) , where

S (t) = (1− F [t]) (1− Φ [t]) = exp

µ
−
Z t

0

(h (s) + ψ (s)) ds

¶
(33)

is the model ‘Survivor function’. The last three panels of Figure are not independent:
h and ψ imply S via (33). We measure S (t) by the ‘#left.’ This is the dashed
line in panel 6 of the figure. Our measure of h, ‘suc. hzd’ is calculated as (ipo +
acq)/(#left). Thus we treat IPOs and acquisitions as equivalent success realizations.
Finally, ‘fail hzd’ is the ratio (term)/(#left). This is the empirical counterpart of
ψ (t). The Appendix explains in detail.
Estimation procedure.–The estimates of our free parameters are determined as

the minimizers of the following loss function, RSS:

RSS = w1[ln α̂− ln 0.048]2 + w2
£
ln(k̂/Ĉ)− ln(k/C)

¤2
+

+ w3

8X
i=2

[R̂(t)−R(t)]2 + w4

12X
t=0

[Ĵt − Jt]
2 + w5[ln ŝ∗ − ln s∗]2+

+ w6

12X
t=1

[ĥt − ht]
2 + w7

12X
t=0

[Ŝt − St]
2 (34)

We only penalize two out of the three functions h(t), S(t) and ψ (t) since knowledge
of two pins down the third. We chose penalties on logarithms for some moments since
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a simple quadratic scheme did not penalize absurd behavior sufficiently; for example,
when the ratio k/C goes from 1/10 to 1/100, this is a big qualitative change in our eyes
but would not be penalized much by a purely quadratic scheme. For the weighting
scheme, we chose w = (5, 1, 1, 0.1, 0.1, 0.5, 0.01). The high penalty on α reflects the
importance we attach to this parameter. The other penalties are chosen to reflect
the scale of the respective parameters. We used a Matlab-built-in line-search method
to minimize RSS with respect to the parameters of the model. The minimization
process proved to be very robust; the algorithm converged to the same solution for
almost any of about 100 randomly chosen starting points. The estimates are reported
together in Table 1, and some statistics of interest are reported in Table 2.

α C k π0 λ τm ρ δ RSS
0.048 $ 6.4 mil. $ 3.7 mil. $ 73.2 mil. 1.91 4.5 0.35 0.46 0.5259

Table 1 : Parameter Estimates

Some implications of the parameter estimates.–Note that π0, the smallest possible
π in the support of G (see (24)), is estimated to be an order of magnitude higher
than C and k. The implied returns are therefore high if they come early, but the
expected waiting time until success is infinity because, since ρ < 1, the tail of the
Pareto portion of F distribution is thick. According to (26), the probability that
τ ≤ τm = 4.5 years (which is when the hazard peaks) is

ρ
2+ρ

= 0.35
2.35

= 0.15. Thus the
returns are likely to be highly skewed regardless of the shape of G, simply because
most of them are small, so that a large fraction is terminated. The early returns are
the big winners. On top of this G is itself right skewed, with E (π) = λπ0

λ−1 =$154 mil.
Finally, the mean signal-arrival time 1/δ = 2.2 years, i.e., the VC quickly learns the
quality of the project.
In our model, venture capital is homogeneous, but some differences could easily be

introduced. Suppose, e.g., that some VCs had better signals about a project’s likely
success, or could see them sooner. Such VCs would face a more favorable distribution
of waiting times, F , and of payoffs, G. Panel 1 of the Figure 8 shows that returns
drop off quickly as the waiting time increases so that an ability to bring successes
forward seems to have a very high return. If VCs differed in quality because some
could see a better prior signal, then the high-quality VCs would have aW higher than
other VCs. The high-W VCs would then be more selective, having higher πmins and
lower T (π)s. Therefore ex-post project qualities would be positively correlated with
the qualities of the VCs that backed them. This would be consistent with Sørensen
(forthcoming) who finds that the bulk of the observed positive association between
VC quality and project quality is due not to direct VC influence on the payoff but
to sorting. The following additional statistics were obtained from a Monte-Carlo
simulation of 3 million projects using the estimated parameters:
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Success rate 22.1% Screened 94.3%
Succeeded unscreened 5.4% E[x] 2.19
Success after screening 16.7% E[π] 154m$
Termination rate 77.9% E[π|success] 247m$
Terminated unscreened 0.2% E[τ |success] 6.37
Terminated on revelation of π 42.4% E[term. time|termination] 6.21
Terminated at T ∗(π) 35.2%

Table 2 : Additional Statistics

7 Conclusion

We estimated a model of the market for venture capital in which VCs were scarce
relative to the number of potential projects. The estimates imply a high equilibrium
return on VC capital which makes the VCs impatient to start new funds and to
terminate existing non-performing projects. This leads to a selection effect that gives
rise to a tendency for VC-backed companies to reach IPOs earlier, and to be worth
more at IPO than other start-ups. Our results show that many of the differences
between the VC-backed and solo companies can be explained without assuming that
VCs add value to projects on aside from providing liquidity, or that the VC-backed
projects are ex-ante different from solo ones.
We used the estimated model to infer the rate of return on venture capital and on

entrepreneurship, the latter rising with the entrepreneur’s wealth. The VC earned a
higher excess return than even the wealthiest entrepreneurs, but not by much. The
equilibrium was socially optimal for a range of parameter values.
The features of the contract were also determined by a sharing rule and an up-

front payment. For a wide range of distributions of project quality and wealth on
the one hand, and for a wide range of VC supply on the other, the model says that
contracts should be the same. To the extent that they should arise at all, cross-
economy differences in contracts should be expressible in terms of just two statistics:
The share of up-front costs that the VC finances, and the VC’s share in the equity of
the project.
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8 Appendix A: Omitted Proofs

Proof of Lemma 1. (i) Suppose that w < k/r + C. From (5), τ 0 (w) =
1/ [k − r (w − C)]. Suppose now, that h−1 ((a+ k) /π) > τ (w). That is, the project
with payoff π is worth supporting longer than time τ (w). Since the support of π is
R+, the measure of these π0s is positive. Then, by (7) and (8)

q (π,w) =

Z τ(w)

0

µ
π − a+ k

h (t)

¶
e−rtf (t) dt,

and therefore

∂q (π,w)

∂w
= τ 0 (w)

µ
π − a+ k

h (τ (w))

¶
e−rtf (τ (w))

=
1

k − r (w − C)

µ
π − a+ k

h (τ (w))

¶
e−rtf (τ (w)) .

The first term is positive since w < k/r + C. The second term is also positive since
h−1 ((a+ k) /π) ≥ τ (w). Suppose now that h−1 ((a+ k) /π) < τ (w), that is E can
support the project with payoff π as long as it is socially optimal. The measure of
such π0s is positive because πmin is positive. Then, by (7) and (8)

q (π,w) =

Z TE(π)

0

µ
π − a+ k

h (t)

¶
e−rtf (t) dt,

and
∂q (π,w)

∂w
= 0.

We can conclude that

∂q (π,w)

∂w
=

(
h(τ(w))π−a+k

h(τ(w))[k−r(w−C)]e
−rtf (τ (w)) if h−1 ((a+ k) /π) ≥ τ (w)

0 if h−1 ((a+ k) /π) < τ (w)
. (35)

Notice that

dQE

dw
=

Z
∂q (π,w)

∂w
dG (π) =

Z
h−1((a+k)/π)≥τ(w)

∂q (π,w)

∂w
dG (π)

=

Z
h−1((a+k)/π)≥τ(w)

h (τ (w))π − a+ k

h (τ (w)) [k − r (w − C)]
e−rtf (τ (w)) > 0.

(ii) Suppose now that w < k/r + C, that is, E never runs out of money when she is
supporting a project. Then, by (7) and (8)

q (π,w) =

Z TE(π)

0

µ
π − a+ k

h (t)

¶
e−rtf (t) dt,
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and hence dQE/dw = 0. By assumption, the social value of the project is positive.
This implies that the unconstrained entrepreneur generates a larger expected payoff
by optimally supporting a project than abandoning. But the payoff of supporting a
project in excess to that yielded by abandoning is exactly QE (w) − C, and hence
QE (w) > C.
Proof of Lemma 2. Recall that QE (w∗) = C and QE (C) = 0 (see Figure

2). Since QE is strictly increasing in w on [0, k/r + C] by Lemma 1, it follows that
w∗ > C. Hence, in order to prove (13) we only have to show that p∗ > 0. We show
more, we prove that

p∗ =
k + rW

a+ k + rW
C. (36)

Recall from (11) that

C − p∗ =

Z Z T∗(π)

0

µ
s∗π − a

h (t)

¶
e−rtf (t) dtdG (π) (37)

=

Z Z T∗(π)

0

µ
a

a+ k + rW
π − a

h (t)

¶
e−rtf (t) dtdG (π)

=
a

a+ k + rW

Z Z T∗(π)

0

µ
π − a+ k + rW

h (t)

¶
e−rtf (t) dtdG (π) , (38)

where the second equality used the definition of s∗. Notice, thatZ T∗(π)

0

− rW

h (t)
e−rtf (t) dt = −

Z T∗(π)

0

(1− F (t)) rWe−rtdt

and integrating by parts

−
Z T∗(π)

0

(1− F (t)) rWe−rtdt =
£
e−rT (1− F [T ∗ (π)])W

¤
−W −

Z T∗(π)

0

e−rtf (t)W .

Plugging this back to (37) we get that C − p∗ can be written as

a

a+ k + rW

Z Z T∗(π)

0

µ
π +W − a+ k

h (t)

¶
e−rtf (t) dt+

£
e−rT (1− F [T ])W

¤
−WdG (π)

=
a

a+ k + rW

"Z Z T∗(π)

0

µ
π +W − a+ k

h (t)

¶
e−rtf (t) dt+

£
e−rT (1− F [T ])W

¤
dG (π)−W

#
=

a

a+ k + rW
[W + C −W ] =

aC

a+ k + rW
,

where the third equality follows from (1). Therefore

C − p∗ =
aC

a+ k + rW
,
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which is equivalent to (36).
Proof of Lemma 3. Let us introduce the following notations

V (π, T ) =

Z T

0

π − a+ k

h (t)
e−rtf (t) dt,

V V C (π, T ) =

Z T

0

(1− s∗)π − k

h (t)
e−rtf (t) dt,

V E (π, T ) =

Z T

0

s∗π − a

h (t)
e−rtf (t) dt.

That is, V (π, T ) (V V C (π, T ) , V E (π, T )) is the social (VC’s, entrepreneur’s) payoff
generated from a project with payoff π if it is supported up-to time T . Recall that

max
T

V (π, T ) = W ⇐⇒ π ≤ πmin, (39)

max
T

V V C (π, T ) = W ⇐⇒ π ≤ πV Cmin, and

max
T

V E (π, T ) = 0⇐⇒ π ≤ πEmin.

First, we show that πmin = πV Cmin. By (39), it is enough to show that

V (π, T ) = V V C (π, T )⇐⇒ V (π, T ) =W. (40)

Notice that, given that a project is supported up to time T , V (π, T )−V V C (π, T )
is Z T

0

µ
π − a+ k

h (t)
−
∙
(1− s∗)π − k

h (t)

¸¶
e−rtf (t) dt

=

Z T

0

µ
π − a+ k

h (t)
−
∙

k + rW

a+ k + rW
π − k

h (t)

¸¶
e−rtf (t) dt

= a

Z T

0

µ
1

a+ k + rW
π − 1

h (t)

¶
e−rtf (t) dt.

Multiplying through by (a+ k + rW ) /a,

0 = V (π, T )− V V C (π, T )⇐⇒

0 =

Z T

0

µ
π − a+ k + rW

h (t)

¶
e−rtf (t) dt

=

Z T

0

µ
π − a+ k

h (t)

¶
e−rtf (t) dt+W

Z T

0

−re−rt (1− F [t]) dt. (41)

Now, integrating by parts, one can rewrite the last expression in the previous equality
chain asZ T

0

−re−rt (1− F [t]) dt = e−rt (1− F [t])
¯̄T
0
+

Z T

0

e−rtf (t) dt

= e−rT (1− F [T (π)])− 1 +
Z T

0

e−rtf (t) dt (42)
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Substituting from (42) into (41) we see, that (41) reads

0 =

Z T

0

µ
π − a+ k

h (t)

¶
e−rtf (t) dt+W

µ
e−rT (1− F [T ])− 1 +

Z T

0

e−rtf (t) dt

¶
=

Z T

0

µ
π − a+ k

h (t)

¶
e−rtf (t) dt+W

µ
e−rT (1− F [T ]) +

Z T

0

e−rtf (t) dt

¶
−W

=

Z T

0

µ
π +W − a+ k

h (t)

¶
e−rtf (t) dt+We−rT (π) (1− F [T (π)])−W

= V (π, T )−W.

Therefore (41) and (42) imply (40).
Now we show that πmin = πEmin. From (39), it is enough to show that

V E (π, T ) = 0⇐⇒ V (π, T ) =W .

Since s∗ = a/ (a+ k + rW )

V E (π, T ) =

Z T

0

µ
a

a+ k + rW
π − a

h (t)

¶
e−rtf (t) dt

=
a

a+ k + rW

Z T

0

µ
π − a+ k + rW

h (t)

¶
e−rtf (t) dt.

But this is exactly V (π, T )− V V C (π, T ) (see (41)). Hence,

V E (π, T ) = 0⇔ V (π, T ) = V V C (π, T )⇔ V (π, T ) =W,

where the second equivalence follows from (40).
Proof of Proposition 2. First, we show that (20) holds. This would imply

that if π ≤ πmin, then (19) is valid. Recall that for w ≥ C + k/r, πEmin solvesZ TE(π)

0

µ
π − a+ k

h (t)

¶
e−rtf (t) dt = 0. (43)

Using the notations of the previous lemma, it is enough to show that

max
T

V
¡
πEmin, T

¢
≤W . (44)

Notice that

V
¡
πEmin, T

¢
=

Z T

0

µ
πEmin +W − a+ k

h (t)

¶
e−rtf (t) dt+ e−rT (1− F [T ])W

=

Z T

0

µ
πEmin −

a+ k

h (t)

¶
e−rtf (t) dt+

Z ∞

0

We−rmin{t,TV C(πEmin)}f (t) dt

≤
Z TE(πEmin)

0

µ
πEmin −

a+ k

h (t)

¶
e−rtf (t) dt+

Z ∞

0

We−rmin{t,TV C(πEmin)}f (t) dt

=

Z ∞

0

We−rmin{t,TV C(πEmin)}f (t) dt ≤W .
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The inequality follows from TE being the solo’s optimal termination rule (and not
T V C), and the last equality from (43). Since T was arbitrary in the previous inequality
chain, (44) follows.
It remained to show that (19) even if π > πmin. If π > πmin then T V C (π) > 0

and by (20) TE (π) > 0. Since h is decreasing at T V C (π) and TE (π), a comparison
of (6) and (4) implies TE (π) > T V C (π).

Proof of Proposition 3. First, we show πmin (w) is decreasing in w and
constant, πEmin, on [k/r + C,∞). Recall that πmin (w) can be defined such that

q (π,w) = 0⇔ π ≤ πmin (w) .

Hence, in order to prove that πmin (w) is decreasing it is enough to show that q (π,w)
is increasing in w. Suppose that w1 > w2. Recall from (7) that

q (w2, π) = max
T∈[0,τ(w2)]

Z T

0

µ
π − a+ k

h (t)

¶
e−rtf (t) dt

≤ max
T∈[0,τ(w1)]

Z T

0

µ
π − a+ k

h (t)

¶
e−rtf (t) dt = q (w1, π) ,

where the inequality follows because τ is increasing (see (5)). Also notice from (5) that
the inequality is weak whenever w1, w2 ≥ k/r + C. This shows that πmin (w) = πsmin
whenever w ≥ k/r + C.
Finally, since πmin (w) is decreasing in w and τ is increasing and constant on

[k/r + C,∞), the statement of the proposition directly follows from (8).

Proof of Lemma 4. First, notice that

∂
R T0
0

R
V (π, x) dG (π) dB (x)

∂T0
=

∂
R T0
0

R
V (π, x) dG (π) b (x) dx

∂T0
= b (T0)

Z
V (π, T0) dG (π) .

(45)
Also notice that

∂ (1−B (T0))
R
V (π,∞) dG (π)

∂T0
=

Z
∂ (1−B (T0))V (π,∞)

∂T0
dG (π) .

But

∂ (1−B (T0))V (π,∞)
∂T0

= −b (T0)V (π,∞) + (1−B (T0))
∂V (π,∞)

∂T0
,

and
∂V (π,∞)

∂T0
= e−rT0f (T0)

µ
π − k + a+ rW

h (T0)

¶
. (46)
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This latter equality follows from exactly the same argument that led to (3). Hence:

∂ (1−B (T0))
R
V (π,∞) dG (π)

∂T0
(47)

=

Z
−b (T0)V (π,∞) + (1−B (T0)) e

−rT0f (T0)

µ
π − k + a+ rW

h (T0)

¶
dG (π)

= −b (T0)
Z

V (π,∞) dG (π) + (1−B (T0)) e
−rT0f (T0)

µZ
πdG (π)− k + a+ rW

h (T0)

¶
.(48)

The first-order condition is the sum of (45) and (47) equated with zero, that is

0 = (1−B (T ∗0 )) e
−rT0f (T ∗0 )

∙Z
πdG (π)− a+ k + rW

h (T ∗0 )

¸
+b (T ∗0 )

Z
[V (π, T0)− V (π,∞)] dG (π) .

Rearranging,

(1−B (T ∗0 )) (1− F (T ∗0 )) e
−rT0 (a+ k + rW ) = (1−B (T ∗0 )) e

−rT0f (T ∗0 )

Z
πdG (π)−

+b (T ∗0 )

Z
[V (π, T0)− V (π,∞)] dG (π) .

After dividing through by (1−B (T ∗0 )) (1− F (T ∗0 )),

a+ k + rW = h (T ∗0 )

Z
πdG (π) + erT0δ (T ∗0 )

Z
V (π, T0)− V (π,∞)

1− F (T0)
dG (π) . (49)
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9 Appendix B: Data and the Estimation

This Appendix was written by Matthias Kredler

9.1 Data

In general, we will denote the quantities implied by the model by plain letters (x,
e.g.), whereas the moments from the data are denoted by the same letter carrying a
hat (x̂).

9.1.1 The data on α and r

The value α̂ = 0.048 that we use is inferred from the quarterly value αq = 0.0117 that
Jones and Rhodes-Kropf (2004) report on the bottom of panel A in their table 2. In
order to compute the discount rate r = 0.127 that we use in the computations, we
create the typical return for an investment with the characteristics of VC projects
following the capital asset pricing model (CAPM):

r = rf + βV C(rm − rf) = 0.127

We compute rf = 0.026 as the mean of the return on 3-month treasury bills from
1980 to 1999, which is the sample period for Jones and Rhodes-Kropf (2004)’s data.
Similarly, we compute rm = 0.082 as the mean of the return on a value-weighted
portfolio of stocks listed on the NYSE, AMEX and NASDAQ provided by the Center
for Research in Security Prices (CRSP) over the same period. The value βV C = 1.80
is calculated as the sum of the 5 quarterly β-coefficients that Jones and Rhodes-
Kropf (2004) provide in their table 1, panel B.

9.1.2 The data on R(t)

We calculate the following statistic over all projects that succeed during year t:

R(t) =
1

t
log

"
1
N

PN
i=1 e

−rtπi
1
N

P
N

³Pt
s=1 e

−rsIi,s
´#,

where time is counted from zero on for each project when it receives its first investment
round. The term in brackets can be seen as the excess return over r of a big portfolio
of VC projects that succeeded after t years. Taking logs and dividing by t annualizes
this quantity. We take the logs after averaging over all projects since VC returns are
driven by outliers; there is a strong Jensen’s-inequality effect that understates the
influences of big winners when logs are taken before averaging.
For r, we use the same number as derived in paragraph 9.1.1. In the denominator,

we have investment cash flows for project i in year s (after the first investment). The
data are taken again from Guler (2003). They are annualized log returns for the
projects in Guler’s sample and we reproduce them in Table A1:
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Year 1-2y 2-3y 3-4y 4-5y 5-6y 6-7y 7-8y
R(t) 1.59 0.59 0.49 0.26 0.28 0.26 0.16

Table A1

The data are also plotted as the dashed line in Panel 2 of Figure 8. We restrict it
to the years 2 to 8 for the following reasons: For projects succeeding during the first
year, it is impossible to distinguish between investment and revenue since there is
only one net cash flow in the data. For the years after the 8th year, the data become
very sparse — we have less than 10 data points in each of these years. Therefore these
are not used in the estimation.

9.1.3 The data on k/C

As a typical value for C, we take Ĉ = $2.6m. This number is reported by Kaplan,
Sensoy and Strömberg (2002) in table 2 as the book value of a VC portfolio company
at the business plan in the median. In order to get an estimate k̂ for the typical
monetary investment k that a portfolio company requires each year, we employ again
the data from Guler (2003, Table 6, column 2):

Investment round 1 2 3 4 5 6 7 8 9 10 11 12
Amount ($ millions) 6.5 5.3 5.5 7 8.4 6.4 5.9 8.2 3.4 8.1 3.4 3.4

Table A2

Because the model has k paid per unit of time and C at the outset, we need
to convert these data for spending by investment round into spending per year. By
comparing the speed of terminations we arrived at the conversion factor for converting
rounds into flows. If Ij is the average amount invested in round j, we convert this
into a flow It = θtIt, where11

θt ≡
1

1.25
− 1
5

µ
1

1.25
− 1

1.5

¶
t.

As an estimate for the typical yearly investment flow once the initial investment round
is over, we obtain k̂ = 1

T−1
PT

t=2 θtIt=$3.68m, again from Guler’s data. Hence the

target value becomes k̂/Ĉ = 1.42.

11Between the first and the sixth round,the termination hazard falls from 0.12 to 0.08. On the
other hand, between year 1 and year 6, the termination hazard falls from 0.09 to 0.04. Thus the
ratio of the two hazards rises from 12

9 = 1.25 to 8
4 =

1
2 . As a rough calculation, then, initially,

rounds are once every 1.25 years, and by year 6, they are once every 1.5 years.
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9.1.4 The data on J(t)

To estimate the cumulative cash-flow J(t) of a typical project, we take the average
cumulative cash-flow in Guler’s data up to year t. Guler’s data for π are the market
valuations for the respective company at IPO or at acquisition. In line with the value
s∗ = 0.40 that we use (see below), we assume that 60% of these revenues accrue to
VCs. Furthermore, for the positive cash-flows in the formula for J 0(t) in section 4.0.5
we calculate conditional medians at t instead of conditional means (as is done for the
statistics inferred from the model, since it is easier to evaluate)– we do this because
the mean is very sensitive to the extreme outliers that are present in Guler’s data.
We reproduce the series we obtain for Ĵ(t) in table A3 (plotted as the dashed line in
Panel 4 of Figure 8.

Year 1 2 3 4 5 6 7 8 9 10 11 12
Ĵt -9.0 -8.9 -7.3 -4.3 -0.7 0.7 2.1 5.1 5.7 6.0 6.2 7.1

Table A3

9.1.5 The data on s∗

The reference value ŝ∗ = 0.40 is taken from Kaplan and Strömberg (2002), table 2.

9.1.6 The data on S(t), h(t) and ψ (t)

These data are from the VentureExpert database provided byVenture Economics, and
are described in detail by Guler (2003). For clarity of the argument, the following
table reproduces the Data Summary Table from Section 6 of the paper and will help us
discuss in greater detail the data on successes and terminations and the construction
of the variables.
‘Age’ is measured as the number of periods since the date of the first VC invest-

ment. Note that this measure of age is different from the measure in Figure 7 where
‘age’ is time elapsed since the firm was founded.
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age ipo acq term #evnts #left ĥ ψ̂
0 12 8 0 20 1355 0.01 0.00
1 39 19 119 177 1335 0.04 0.09
2 54 49 103 206 1158 0.09 0.09
3 65 42 61 168 952 0.11 0.06
4 67 47 50 164 784 0.15 0.06
5 27 24 36 87 620 0.08 0.06
6 22 23 20 65 533 0.08 0.04
7 16 11 19 46 468 0.06 0.04
8 5 10 17 32 422 0.04 0.04
9 0 5 6 11 390 0.01 0.02
10 2 4 6 12 379 0.02 0.02
11 0 1 1 2 367 0.00 0.00
12 0 0 1 1 365 0.00 0.00

Table A4
The last three columns are plotted as the dashed lines in panels six (there normalized
by dividing by 1355), seven and eight of Figure 8.
Here is how we calculated the hazards:

1. Column 6, “# left” is the empirical counterpart of (1− F [t]) (1− Φ [t]), i.e., of
S (t) in (33).

2. Column 7, “ĥ” is the ratio (ipo + acq)/(#left). That is, we treat IPOs and
acquisitions as equivalent success realizations. So, e.g., the value of this ratio
at age 1 is 39+19

1335
= 0.043, its value at age 2 is 54+49

1158
= 0.089, and so on. We now

show that this is the empirical counterpart of h (t). The sum of the columns (ipo
+ acq) we interpret as the number of successes at date t among firms for whom
T > t. The probability of τ = t and its surviving beyond t is f (t) (1− Φ [t]).
Therefore we equate these two concepts:

(ipo + acq) = f (t) (1− Φ [t]) .

Therefore as calculated in Column 7, the “success hazard” is

ipo + acq
# left

=
f (t) (1− Φ [t])

(1− F [t]) (1− Φ [t])
=

f (t)

1− F (t)
= h (t) .

3. Column 8, “ψ̂” is the ratio (term)/(#left). This is the empirical counter-
part of ψ (t); to see why, note that term is the number terminated at date
t among firms for whom T ≥ t and τ ≥ t. The probability of T = t and
τ ≥ t is Φ0 (t) (1− F [t]). Therefore we equate the two concepts: (term)
= Φ0 (t) (1− F [t]) whereupon, as calculated in Column 8, the “termination
hazard” is

term

# left
=

Φ0 (t) (1− F [t])

(1− F [t]) (1− Φ [t])
=

Φ0 (t)

1− Φ [t]
= ψ (t) .
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9.2 Numerical algorithm to solve the model

To solve the model, we make use of the monotonic relationship between W and C.
As is apparent from equation (22), the value W of a generic project before the first
investment increases monotonically in C. So when fixing all other model parameters
and W in equation (22), there is only one level of C that is congruent with these
parameter values.
We make use of this fact by declaring W a parameter of the model and then

backing out C as a result of it. This has two advantages: It is computationally
easier, and it allows us to keep W in the positive range, which is a requirement to
have a VC market at all. Note that, however, negative values for C may be obtained
in certain parameter regions, i.e. a payment to the VC in the beginning is needed to
reach a certain level W given the other parameters. However, negative levels of C
are penalized in the estimation, so that this is not a problem in the estimation.
Throughout, we use quadrature methods to solve the various integrals in the model

equations. The main advantage of these methods is that only a small number of func-
tion evaluations is needed to obtain a precise approximation. An obvious alternative
is Monte-Carlo integration, i.e. the simulation of a large number of projects. This
has the disadvantage that many more function evaluations are necessary to obtain a
good approximation. We use Monte-Carlo simulation in the end to check the results
we obtain by quadrature methods and find that quadrature performs very well.
It actually turns out that the Monte-Carlo integrals have some variance even

when the number of simulated projects goes into the millions — this is because the
distribution for π is Pareto and does not have finite variance under the estimated
parameter λ = 1.9. Hence the speed of convergence of the Monte-Carlo integrals is
lower than for finite-variance problems (but the Law of Large Numbers for the mean
still holds, of course).

9.2.1 How to find πmin(x)

There are two cases to consider when determining the lowest level of π tolerated by
a VC when learning π at time x:

• x ≥ τm, where τm is the peak of the hazard rate: It is sufficient to look at the
FOC:

πmin(x) =
1 + rW

h(x)
=
(1 + rW )τm

ρ

• x < τm: In this case we cannot use the FOC. However, we know that the
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following function is increasing in π and that it will cut 0 at some point πmin(x):

Ṽ (x, π) =

Z T̃ (π)

x

e−r(t−x)

Ã
π +W − 1

h(t)

!
dF (t)

S(x)
(50)

+ er[T̃ (π)−x]

"
1− F [T̃ (π)]− F (x)

S(x)

#
W −W,

where T̃ (π) = h−1[(1 − rW )/π] fulfills the FOC for optimal stopping. Note
that this value is net of the opportunity cost W of scrapping the project at
once (i.e. at x). The integral in the formula above can be approximated by
Legendre Quadrature. As for all integrals calculated by quadrature methods in
this algorithm, we use 30 quadrature nodes. The root of the equation is found
by aMatlab-built-in numerical technique. We calculate πmin(x) for all values on
a grid between zero and τm; then we interpolate linearly between these points
to obtain values for πmin(x) between the grid points.

A plot of the πmin(x) function under the estimated parameters can be found in
the left panel of Figure 9.

9.2.2 Vrev(x): the value of signal revelation at time x

Define Vrev(x) as follows:

Vrev(x) =

Z ∞

πmin(x)

Ṽ (x, π)dG(π),

where Ṽ (x, π) is given in equation (50). The function Vrev(x) value plays a crucial role
when finding T0, but also for the computation of C givenW (or vice versa). Since the
upper bound of integration is infinity and the integrand does not have closed form,
computation of this integral is not straightforward.
To approximate the solution, note that the value of a project Ṽ (x, π) becomes

linear in π in the limit; to determine a (large) π̄ where the function is very close to
the asymptote, consider the following:

Ṽ (x, π) =
π +W + 1/r

S(x)

Z ρ̃π

x

e−r(t−x)dF (t)+

+ erx e−rρ̃πμ

µ
ρ̃π

τm

¶−ρ
| {z }

=ε

W + 1/r

S(x)
− 1

r

We want to find π̄ sufficiently large so that the underbraced term equal to some very
small ε. We solve numerically for the relevant π̄ after taking logs (the terms e−rx and
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S(x) are not taken into account here since they also appear in the other two terms
in (??) — we want to make ε small relative to these terms):

ρ ln π̄ + rρ̃π̄ = − ln ε+ lnμ− ρ ln ρ̃+ ρ ln(τm)

We choose ε = 10−5 in the implementation. The equation can be solved numerically
for π̄.

In the calculations for Vrev(x), we evaluate the integral from πmin to π̄ with Legen-
dre quadrature; for the region above we use the following approximation:

V (π) = Aπ +A(W + 1/r)− 1
r

where

A =

Z ∞

0

e−rtdF (t)

for π ≥ π̄. A is obtained with Legendre Quadrature for the part up to τm and by
Laguerre Quadrature for the part above.
Then we can get an approximation for the value from πs above π̄ in closed form,

since our approximation V (π) for high π is linear in πZ ∞

π̄

V (π)dG(π) =

"
− 1/r +A(W + 1/r)

#Z ∞

π̄

λπλminπ
−λ−1dπ+

+Aπ

Z ∞

π̄

λπλminπ
−λ−1dπ =

=

"
AW − 1−A

r

#
πλminπ̄

−λ +Aπλmin

λ

λ− 1 π̄
1−λ

The part of the integral below π̄ is again obtained by Legendre Quadrature; it
can be verified that the function V (π) is smooth (i.e. infinitely often differentiable),
so quadrature yields very good results.

9.2.3 Find T0

Note that the FOC for T0 as given in equation (23) is decreasing in T0 for values
greater than τm: πmin(x) is increasing in x since the hazard is declining, and the
function below the integral is declining in T0. The first-order condition at t is:

FOC(t) = δVrev(t) + h(t)E[π]− (a+ k)− rW

The root of this function above τm is found numerically. Should the FOC be
already negative at τm–in this case, the VC would (in almost all cases) never want
to keep a project alive–we penalize heavily in the solution algorithm.
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9.2.4 Find C given W

As described before, we have made C an outcome in terms of the parameter W , and
we have to solve the following equation to obtain C:

C = −W − 1/r +
Z T0

0

V (x)dB(x) + e−δT0V (T0).

We use integration by parts here to account for the variable costs: First, pay the
lifetime value 1/r for all projects, then re-gain e−rt/r when the project comes to an
end — note that this yields the correct value (1 − ert)/r for each project. V (x) is
the time-0 value of all projects with revelation time x; this value does not change
anymore for x > T0 since the policy is the same for all these projects; they yield E[π]
in all periods before T0, and then they are shut down.
This is the formula for V (x):

V (x) =

Z πmin(x)

0

H(π, x)dG(π) +

Z ∞

πmin(x)

H(π, T ∗(π))dG(π),

where

H(x, π) =

Z x

0

e−rt(π +W + 1/r)dF (t) + e−rx[1− F (x)](W + 1/r).

H(x, π) can be calculated in a similar way as described for Ṽ (x, π) before when fixing
x and π. The first term of V (x) is easier to calculate since the policy does not vary
— either the project succeeds before x, or it is shut down at signal revelation:Z πmin(x)

0

H(π, x)dG(π) =G[πmin(x)](W + 1/r)

"Z x

0

e−rtdF (t) + e−rx[1− F (x)]

#
+

+

Z πmin(x)

πl

πdG(π)| {z }
= λ
λ−1π

λ
l

£
π−λ+1l −πmin(x)−λ+1

¤
Z x

0

e−rtdF (t)

We have to split up the second term in the formula for V (x) at π̄ as described before
in the calculations for Vrev(x) to get an expression that is computable:Z ∞

πmin(x)

H(π, T ∗(π))dG(π) =

Z π̄

πmin(x)

H(π, ρ̃π)dG(π)

+ [1−G(π̄)](W + 1/r)

Z ∞

0

e−rtdF (t) +

Z ∞

0

e−rtdF (t)
λ

λ− 1π
λ
l π̄
−λ+1,

The first integral is calculated by Legendre Quadrature; again, it can be checked that
we are integrating over a smooth function. Note that in the above expression we have
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used Z b

a

πdG(π) =
λ

λ− 1π
λ
l

"
− π−λ+1

#b
a

.

Now we can integrate over the smooth function V (x) from 0 to T0 in the above
formula for C. We do this by Legendre Quadrature.

9.2.5 Weights for the project pool

The mass of screened projects that is still alive at time t is the following:

Hscr(t) =

Z t

0

h
1−G (max{πmin(x), πmin(t)})

i
dB(x)

For details of the calculation strategy in this case, refer to the description of the
numerical implementation of the solution for R(t). In terms of terminations, we can
write for t < T0:

Hscr(t) = 1− e−δt|{z}
unscreened

− Hterm(t)| {z }
screened and terminated

So the weight of screened projects in successes, i.e. the probability that a project had
been screened conditional on success, is

hscr(t) =
Hscr(t)

Hscr(t) + e−δt

A plot of this function under the estimated parameter values can be found on the
right panel of Figure 9.

9.2.6 Calculate α

Compute the expected present value CPV = CM
PV + CC

PV of all costs for the VC:
Clearly, the part coming from marginal cost must be CM

PV = k/r, since the VC will
never be idle and hence always pay a flow cost k. The part CC

PV stemming from the
repeated payment of the fixed cost C can be obtained in a recursive fashion:

CC
PV = C +E[e−rTCC

PV ],

where T = min{τ , T ∗(π)} is the time of success or termination of the project,
whichever comes first. From this, we obtain

CC
PV =

C

1−E[e−rT ]
, E[e−rT ] =

Z π

0

e−rmin{τ,T
∗(π)}g(π)dπ.

E[e−rT ] can be computed in a manner quite similar to C, so the computation proce-
dure is not explained again here. Now, we can obtain the α implied by the model:
α =W/CPV , as given in equation (55).

48



9.2.7 Calculate R(t)

We now calculate the implied returns as determined by (27). We first need the density
of projects in the (x, π)-space at a given time t, i.e., the density on the pool of projects
that is still not terminated at time t. To obtain this density, first define

q̂(x, π|t) =
(
b(x)g(x)I(π ≥ πmin(x, t)) if x ≤ t

b(x)g(x)I(t ≤ T0) if x > t

where πmin(x, t) = max{πmin(x), πmin(t)} is the lowest project quality left from the
pool of projects screened at time x, and I(·) is the indicator function for an event.
Then the density of a pair (π, x) at time t is

q(x, π|t) = q̂(x, π|t)
Ct

,

where

Ct =

Z ∞

0

Z ∞

πl

q̂(x, π|t)dπdx.

Ct may be calculated as

Ct =

Z t

0

[1−G(πmin(x, t))] dx+ I(t ≤ T0)[1−B(t)]

The left-hand side here is approximated by Legendre Quadrature over the smooth
parts of the integrand; notice that for t > τm, πmin(x, t) will be flat over some interval
on x and vary on the rest of the values for x (at least under reasonable parameters).
In this case, we employ quadrature on each of these parts in order to be operating
over a smooth integrand.
In a similar fashion we can then calculate the expected π for a succeeding project

at t:

E[π|t] =
Z t

0

πq(π, x|t)dx| {z }
screened pool

+ I(t ≤ T0)[1−B(t)]E[π]| {z }
unscreened pool

Note that the integrand in the term on the left can be evaluated in closed form since
π is distributed Pareto. Again, we use Legendre Quadrature over the smooth parts
of the integrand to approximate the solution. A plot of the function E[π|t] under
the estimated parameters can be found in the left panel of Figure 9. Now we have
everything in place to compute the conditional return at time t

R(t) =
1

t
ln

µ
e−rts∗E[π|t]

C + (1− e−rt)k/r

¶
,

where s∗ is given in paragraph (9.2.10).

49



Figure 9: Selection of π

9.2.8 Calculate k/C

The proportion of fixed cost to flow investment is k/C.

9.2.9 Calculate J(t)

We have
p̂ = C − p∗,

where we use

p∗ =
C(1− k)

1 + rW
.

Compute J(t) for t = 1, 2, . . . , 12 by numerically integrating as follows:

J(t) = −p̂+
Z t

0

J 0(s)ds ' −p̂+
t/∆tX
i=1

J 0[(i− 1)∆t]∆t,

where we choose ∆t = 0.1 and where J 0(t) is obtained from the following equation:

J 0 (t) =

Ã
−k + h (t) (1− s∗)

Z ∞

a+k+rW
h(t)

πdΓt (π)

!
S (t)
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9.2.10 Calculate s∗

The predicted share of the entrepreneur in the profit π is

s∗ =
1− k

1 + rW
.

Although we set s∗ = 0.4, A more recent sample that Kaplan, Sensoy and Strömberg
(2006) analyze shows that the founders now tend to retain a smaller share, 10% to
19%.

9.2.11 Calculate S(t), h(t) and ψ (t)

For the estimation, we now compute the C.D.F.s of terminations. Let ΦV C (t) be
the VC’s terminations C.D.F..By (4), π = (a+ k + rW ) /h

¡
T V C

¢
, and so the frac-

tion of projects terminated by date t conditional on no success until date t, i.e.,
Pr (T ≤ t | τ ≥ t), is

ΦV C (t) =

⎧⎪⎪⎨⎪⎪⎩
0 for t = 0

G
¡
πV Cmin

¢
for t ∈

³
0, h−1

h
a+k+rW
πV Cmin

i´
G
³
a+k+rW

h(t)

´
for t ≥ h−1

³
a+k+rW
πV Cmin

´
.

(51)

whence the termination hazard for the VC-backed firms, ψV C (t) ≡ (Φ
V C)

0
(t)

1−ΦV C(t) , is

ψV C (t) =

⎧⎪⎪⎨⎪⎪⎩
∞ for t = 0

0 for t ∈
³
0, h−1

h
a+k+rW
πV Cmin

i´
(a+ k + rW ) θ

³
a+k+rW

h(t)

´³
−h0(t)
[h(t)]2

´
for t ≥ h−1

³
a+k+rW
πV Cmin

´ (52)

where θ (π) ≡ g (π) / (1−G (π)) is the hazard rate of G. The terminations and
hazards of rich Es with wealth w, written as ΦE,w (t) and ψE,w (t) , also satisfy (51)
and (52), but withW set equal to zero, and with πV Cmin replaced by π

E
min. The same can

also be said for Es with wealth w < C+ k
r
, except that πV Cmin replaced by π

E
min (w), and

that ψE,w (t) becomes infinite at t = τ (w) defined in (5). We compute the survival
function S(t), t = 0, 1, .., 12 as follows:

S(t) = [1− F (t)]
£
1− ΦV C (t)

¤
,

where the terminations C.D.F. ΦV C (t) is just the converse of the variable Ct calcu-
lated before to obtain R(t) in paragraph 9.2.7. We calculate S(t) at the exact points
t = 0, t = 1 etc. since the survival is a stock variable which is measured exactly at
these points in the data, too.
The success hazard h(t), t = 1, .., 12 is computed according to the formula given

in section 9.5. Note that since success is purely exogenous, this hazard is solely
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governed by τm and ρ. We evaluate the hazard in the model in the middle of the
period corresponding to a year in the data, e.g. at t = 0.5 for the first year, since the
data to calculate the empirical hazard stem from successes that are spread out over
the entire first year; in other words, the hazard is a flow concept.
Also the terminations hazard ψ (t) is calculated for t = 1, .., 12 since it is a flow

variable in the data, too. In this case we compute the exact sample analog: For
the hazard over year 2, for example, we take the difference between the terminations
C.D.F. ΦV C(t) at t = 1 and t = 2 and then divide by the survival S(1).

9.3 Loss Function

The set of unknown parameters is {ρ, π0, λ, C, k}. To estimate them, we fix τm = 4.5
since this is the peak of the empirical hazard rate. Furthermore, we set r = 0.127 as
described before in paragraph 9.1.1.
We specify the loss function RSS for a set of parameters (ρ, π0, λ, k,W ) and the

moments from the data as follows:

RSS = w1[ln α̂− lnα]2 + w2
£
ln(k̂/Ĉ)− ln(k/C)

¤2
+

+ w3

8X
i=2

[R̂(t)−R(t)]2 + w4

12X
t=0

[Ĵt − Jt]
2 + w5[ln ŝ∗ − ln s∗]2+

+ w6

12X
t=1

[ĥt − ht]
2 + w7

12X
t=0

[Ŝt − St]
2 (53)

We only penalize two out of the three functions h(t), S(t) and ψ (t) since knowledge
of two pins down the third. We chose penalties on logarithms for some moments since
a simple quadratic scheme did not penalize absurd behavior sufficiently; for example,
when the ratio k/C goes from 1/10 to 1/100, this is a big qualitative change in our
eyes but would not be penalized much by a purely quadratic scheme.
For the weighting scheme, we chose w = (5, 1, 1, 0.1, 0.1, 0.5, 0.01). The high

penalty on α reflects both the importance we attach to this parameter and its low
scale. The other penalties are chosen to reflect the scale of the respective parameters.
We use a Matlab-built-in line-search method to minimize RSS with respect to the

parameters of the model. The minimization process proved to be very robust; the
algorithm converged to the same solution for almost any of about 100 randomly chosen
starting points. Using numerical gradients and standard errors of the moments, it
is possible to obtain (approximate) standard errors for our estimators. This is an
important next step in this project.
The described weighting scheme yielded the estimates reported in Table 2A. Es-

timates of R, S, and h are plotted in Figure 8.

52



9.4 Statistics from the solo entrepreneur’s problem

9.4.1 How to find πmin(w, x)

For the solo entrepreneur with wealth w and an associated time τ(w) where she
runs out of wealth, we have the following value of a project with known π at x, for
simplicity here in terms of time 0:

Vs(w, x, π) =

Z min{ρπ,τ(w)}

x

e−rt
µ
π − 1

h(t)

¶
dF (t)

The root of this equation is called πmin(w, x); this is the payoff where the solo entre-
preneur of wealth π is just indifferent between terminating and continuing a project.
The numeric solution to this problem is implemented just as the one in the analogous
equation for the VC described in paragraph 9.2.1.
We first take a grid over the wealth levels of interest, [C,C+k/r]. Then, for each

wealth level w on the grid, we calculate πmin(w, x) for a grid point xi ∈ [0, τ(w)]. By
linearly interpolating between the grid points in the (w, x)-plane it is then possible
to obtain an approximate πmin(w, x) for any point (w, x).
A plot of the function E[π|t] for the unconstrained entrepreneur and for a con-

strained entrepreneur with w=9m$ can be found in the left panel of Figure 9.

9.4.2 The solo entrepreneur’s FOC for T0(w)

For entrepreneurs with τ(w) < τm, we set T0 = τ(w), i.e. the entrepreneur does not
terminate projects of unknown value before she runs out of money. In the reasonable
parameter region, the first-order condition for T0 is increasing below τm, so that the
entrepreneur would terminate everything at t = 0 — we want to avoid this to see
where the entrepreneurs profits cut zero. The entrepreneur’s first-order condition for
T0 is indeed

FOC(w, x) = δ
erx

S(x)

Z ∞

πmin(w,x)

Vs(w, π, x)dG(π)| {z }
=Vs,rev(w,x)

+h(x)E[π]− 1

For τ(w) > τm, we check this condition at τm and τ(w): If it is not positive at τm, we
set T0 = τm–the reasoning for this is the same as before for the case τ(w) < τm . If
it is still positive at τ(w), then the solo entrepreneur will let all unscreened projects
survive until the end, and we set T0 = τ(w). Otherwise, we solve the above equation
for a root — this root must be unique since the FOC is downward-sloping for t > τm.
Again, we encounter the problem that the integral’s upper limit in the FOC is

infinity, as was the case for the analogous problem of the VC in paragraph 9.2.3.
However, in the entrepreneurs case we have a natural upper bound for the linear
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asymptote: The function will already be linear for π such that ρπ ≥ τ(w). Hence we
re-state the revelation value as follows:

e−rxS(x)Vs,rev(w, x) =

Z τ(w)/ρ

πmin(x)

Vs(π, x, w)dG(π)+

+ [1−G(τ(w)/ρ)]
−1 +

R τ(w)
x

e−rtdF (t) + [1− F (τ(w))]

r
+

+

"Z τ(w)

x

e−rtdF (t)

#" Z ∞

τ/ρ

πdG(π)| {z }
= λ
λ−1

τ/ρ
πl

−λ
τ
ρ

#

Again, we use Legendre Quadrature to approximate the integrals involved here, just
as in the VC’s case described in paragraph 9.2.3.

9.4.3 The VC’s and entrepreneur’s net worth and excess return

Derivation of (55).–To arrive at W and CPV we discount by r, the rate of return
required given the risk characteristics of the income stream that the VC faces. That
rate depends partly on the covariance of the VC’s income stream with the market
index, i.e., β. Let rf denote the risk-free interest rate, and let rS&P denote the expected
return on the market index for which we shall use the S&P 500 as a proxy. Then the
CAPM prediction for the expected return on venture capital is

r = rf + β (rS&P − rf) .

To verify (55) in another way, let time be discrete and assume that each company
matures and yields π for sure at the end of one period. Let p = 1 and k = 0. Then
one dollar today yields π dollars a period from now, and so the excess return on the
investment would be

α = π − (1 + r) . (54)

Now let us instead calculate the excess return using (55): The VC then invests in a
new company every period, and his discount factor is 1

1+r
. Therefore

W =
π − (1 + r)

1− 1
1+r

and CPV =
1

1− 1
1+r

.

Substituting these values into (55) gives us the same value of α as (54) does.
The lifetime value of venture capital is W , of which roughly a fraction 1 −R

e−rt |dS (t)| stems from the current project and the remainder from future project.
The expected present value of lifetime investment of a VC in current units is CPV ≡
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C+ (a+k)
r

¡
1−

R
e−rt |dS (t)|

¢
. Therefore the lifetime value per lifetime dollar invested

is

α ≡
W
¡
1−

R
e−rt |dS (t)|

¢
CPV

. (55)

This is also the VC’s flow excess return per period, as explained further in the Ap-

pendix A. Let Cw
PV = C + (a+ k)

1− e−rmin(t,τ [w])|dSE,w(t)|
r

be the PV of costs on an E
project, where τ (w) is defined in (5), where SE,w (t) = (1−F [t])

¡
1− ΦE,w [t]

¢
, and

where ΦE,w is defined in the remark following (52). The rate of return of E in excess
of r is

ε (w) =
QE (w)− C

Cw
PV

. (56)

At w∗ E is indifferent between going solo and abandoning the project, hence ε (w∗) =
0. Since ∂QE (w) /∂w > 0, the numerator rises with w, but so does the denominator.
It rises with E’s level of wealth. The excess return becomes flat at the point C+k/r,
i.e., the point where the solo E ceases to be liquidity constrained in any state of the
world, i.e., for any realization of π.
To calculate the present value of a project at t = 0 and the present value of the

cost, we first define the optimal scrapping time as T ∗(w, π) = min{ρπ, τ(w)}. Then
we have

V (w) = −C − 1/r +
Z T0(w)

0

δe−δxVx(w, x)dx+ e−δT0(w)Vx(w, T0(w))

Vx(w, x) =

Z πmin(w,x)

πl

A(x)π +
B(x)

r
dG(π) +

Z ∞

πmin(w,x)

V 0
s (w, x, π)dG(π)

A(x) =

Z x

0

e−rtdF (t)

B(x) =

Z x

0

e−rtdF (t) + [1− F (x)]e−rx

V 0
s =

Z T∗(w,π)

0

e−rt(π + 1/r)dF (t) +
1− F (T ∗(w, π))

r

Unlike the other integrals, we compute the value of the project for the solo en-
trepreneur by Monte-Carlo methods. We simulate three million projects, apply the
optimal policies for a wealth level w which are given by the function πmin(w, x) and
the number T0(w) , and then calculate the averages corresponding to the integral for
V (w). We do this for the entire grid of wealth levels defined before.
The solo return for the entrepreneur is then simply

QS(w) = w + V (w)

where V (w) is given above. The excess return ε(w) is given by the ratio of expected
discounted revenue to expected discounted cost (both discounted at the same r used
in the VC model), which are again computed by Monte-Carlo integration.
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We use Monte-Carlo integration here instead of quadrature methods because they
are easier to implement; notice that we only calculate the statistics for the solo entre-
preneur after having found the optimal parameter vector, so computational parsimony
is not a concern here.

9.5 Derivation of h

We use n as the exponent in order to clarify the algebra, and then we shall evaluate
the result at n = 2. We write the mixing parameter as μ. Then

F (t) = (1− μ)

µ
min (t, tmin)

τm

¶n

+ I[τm,∞)μF
P (t) ,

Then For t < τm, f (t) =
1
τm
(1− μ)n

³
t
τm

´n−1
, and therefore

f (t)

1− F (t)
=

1

τm

(1− μ)n
³

t
τm

´n−1
1− (1− μ)

³
t
τm

´n = 1

τm

(1− μ)nt1−nmin t
n−1

1− (1− μ) τ−nm tn

=
(1− μ)nt1−nmin t

n−1

τm − (1− μ) τ 1−nm tn

and

lim
t%1

f (t)

1− F (t)
=
1

τm

1− μ

μ
n

For t ≥ τm

f (t)

1− F (t)
=

μρtρmint
−ρ−1

1−
∙
(1− μ) + μ

µ
1−

³
t
τm

´−ρ¶¸
=

μρτ ρmt
−ρ−1

1− 1 + μ− μ+ μ
³

t
τm

´−ρ
=

ρτ ρmt
−ρ−1

μ− μ

µ
1−

³
t
τm

´−ρ¶ = ρ

t

Therefore the hazards are equal at τm if 1
τm

1−μ
μ
n = ρ

τm
, i.e., if μ = 1

1+ ρ
n
. After setting

n = 2, this leads to μ = 2
2+ρ
, 1− μ = ρ

2+ρ
, and, hence for t < τm,

f

1− F
=
1

τm

(1− μ)nt1−nmin t
n−1

1− (1− μ) τ−nm tn
=

1

tmin

ρ
2+ρ

nτ−1m t

1− ρ
2+ρ

τ−2m t2
=
1

τm

2ρτ−1m t

2 + ρ− ρτ−2m t2
.
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9.6 Procedure behind Figure 7

This how the empirical distribution of company’s age at IPO was obtained excluding
rollups and spinoffs:

• First, we matched the data on all firms on Ritter’s website (N = 8, 309) with
the list he sent to us, which are the ones that are backed by VCs (N = 2, 899).

• We only consider the year of the offering date, getting rid of the month and the
day. The difference between this year and the founding year is the age at IPO.
IssueAge.

• All records for which one of the two years is missing (27 companies) and for
which the age at IPO turns out to be negative (3 companies, these are presum-
ably errors in the data) are excluded.

• This leaves 5, 522 companies that were solo at IPO and 2, 784 companies that
were VC-backed.

• Now, these data are matched to the data from Ritter about spinoffs. Companies
that are spinoffs are excluded, which eliminates 810 records.

• Also, the company data are manually matched to the data from Brown, Dittmar
and Servaes (2005) on rollups: This creates five matches, but none of these
matches results in new exclusions since the records had been excluded in one
of the earlier stages.

• In the end, we have NS = 4, 850 solo companies and NV C = 2, 675 VC-backed
companies left in the sample.

The two graphs show the following:

1. Empirical pdf: This is the proportion of companies that had IPO exactly at
age t.

2. Empirical cdf: This is the proportion of IPOs up to (and including) age t.
The dotted lines are confidence bands at 95%-confidence level (two-sided); they
come from the Matlab-built-in Kaplan-Meier method.
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