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1 LINEAR EQUATIONS

1–1. Let demand and supply schedules be respectively

qD = ap+ b, qS = cp+ d.

Then a =
11− 31

8− 4
= −5, b = 31 + 5×4 = 51, c =

15− 3

12− 8
= 3 and d = 3− 3×8 = −21, so

qD = −5p+ 51, qS = 3p− 21.

Therefore equilibrium price p∗ and quantity q∗ are given by

p∗ =
51 + 21

3 + 5
= 9, q∗ = 3×9− 21 = 6.

1–2. Gaussian elimination reduces the system to

x + 3y − 2z = 2
−11y + 5z = −4
−11y + 5z = k − 6

If k = −4, the last two equations are inconsistent and the system has no solution. If k = 2, the
last two equations are identical and hence the third equation can be dropped. Then assigning
z = s and solving for y and then x gives the solution as

x =
7s+ 10

11
, y =

5s+ 4

11
, z = s.

1–3. Substitute the expression for T into that for C and the resulting expression for C into that
for Y . Solving the resulting equation for Y gives

Y = 3.33 + 2.78(I +G), C = 3.33 + 1.78(I +G), T = 1.67 + 0.56(I +G).

If G increases by x units, Y , C and T increase by 2.78x, 1.78x and 0.56x respectively.

1–4. The gross outputs x, y of X, Y satisfy

x− 0.1x− 0.2y = a, y − 0.7x− 0.4y = b.

These equations lead to x = 1.5a+ 0.5b, y = 1.75a+ 2.25b. Since a and b are assumed to be
positive numbers, and their coefficients in the equations for x and y are all positive, x and y
are positive.

2 LINEAR INEQUALITIES

2–1. Let
A = c0 − c1t0, B = I +G, c = c1(1− t1).

Substituting the expression for T into that for C gives C = A + cY . Substituting this
expression for C into that for Y gives Y = A+B + cY . Hence

Y =
A+B

1− c
, C = A+

c

1− c
(A+B) =

A+ cB

1− c
, T = t0 +

t1
1− c

(A+B).

The answers to the last two parts are Yes and No. Since c is the product of two numbers

which are strictly between 0 and 1, 0 < c < 1, whence
1

1− c
> 1. If G increases by x units,

where x > 0, B increases by x units with A remaining unchanged, so Y increases by
x

1− c
> x

units. C increases by
cx

1− c
units, which is less than x if and only if c < 1− c, i.e. c < 1

2 .
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2–2. The budget line has equation p1x1 + p2x2 = m when x1 ≤ z. Hence the budget line has slope
−p1/p2 to the left of z. Since the price of good 1 is p1 + t for all consumption in excess of z,
the budget line has slope −(p1 + t)/p2 to the right of z.

(i) When t < 0, the budget line is less steep to the right of z than to the left.
(ii) When the consumption of good 1 is rationed at z, the budget line becomes vertical at z.

2–3. (i) Total usage of labour is 7x + 6y, where x and y are the gross outputs of of X and Y
respectively. Using the expressions for x and y given in the answer to Problem 1–4, total
usage of labour is

7(1.5a+ 0.5b) + 6(1.75a+ 2.25b) = 21a+ 17b.

Similarly, total usage of land is

3(1.5a+ 0.5b) + 2(1.75a+ 2.25b) = 8a+ 6b.

(ii) Using the answer to (i), the conditions are the labour constraint 21a + 17b ≤ 800, the
land constraint 8a + 6b ≤ 300 and the non-negativity constraints a ≥ 0, b ≥ 0. The
corners of the feasible set in the ab–plane are (0, 0), (37.5, 0), (30, 10) and (0, 47.06).

2–4. Let x and y be the amounts of FB and KC consumed each day by Oleg. Then the cost
minimisation programme is to minimise 2x+ y subject to

10x+ 4y ≥ 20, 5x+ 5y ≥ 20, 2x+ 6y ≥ 12, x ≥ 0, y ≥ 0.

Once the feasible set has been drawn, it is clear that costs are minimised at the intersection
of the calcium and protein borders. Here the slope of the isocost lines (−2) lies between the
slopes of the two borders (−5

2 and −1). The required point of intersection is (23 ,
10
3 ) and the

least cost is
2× 2

3
+

10

3
=

14

3
.

(i) The slope of the isocost lines is still −2 so the optimal combination is still (23 ,
10
3 ); the

least cost is now 28
3 .

(ii) The slope of the isocost lines is now −3
2 which still lies between −5

2 and −1. So the
optimal combination is still (23 ,

10
3 ); the least cost is now 26

3 .
(iii) The slope of the isocost lines is now −3, so these lines are now steeper than the calcium

border and the optimal combination is (0, 5). The least cost is now 5.

The solution is not unique when the isocost lines are parallel to one of the borders. Denoting
the prices of FB and KC by p1 and p2 respectively, this will happen when p1/p2 is 5

2 , 1 or 1
3 .

3 SETS AND FUNCTIONS

3–1. f(g(x)) = 1 if g(x) ≥ 1, which happens if and only if |x| ≥ 1. If |x| < 1 then g(x) = x2 < 1,
so f(g(x)) = |x2| = x2.

g(f(x)) = 4 if f(x) ≥ 2, which happens if and only if x ≤ −2. If −2 < x < 1 then
f(x) = |x| < 2, so g(f(x)) = |x|2 = x2. If x ≥ 1 then f(x) = 1, so g(f(x)) = 12 = 1.

Summarising,

f(g(x)) =

{
x2 if |x| < 1,
1 if |x| ≥ 1; g(f(x)) =


4 if x ≤ −2,
x2 if −2 < x < 1,
1 if x ≥ 1.
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0 x1−1

y

1
y = f(g(x))

y = f(x)

0 x1−2 2

y

1

4

y = g(f(x))

y = g(x)

3–2. The function takes the form Y = X2. Hence the graph in the XY –plane is U-shaped with
the bottom of the U at the origin. When X = 0, x = 3; when Y = 0, y = 2. Therefore
(3, 2) in the xy–plane corresponds to (0, 0) in the XY –plane, and the graph in the xy–plane
is U-shaped with the bottom of the U at (3, 2).

A similar argument shows that the second graph is V-shaped with a right angle at (2, 5).

3-3. (i) When E > P ,

F (X) =


X + s(P −X) if 0 ≤ X < P,

X if P ≤ X < E,

X − t(X − E) if X ≥ E.

The graph consists of three line segments: the first has slope 1− s and intercept sP , the
second starts at the right end of the first and has slope 1, the third starts at the right
end of the second and has slope 1− t.
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(ii) When E < P and s+ t < 1,

F (X) =


X + s(P −X) if 0 ≤ X < E,

X − t(X − E) + s(P −X) if E ≤ X < P,

X − t(X − E) if X ≥ P .

The graph consists of three line segments: the first has slope 1− s and intercept sP , the
second starts at the right end of the first and has slope 1− s− t, the third starts at the
right end of the second and has slope 1− t.

(iii) When E < P and s + t > 1, the graph is similar to that in (ii) except that the middle
segment now has negative slope.

3–4. (i) f(v3, v4, v5, v6) = v3 + v4 + v5 + v6, 4 variables;

(ii) f(v2, v3, v4, v5, v6) = v2 − v3 − v4 − v5 − v6, 5 variables;

(iii) f(v1, v2) = v2/v1, 2 variables;

(iv) f(v1, v4) = v4/v1, 2 variables;

(v) f(v1, v2, v3, v4, v5, v6) = (v2/v1, (v3 + v4 + v5 + v6)/v1), 6 variables;

(vi) f(v1, v2, v3, v4, v5, v6) = (v2/v1, (v2 − v3 − v4 − v5 − v6)/v1, v5/v1), 6 variables.

4 QUADRATICS, INDICES AND LOGARITHMS

4–1. The graph of the first equation is
⋂
-shaped with vertex at (0, 5); the graph of the second

equation is a straight line with slope 2 and intercept −3. Eliminating q between the two
equations gives 5− p2 = 2p− 3, i.e. p2 + 2p− 8 = 0. This factorises to (p+ 4)(p− 2) = 0 so p
is −4 or 2. When p = −4, substituting back into either of the original two equations equation
gives q = −11; similarly, when p = 2, q = 1.

The equilibrium price and quantity are 2 and 1 respectively.

4–2. (i) f(x) =
(√

ax−
√
c/x
)2

+ b+ 2
√
ac. Hence f(x) is minimised when ax = c/x, i.e.

when x =
√
c/a. The minimum value of f(x) is b+ 2

√
ac.

(ii) Average cost is 0.08x+ 2 + 50/x. From (i), this is minimised when x =
√

50/0.08 = 25
and its minimum value is 2 + 2

√
50×0.08 = 6.

4-3. (i) Suppose K and L both increase by 1%. Let old value of Y be Y0, new value Y1. Then

Y1 = 2(1.01 a)2/3(1.01 b)1/3 = 2a2/3b1/3(1.01)2/3(1.01)1/3 = Y0×1.01,

so Y increases by 1%. Similar argument holds if 1.01 is replaced by 1.10 or by 1 +
x

100
for any x > 0 (or, more generally, any x > −100). Thus if K and L both increase by
10% (or x%), then Y increases by 10% (resp. x%).

(ii) Y = 18L1/3, log Y = c+ 1
3 logL, where c = log 18 = 1.255 to 3 decimal places. Here, as

in (iii) below, logarithms are to base 10.
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Y

L0

18

36

1 8

log Y

logL0−3c

c

(iii) K =
√

1000/L, logK = g − 1
2 logL, where g = 1

2 log 1000 = 1.5.

K

L0

10

10

logK

logL0 3

1.5

4-4. The graph of q = 1
4p

4 has a U shape with the bottom of the U at the origin. The part in the
positive quadrant is the graph of the supply function. Let p > 0; as p increases, 1/p decreases,
so q = 8p−1 decreases as p increases. The equilibrium occurs where 1

4p
4 = 8p−1, i.e. p5 = 32;

thus the equilibrium price and quantity are 2 and 4.

The supply and demand functions in log-linear form are

log q = − log 4 + 4 log p, log q = log 8− log p.

Solving these linear equations for log p and log q gives

log p = 1
5(log 8 + log 4) = 1

5(log 32) = 1
5 log 25 = log 2

and log q = log 8− log 2 = log 4. Hence p = 2 and q = 4.

5 SEQUENCES, SERIES AND LIMITS

5–1. un =
3

1 + (3/n)
. As n→∞, 3/n→ 0, so un → 3.

[Alternative method:

un =
3(n+ 3)− 9

n+ 3
= 3− 9

n+ 3
.

As n→∞, 9/(n+ 3)→ 0, so un → 3. ]

Since
9

n+ 3
<

10

n
, it is clear that for ε = 10−2, N = 103 satisfies (5.1). [This is obviously not

the smallest value but you are not asked for that.] The same argument gives the following
table of values of N satisfying (5.1) for various values of ε.

ε 10−2 10−3 10−4 10−5

N 103 104 105 106
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vn =
3

n+ (3/n2)
. If n is large, the term 3/n2 is negliglible, so vn ≈ 3/n. Therefore vn → 0 as

n→∞.

By similar arguments 3x/(x+ 3)→ 3 and 3x2/(x3 + 3)→ 0 as x→∞.

5-2. (i) Flat rate is 100r% where r = 12s.
(ii) APR is 100r′% where

r′ =

(
1 +

12s

12

)12

− 1 = (1 + s)12 − 1.

When r′ = 0.20, s = 0.0153 and when r′ = 0.25, s = 0.0188. So the interest rate per
month increases from 1.53% to 1.88%.

5-3. (i) From the second equation, the further increase of c1 units in Y causes a further increase
of c21 units in C which then, by the first equation, causes a further increase of c21 units
in Y . Continuing in this way, the total increase in Y is 1 + c1 + c21 + . . . Since 0 < c1 < 1,
we may apply the geometric series formula: the sum is 1/(1− c1).

(ii) Substituting the expression for C into that for Y and solving the resulting equation for
Y , we have

Y =
c0 + I +G

1− c1
, C =

c0 + c1(I +G)

1− c1
.

From the expression for Y , if G increases by one unit, Y will increase by 1/(1 − c1),
which agrees with the answer obtained in (i).

(iii) Same answer as in (ii).

5-4. (i) The profit obtained at time T is pf(T ), so the value of the forest at time 0 is
pf(T )

(1 + r)T
.

(ii) The value of the forest at time 0 is

pf(T )

(1 + r)T
+

pf(T )

(1 + r)2T
+

pf(T )

(1 + r)3T
+ . . .

This is a geometric progression with first term xpf(T ) and common ratio x, where
x = (1 + r)−T . Since 0 < x < 1, the sum is xpf(T )/(1 − x). The value of the forest at
time 0 is therefore pf(T )

/(
(1 + r)T − 1

)
.

6 INTRODUCTION TO DIFFERENTIATION

6–1.
dy

dx
= 3x2. If x = 2 then y = 8 and

dy

dx
= 12, so the equation of the tangent is

y − 8 = 12(x− 2),

or y = 12x− 16.

By the small increments formula,

(2 + h)3 − 8 ≈ 12h.

To verify that this is a good approximation if h is small, notice that

LHS− RHS = 23 + 3×22×h+ 3×2×h2 + h3 − 8− 12h

= 4(2 + 3h) + h2(6 + h)− 4(2 + 3h)

= h2(6 + h).
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If h is small then h2 is very small and 6 + h ≈ 6, so LHS− RHS is indeed very small.

If x = 2 + h, the value of the function is (2 + h)3 and the value of y given by the tangent
is 8 + 12h. The error of approximation is the same as RHS − LHS in the small increments
formula and is therefore equal to −h2(6 + h). The ratio of the absolute value of the error to
the true value of the function is

h2(6 + h)

(2 + h)3
,

which is
6.01

2.013
×10−4 if h = 0.01,

7

27
if h = 1.

The required percentages are (i) 0.0074%, (ii) 25.93%.

6–2. Let f(x) = x5 +3x−12. Then f ′(x) = 5x4 +3, which is positive for all x. The curve y = f(x)
is therefore upward-sloping, with slope 3 at the point (0,−12) and the slope increasing as
we move away from the y–axis in either direction. Thus the curve cuts the x–axis exactly
once, at a point (a, 0) such that a > 0. One can see without using a calculator that a is
slightly less than 1.5: for if x = 1.5 then x5 = 243/32, which is slightly greater than 7.5, while
3x− 12 = −7.5, so f(x) is positive but very small.

The curve y = f ′(x) has the same general U-shape as the curve y = x4, but with the vertex
at the point (0, 3). [The shapes of the power functions were introduced without explanation
in Chapter 4, but we can now see why the curve y = x4 looks as it does. Obviously the curve
passes through the origin. Also, since the slope is 4x3, the curve is downward-sloping where
x < 0, upward-sloping where x > 0, and the absolute value of the slope increases as we move
away from the origin in either direction.]

y

x0

3

3×55

−12

5a

y = f(x) y = f ′(x)

f(0) < 0 < f ′(0) and f(x) > f ′(x) if x is positive and very large, so the curves y = f(x) and
y = f ′(x) cross at least once. Since f(x) ≤ 0 < f ′(x) if x ≤ a, the crossing-point(s) must be
such that x > a. In fact,

f(x)− f ′(x) = x5 − 5x4 + 3x− 15 = (x4 + 3)(x− 5),
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which is zero if and only if x = 5. Thus there is exactly one crossing-point, namely the point
(5, 55 + 3).

6–3. Revenue R(x) and marginal revenue R′(x) are given by

R(x) = px = 1
3(10− x)x = 1

3(10x− x2)

and R′(x) = 2
3(5 − x). If sales increase from 3 to 4 then revenue increases from 7 to 8, an

increase of 1 unit. By contrast, R′(3) = 4/3. That this is not a good approximation to the
true increase shows that, in this case, h = 1 is not small enough for the small increments
formula to be accurate.

When sales increase from 3 to 3.1, the approximate change in revenue is 2
3 × 2× 0.1 = 0.133

to three decimal places. [The true increase is 1
3(1 − 6.1×0.1) = 0.13, so in this case the

approximation is good.]

6–4. Suppose p increases from p0 by ∆p and the corresponding increase in q from q0 is ∆q. By
the small increments formula, ∆q ≈ f ′(p0)∆p. Denote the elasticity of demand at (p0, q0) by
ε, so that ε = p0f

′(p0)/q0. Substituting f ′(p0) = εq0/p0 into the approximation for ∆q gives
∆q ≈ εq0∆p/p0. Therefore,

if
∆p

p0
=

1

100
, then

∆q

q0
≈ ε

100
:

the approximate percentage change in quantity demanded is ε%.

(i) The small increments formula is exact and takes the form ∆q = −b∆. The percentage
change in quantity demanded is exactly ε% where ε = −bp0/q0 notice that ε depends on
p0 and q0.

(ii) The elasticity of demand is −n and is therefore independent of the initial point (p0, q0).
Thus, for any 1% change in p, the corresponding percentage change in q is approximately
−n%. Notice that this is an approximation, not an exact formula; it is not hard to see
that the percentage error is independent of the initial point.

7 METHODS OF DIFFERENTIATION

7–1. Substituting for K and L gives

Q = (5 + 2t)1/2(2 + t)1/3.

Let u = (5 + 2t)1/2, v = (2 + t)1/3. By the composite function rule,

du

dt
=

1

2
(5 + 2t)−1/2×2 =

u

5 + 2t
,

dv

dt
=

1

3
(2 + t)−2/3×1 =

v

3(2 + t)
.

Hence by the product rule,

dQ

dt
=

vu

5 + 2t
+

uv

3(2 + t)
=
uv(6 + 3t+ 5 + 2t)

3(5 + 2t)(2 + t)
.

Simplifying,
dQ

dt
=

11 + 5t

3(5 + 2t)1/2(2 + t)2/3
.
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7–2. (i) y1/3 = cx−1/2, so y = c3x−3/2. dy/dx = −bx−5/2, where b is the positive constant 3c3/2.

(ii) The equation of a typical isoquant is

K1/2L1/3 = c (K,L > 0)

where c is a positive constant. From (i) dL/dK = −bK−5/2, where b is a positive
constant. Hence dL/dK < 0.

7–3. dC/dY = 0.7 + (Y + 2)−2 > 0, so C is monotonic increasing in Y . dC/dY decreases from
0.95 where Y = 0, tending to the limit 0.7 as Y →∞. Graph of C against Y has asymptote
C = 0.8 + 0.7Y , the broken line in the left-hand panel of the diagram.

C

Y
= 0.7 +

0.8

Y
− 1

Y (Y + 2)
= 0.7 +

0.3

Y
+

0.5

Y + 2
,

using the Hint, which enables us to check that C/Y is a monotonic function of Y without
further messy differentiation. In fact, the graph against Y of C/Y (the APC), like that of
dC/dY (the MPC), is downward-sloping, with the same horizontal asymptote: both APC and
MPC tend to 0.7 as Y →∞. The vertical axis is also an asymptote of APC.

C

Y0

0.80

2.20

2

APC,
MPC

Y0

0.70
0.95

C/Y

dC/dY

7–4. The inverse function of the function y = f(x) is

x =

{ (
1−

√
1 + y2

)
y−1, if y 6= 0;

0, if y = 0.

The negative square root of 1 + y2 is chosen, so as to ensure that x and y have opposite signs.

dx

dy
= − 1√

1 + y2
− 1−

√
1 + y2

y2
= −

(
x2 − 1

)2
2 (x2 + 1)

,

where the first expression (call it a) is found by direct calculation and the second (b) by the
inverse function rule. To verify that a = b, note that

−a =
1

1− xy
+
x

y
=

x2 − 1

x2 − 1− 2x2
+
x2 − 1

2
=
x2 − 1

2

(
1− 2

x2 + 1

)
=

(
x2 − 1

)2
2(x2 + 1)

= −b.
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8 MAXIMA AND MINIMA

8–1. dy/dx = 5x4(2− x)4 − 4x5(2− x)3 = x4(2− x)3(10− 9x); this is zero if x is 0, 10/9 or 2. So
the critical points are (0, 0), (1.111, 1.057) and (2, 0).

If x = 0−, dy/dx = (+)(+)(+) = +; if x = 0+, dy/dx = (+)(+)(+) = +; hence (0, 0)
is a critical point of inflexion. Similarly (1.111, 1.057) is a maximum point and (2, 0) is a
minimum point.

d2y/dx2 = 20x3(2− x)4 − 40x4(2− x)3 + 12x5(2− x)2

= x3(2− x)2
(
20(4− 4x+ x2) + (−80x+ 40x2 + 12x2)

)
.

Simplifying, d2y/dx2 = 8x3(2− x)2(9x2− 20x+ 10) = 8x3(2− x)2([3x− 10
3 ]2− 10

9 ). It follows
that d2y/dx2 is 0 at four values of x, namely 0, (10 −

√
10)/9, (10 +

√
10)/9 and 2, but

changes sign only at the first three. So the points of inflexion are (0, 0), (0.760, 0.599) and
(1.462, 0.559). The function is

(i) convex for 0 < x < 0.760 and x > 1.462,

(ii) concave for x < 0 and 0.760 < x < 1.462.

The information needed to sketch the curve is completed by noting that as x→ −∞, y → −∞;
and as x→∞, y →∞.

8-2 Let O denote the origin, and let P be some other point on the curve y = f(t); then f(t)/t is
the slope of OP. Once the diagram showing the shape of f(t) has been drawn, it is clear that
the slope of OP is at its global maximum when OP is tangential to the curve; further, there
is only one point on the curve with this property.

The tangent to the curve at P has slope f ′(t). Since this tangent and the line OP both pass
through P, they are identical if and only if they have the same slope. Thus the optimal t is
given uniquely by the equation f ′(t) = f(t)/t.

The same equation can be obtained by noting that

if z =
f(t)

t
then

dz

dt
=
tf ′(t)− f(t)

t2
,

which is zero when tf ′(t) = f(t). However, the geometric argument given above provides the
easiest way of seeing that the critical point must be the global maximum.

8–3. From the production function,
L(Q−K) = KQ.

Hence the isoquant Q = Q0 may be written

L =
KQ0

K −Q0
.

Along the isoquant,

dL

dK
=

Q0

K −Q0
− KQ0

(K −Q0)2
= −

[
Q0

K −Q0

]2
< 0

and
d2L

dK2
=

2Q2
0

(K −Q0)3
.
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From the production function, Q must be less than K if L > 0. Hence K − Q0 > 0, so
d2L/dK2 > 0.

Since dL/dK < 0 and d2L/dK2 > 0, the isoquant is downward-sloping and convex. If K is
very large and Q = Q0 then L is close to Q0. Similarly, if L is very large and Q = Q0 then K
is close to Q0. Hence the asymptotes of the isoquant are the lines K = Q0 and L = Q0. Note
also that the isoquant crosses the line L = K at the point (2Q0, 2Q0) and its slope at that
point is −1. The diagram shows two isoquants, Q = Q0 and Q = Q1, where Q0 < Q1 < 2Q0.

L

0 K

Q0

Q1

Q0 Q1

8–4. (i) Differentiating the average revenue function,

dp

dx
= −1800 + 100x− 3

2x
2

= −3
2

[(
x− 100

3

)2 − (1003 )2 + 1200
]

by completing the square

≤ 100
(
100
6 − 18

)
< 0,

so AR is monotonic.

(ii) MR =
d

dx
(px) = 36000− 3600x+ 150x2 − 2x3, so

d

dx
MR = −3600 + 300x− 6x2 = −6(x− 20)(x− 30).

Thus MR is not monotonic, being a decreasing function of x for 0 ≤ x < 20 and x > 30,
and an increasing function for 20 < x < 30.

(iii) Both graphs meet the vertical axis at 36000. AR is monotonic decreasing with a point
of inflexion at x = 100/3, where the curve changes from convex to concave. MR has a
minimum at x = 20 and a maximum at x = 30. AR is always above MR: this follows
from the fact that dp/dx < 0. Both AR and MR are negative for all sufficiently large x:
AR = 0 when x = 60, MR is positive when x = 40 but negative when x = 45.

9 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

9–1. (i) dy/dx = −2ax exp(−ax2) = −2axy, which always has the opposite sign to x. Thus the
only critical point is (0, 1), and this is the global maximum.

(ii) By the product rule,

d2y

dx2
= −2a

(
y + x

dy

dx

)
= −2a(y − 2ax2y) = 2ay(2ax2 − 1),

11



which always has the same sign as 2ax2 − 1. Let b = (2a)−1/2: the function is convex
for |x| > b, concave for |x| < b, and the points of inflexion occur where x = ±b. Since
ab2 = 1

4 , the points of inflexion are ((2a)−1/2, e−1/4) and (−(2a)−1/2, e−1/4).

(iii) Bell-shaped, asymptotic to the x–axis, with global maximum given by (i) and points of
inflexion given by (ii).

9–2. (i) Suppose the original sum of money is P . Then T is such that PerT = 2P . Therefore
rT = ln 2, and

T =
ln 2

r
=

100 ln 2

R
≈ 69

R
,

since ln 2 = 0.69315 to 5 decimal places.

(ii) Let the APR be S%, and let s = 0.01S. By the answer to Exercise 9.2.1, ln(1 + s) is
what we called r in part (i) of this problem. Hence

T =
ln 2

ln(1 + s)
=

ln 2

S
× S

ln(1 + 0.01S)
=
A

S
, where A =

S ln 2

ln(1 + 0.01S)
.

The values of A for different values of S are given in the following table:

S 2 4 6 8 10
A 70.0 70.7 71.4 72.1 72.7

9–3 (i) Let f(x) = eax. Then f(0) = 1 and f ′(x) = aeax, so

lim
x→0

eax − 1

x
= lim

x→0

f(x)− f(0)

x− 0
= f ′(0) = aea×0 = a.

To obtain the second result, interchange a and x.

(ii) fa′(x) = eax, fa′′(x) = aeax, fa(0) = 0, fa′(0) = 1.
All curves are upward-sloping. For a = 0 the curve is the straight line y = x; the curves
for a 6= 0 are all tangential to that line at the origin. For a = 1 and a = 5, the curves
are convex and hence lie above y = x, the graph of f5 being more curved than the graph
of f1. For a = −1 and a = −5, the curves are concave and hence lie below y = x, the
graph of f−5 being more curved than the graph of f−1.

(iii) For x > 0, xb = eb lnx. Hence, by the second result of (i),

lim
b→0

gb(x) = lim
b→0

eb lnx − 1

b
= lnx = g0(x).

gb
′(x) = xb−1, gb′′(x) = (b− 1)xb−2, gb(1) = 0, gb′(1) = 1.

All curves are upward-sloping. For b = 1 the curve is the straight line y = x − 1; the
curves for b 6= 1 are all tangential to that line at the point (1, 0). For b > 1, and in
particular for b = 2, the curve is strictly convex. For b < 1, the curve is strictly concave,
being more curved the lower is b. For all b > 0, gb(0) = −1/b and gb(x)→∞ as x→∞.
If b = 0 then gb(x) = lnx for all x > 0; 0 is the only value of b such that gb(x) → −∞
as x→ 0 and gb(x)→∞ as x→∞. If b < 0, and in particular for b = −1 and b = −2,
gb(x)→ −∞ as x→ 0 and gb(x)→ −1/b as x→∞.
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y

0 x

1

1
2

−2

−1

−1
2

1

b = −2

b = −1

b = 0

b = 1
2

b = 1b = 2

9–4. (i) Let the value of the forest at time 0 be v(T ). Since the profit obtained at time T is
pf(T ), v(T ) = pf(T )e−rT . Therefore

v′(T ) = pf ′(T )e−rT − pf(T )re−rT = (f ′(T )− rf(T ))pe−rT ,

which is zero when f ′(T )/f(T ) = r.

(ii) In this case, let the value of the forest at time 0 be V (T ). Then

V (T ) = pf(T ))e−rT + pf(T )e−2rT + pf(T )e−3rT + . . . ,

the sum of the geometric progression whose first term is v(T ) (as defined in (i)) and
whose common ratio is e−rT . Since 0 < e−rT < 1,

V (T ) =
v(T )

1− e−rT
=

pf(T )

erT − 1
.

To find V ′(T ) it is easiest to take logs and then differentiate:

V ′(T )

V (T )
=

d

dT

(
ln p+ ln f(T )− ln(erT − 1)

)
=
f ′(T )

f(T )
− rerT

erT − 1
.

Thus V ′(T ) = 0 when (9.7′) holds.

(iii) The right-hand side of (9.7′) may be written
a

eaT − 1
, where a = −r. The required result

now follows from the second result of Problem 9–3, part (i).
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(iv) Differentiating v′(T ) gives v′′(T ) = (f ′′(T ) − 2rf ′(T ) + r2f(T ))pe−rT . Using condition
(9.7) we see that, at the critical point, v′′(T ) = (f ′′(T )− r2f(T ))pe−rT . Therefore, if the
value of T for which v′′(T ) = 0 is in the region for which f is concave, the critical value
is a local maximum. If we assume further that there is only one critical point, it must
be the global maximum.
Similarly, differentiating V ′(T )/V (T ) gives

V ′′(T )

V (T )
−
[
V ′(T )

V (T )

]2
=
f ′′(T )

f(T )
−
[
f ′(T )

f(T )

]2
− r d

dt

(
1 + (erT − 1)−1

)
.

Using condition (9.7′) we see that at the critical point

V ′′(T )

V (T )
=
f ′′(T )

f(T )
−
[
rerT

erT − 1

]2
+

r2erT

(erT − 1)2
,

whence

V ′′(T ) =
V (T )

f(T )
f ′′(T )− r2erTV (T )

erT − 1
=

p

erT − 1
f ′′(T )− pr2erT

(erT − 1)2
f(T ).

The argument concerning the global maximum is similar to that for v(T ).

10 APPROXIMATIONS

10–1. (i) f(x) = 0 has at most one root. For if there were two distinct roots, say a and b where
a < b, then by Rolle’s theorem there would be a real number c, with a < c < b, which is
a root of f ′(x) = 0.

(ii) f(x) = 0 has at most two roots. For if there were three distinct roots, say a, b, c where
a < b < c, then by Rolle’s theorem there would be real numbers p and q, with a < p <
b < q < c, which are roots of f ′(x) = 0.

(iii) f(x) = 0 has at most three roots, by a similar argument to (i) and (ii).

General result: if f ′(x) = 0 has n distinct roots, then f(x) = 0 has at most n+ 1 roots.

10–2. (i) Let f(x) = x5−5x+ 2; then f ′(x) = 5x4−5 and f ′′(x) = 20x3. f ′(x) = 0 when x = ±1;
using f ′′(x), it follows that (−1, 6) is a maximum point and (1,−2) is a minimum point.
As x→ −∞, f(x)→ −∞; as x→∞, f(x)→∞.

(ii) Since f(−2) = −20 and f(−1.5) ≈ 2, x1 is between −2 and −1.5. Since f(1) = −2
and f(1.5) ≈ 2, x3 is between 1 and 1.5. Taking −1.6 as the initial approximation to x1
and using Newton’s method, V (−1.6) = −0.01749 and so the second approximation is
−1.58251. Applying the method again, V (−1.58251) = −0.00047, so x1 = −1.582 to 3
decimal places. Similarly, taking 1.2 as the initial approximation to x3 and carrying out
4 iterations yields the successive approximations 1.48161, 1.39093, 1.37258 and 1.37188;
thus x3 = 1.372 to 3 decimal places.

(iii) The equation f ′(x) = 0 has 2 roots at x = ±1. Hence, by the result of Problem 10–1, the
equation f(x) = 0 has at most 3 roots. On the other hand, f(−2) = −20, f(−1) = +6,
f(1) = −2 and f(2) = +24. Hence, by the intermediate value theorem, the equation
f(x) = 0 has at least one root between −2 and −1, at least one between −1 and 1,
at least one between 1 and 2 and therefore at least three roots in all. It follows that
f(x) = 0 has exactly 3 roots.
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10–3. (i) Suppose g′(x) = c for all x, where c is a constant. Let f(x) = g(x)− cx; then f ′(x) = 0
for all x, so f(x) is a constant, say b. Hence g(x) = b+ cx for all x.

(ii) Let ln y = g(t). By assumption, g′(t) is a constant, say c. By the result of (i) with x
replaced by t, there is a constant b such that g(t) = b + ct for all t. Let A = eb. Then
for all t,

y(t) = exp g(t) = exp(b+ ct) = Aect.

10–4. Da = x/(1 − x), Dc = − ln(1 − x). Since 0 < x < 1, the expressions given for Da and Dc

follow from the power series expansions for (1− x)−1 and ln(1− x) respectively. Since x > 0,
the fact that Db < Dc < Da can be read from the coefficients in these series.

11 MATRIX ALGEBRA

11–1. (i) (a) Suppose there are scalars α1, α2, α3 such that

α1a
1 + α2a

2 + α3a
3 = 0.

By equating components, α1 = α2 = α3 = 0. Therefore a1, a2, a3 are linearly
independent.

(b) Let x be any n–vector; denote its components by x1, x2, x3. Then

x = x1a
1 + x2a

2 + x3a
3.

(ii) (a) Suppose there are scalars α1, α2, α3 such that

α1a
1 + α2a

2 + α3a
3 = 0.

By equating components,

α1 + α2 + α3 = 0, α2 + α3 = 0, α3 = 0.

By back-substitution, α1 = α2 = α3 = 0. Therefore a1, a2, a3 are linearly indepen-
dent.

(b) Let x be any n–vector; denote its components by x1, x2, x3. We wish to find scalars
λ1, λ2, λ3 such that

x = λ1a
1 + λ2a

2 + λ3a
3.

By equating components

x1 = λ1 + λ2 + λ3, x2 = λ2 + λ3, x3 = λ3.

We may now solve for λ1, λ2, λ3 by back-substitution:

λ3 = x3, λ2 = x2 − x3, λ1 = x1 − x2.

11–2. In both parts, let A =

[
a b
c d

]
. Then A2 =

[
a2 + bc (a+ d)b
(a+ d)c d2 + bc

]
.

(i) To make the off-diagonal entries ofA2 equal to 0, we need either b = c = 0 or a+d = 0. In
the former case, the diagonal entries of A2 cannot be −1 since a and d are real numbers.
In the latter, making the diagonal entries of A2 equal to −1 requires a2 + bc = −1. The
required matrices are therefore those of the form[

a b
c −a

]
, where bc ≤ −1 and a = ±

√
−bc− 1.

Examples are
[

3 −2
5 −3

]
and

[
0 −2
1
2 0

]
.
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(ii) To make the diagonal entries of A2 equal to a2 and d2, we need bc = 0; thus at least one
of b and c must be 0. If b = 0, making the off-diagonal entries of A2 equal to b2 and c2

requires that (a + d)c = c2, which means that c is either 0 or a + d. Similarly, if c = 0,
making the off-diagonal entries of A2 equal to b2 and c2 requires that b is either 0 or
a+ d. Hence the required matrices are those of the form[

a 0
0 d

]
,

[
a 0

a+ d d

]
or
[
a a+ d
0 d

]
,

where a and d are any real numbers.

11–3. (i) By back-substitution, x3 = 1
2y3, x2 = 1

2y3 − y2, x1 = 1
2(y1 − y2 − y3).

(ii) Here we can use forward substitution: solve for x1, then for x2 and finally for x3. We
have x1 = y1/4, x2 = (3y1 − 4y2)/8, x3 = (5y1 − 4y2 − 8y3)/8.

(iii) x1 = −y1/3, x2 = y2/2, x3 = y3.

In (iii), the only arithmetical operation required is division.

11–4. (i)

y1 = x1 − a11x1 − a12x2 − . . .− a1nxn
y2 = x2 − a21x1 − a22x2 − . . .− a2nxn
. . .

yn = xn − an1x1 − an2x2 − . . .− annxn

(ii) y = x−Ax = (I−A)x, so B = I−A.

12 SYSTEMS OF LINEAR EQUATIONS

12–1. (i) Two Gaussian elimination steps give 2 1 5 2 t
0 −1/2 3/2 2 t/2
0 0 0 0 0

 .
The system has been reduced to one in which the coefficient matrix is a Type 4 echelon
matrix. The third equation has been reduced to 0 = 0 and hence may be ignored. The
system has a solution for all values of t.
The rank ofA is the number of nonzero rows in the echelon form and hence is 2. Similarly,
the rank of [A b] is 2: notice that A and [A b] have the same rank.

(ii) Three Gaussian elimination steps give
1 6 −7 3 5 1
0 3 1 1 4 1
0 0 0 2 1 2
0 0 0 0 0 t− 7

 .
The system has been reduced to one in which the coefficient matrix is a Type 4 echelon
matrix. The third equation has been reduced to 0 = t− 7, so it may be ignored if t = 7
and is absurd if t 6= 7. The system has a solution if t = 7 and no solution otherwise.
The rank of A is the number of nonzero rows in the echelon form and hence is 3. When
t = 7, the rank of [A b] is also 3; otherwise the rank of [A b] is 4. Notice that the rank
of A is equal to the rank of [A b] if the system has a solution, and less than the rank
of [A b] if it does not.
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12–2. Suppose A1 is k×k and A2 is `×`. Then[
A1 O
O A2

] [
A−11 O

O A−12

]
=

[
Ik O
O I`

]
= I.

By Fact 4, A is invertible with inverse as stated.

For the second part, denote the two matrices by B and C. We may write B =

[
B1 O
O B2

]
where B1 and B2 are 2×2 matrices. Hence B−1 =

[
B−11 O

O B−12

]
, where B−11 and B−12 are

calculated by the inversion formula. Also,

C =

[
C1 0
0 2

]
where C1 is a 3×3 matrix; hence

C−1 =

[
C−11 0
0 1

2

]
,

where C−11 is obtained from C by Gauss–Jordan. Performing the calculations,

B−1 =


3/19 2/19 0 0
−2/19 5/19 0 0

0 0 1/3 −2/3
0 0 1/6 1/6

 , C−1 =


−1 9 −4 0

2 −15 7 0
2 −17 8 0
0 0 0 1

2

 .

12–3. (i) Since B is invertible, the only 2–vector z with the given property is B−1
[
a3
b3

]
.

(ii) If we assign the arbitrary value −λ to x3, the given system can be written as

B

[
x1
x2

]
=

[
λa3
λb3

]
.

This holds if and only if[
x1
x2

]
= B−1

[
λa3
λb3

]
= λB−1

[
a3
b3

]
= λ

[
z1
z2

]
.

Hence the given vector equation holds if and only if

x = λ

 z1
z2
−1

 for some scalar λ. (†)

(iii) A is singular if and only if there is a non-zero x such that Ax = 0. From (ii), the first
two equations of this system hold if and only if (†) is true; and, for x to be non-zero, λ
must be non-zero. It follows that A is singular if and only if this x satisfies the third
equation of the system. Therefore, A is singular if and only if

c1λz1 + c2λz2 − c3λ = 0 for some non-zero λ,

which happens if and only if c1z1 + c2z2 = c3.
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(iv) If A is singular then c3 must be as in (iii). So if we replace the (3, 3) entry of A by any
number other than c3, then A becomes invertible.

12–4. From Problem 11–4, Bx = y, where B = I−A. If there is to be a unique x for any y, then
B must be invertible and x = B−1y.

In addition, it is given that y has non-negative components. To ensure that x has non-
negative components for every such y it is necessary that all entries of B−1 be non-negative.
For suppose that B−1 had some negative entry, say the (2, 3) entry. By taking y to be the
vector with third component 1 and zeros elsewhere, we see that the second component of x is
negative.

13 DETERMINANTS AND QUADRATIC FORMS

13–1. Let P be the point (a, b), Q the point (c, d).

y

0 x

b+ d

a+ c

Q

P

G

T3

T1

T4

T2

In the diagram, the area of each of the triangles T1 and T3 is 1
2(a+c)b by the half-base-times-

height formula. Similarly, the area of each of the triangles T2 and T4 is 1
2(b+ d)c. Hence the

area of G is

(a+ c)(b+ d)− (a+ c)b− (b+ d)c = (a+ c)d− (b+ d)c

= ad− bc.

If we exchange the positions of P and Q, the area of G becomes cb−da, which equals −(ad−bc).
Thus the general formula for the area of G is |ad− bc|.

13-2. (i) detA = c1

∣∣∣∣ a2 a3
b2 b3

∣∣∣∣− c2 ∣∣∣∣ a1 a3
b1 b3

∣∣∣∣+ c3

∣∣∣∣ a1 a2
b1 b2

∣∣∣∣.
Let C be the matrix obtained from A by replacing its (3, 3) entry by c3 +δ. Replacing c3
by c3 + δ in the expression just given for detA, we see that detC = detA+ δ detB. By
our assumptions about A and B, detA = 0 and detB 6= 0. Hence detC 6= 0 if δ 6= 0.

(ii) Let A be a singular 2×2 matrix and let C be the matrix obtained by adding x to each of
its diagonal entries. Since detA = 0, detC = tx+x2, where t is the sum of the diagonal
entries of A. If t = 0, detC > 0 for any non-zero x; if t 6= 0, detC > 0 whenever x has
the same sign as t; in each case, |x| can be as small as we please.
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Now suppose we have a singular 3×3 matrix A. As in (i), we denote the 2×2 leading
principal submatrix of A by B. If B is invertible then, as in (i), we can make A
invertible by an arbitrarily small change to its (3, 3) entry. If B is singular we can apply
the proposition in the 2×2 case, making B invertible by arbitrarily small changes to
its diagonal entries; we can then use (i) as before. This proves the proposition for 3×3
matrices.
For the 4×4 case, if necessary we apply the proposition for the 3×3 case to ensure that
the leading principal submatrix of order 3 is nonsingular. Then, by a similar argument
to (i), the 4×4 matrix can be made invertible by an arbitrarily small change to its (4, 4)
entry. In the same way, the proposition for the 4×4 case can then be used to prove it for
the 5×5 case, and so on.

(iii) It is easy to see from the expansion formulae that small changes in the entries of a
matrix cause only small changes in the determinant. Therefore, arbitrarily small changes
in diagonal entries are not enough to transform a matrix with nonzero determinant into
a singular matrix.

13–3. The cost of producing each unit of gross output of good j is

cj + p1a1j + p2a2j + . . .+ pnanj .

If all industries exactly break even, then this expression must be equal to pj for all j. Hence we
may write the break-even condition for all industries as the single vector equation c+ATp = p,
or (I−AT)p = c.

Now observe that I −AT = (I −A)T. Denoting I −A by B as in Problems 11–4 and 12–4,
we may write the break-even condition as BTp = c. If there is to be a unique p for any c,
then BT must be invertible and p = (BT)−1c. In addition, it is given that c has non-negative
components. To ensure that p has non-negative components for every such c, it is necessary
that (BT)−1 has non-negative entries. This follows from an argument similar to that given in
Problem 12–4.

Finally, observe that BT is invertible if and only if B is invertible. If B is invertible then
(BT)−1 = (B−1)T; in particular, all entries of (BT)−1 are non-negative if and only if all
entries of B−1 are non-negative. Thus A has the properties required here if and only if it has
the properties required in Problem 12–4.

13–4. (i) The ith component of y −Xb is yi − b1x1i − b2x2i. The result follows.
(ii) y − Xb = y − Xb∗ + X(b∗ − b) = p + q where p = X(b∗ − b), q = y − Xb∗ and

pTq = 0. The result then follows from that of Exercise 13.3.1.
(iii) (∗) can be written as

(
XTX

)
b∗ = XTy. Since XTX is invertible, there is only one

vector b∗ which satisfies (∗); this is given by b∗ =
(
XTX

)−1
XTy.

(iv) The answer to (ii) expresses Q(b) as the sum of two terms, only the second of which
depends on b. Since XTX is positive definite, this second term is positive if b 6= b∗,
zero if b = b∗. Hence Q(b) is minimised when b = b∗.

14 FUNCTIONS OF SEVERAL VARIABLES

14–1. (i) ∂z/∂x = y and ∂z/∂y = x, so the equation of the tangent plane is

z = 12 + 3(x− 4) + 4(y − 3).

When x = 4 +h and y = 3 +k, the value of z given by the tangent plane is 12 + 3h+ 4k.
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The small increments formula gives ∆z ≈ y∆x+ x∆y = 3h+ 4k, so the value of z given
by that formula is also 12 + 3h+ 4k.

(ii) When x = 4 + h and y = 3 + k,

f(x, y) = (4 + h)(3 + k) = 12 + 3h+ 4k + hk.

Therefore, the error when the surface z = xy near the point (4, 3, 12) is approximated
by the tangent plane at that point is hk.
(a) The error as a percentage of the true value is

0.01× 0.01× 100

4.01× 3.01
= 0.000828%.

(b) The error as a percentage of the true value is
1×1×100

5×4
= 5%.

14–2.
(1)

∂H

∂i
=
∂f

∂Y

∂g

∂i
+
∂f

∂i
, (2)

∂H

∂u
=
∂f

∂Y

∂g

∂u
.

In the particular case given, H(i, u) = ABe−(a+b)iuc. Then
∂H/∂i = −(a+ b)H(i, u) = −(a+ b)M and ∂H/∂u = (c/u)H(i, u) = cM/u.
Also ∂f/∂Y = f(y, i)/Y = M/Y , ∂f/∂i = −af(y, i) = −aM ,
∂g/∂i = −bg(i, u) = −bY and ∂g/∂u = (c/u)g(i, u) = cY/u. Hence

RHS(1) =
M

Y
×(−bY )− aM = −(a+ b)M = LHS(1), RHS(2) =

M

Y
×cY
u

=
cM

u
= LHS(2).

14–3. (i) In this special case,
∂F

∂K
= A(αKα−1)Lβeµt =

α

K
F (K,L, t) =

αQ

K
.

Similarly,
∂F

∂L
=
βQ

L
and

∂F

∂t
= µQ. By assumption,

dK

dt
= mK and

dL

dt
= nL.

Hence by equation (14.10) in the text,
dQ

dt
=
αQ

K
(mK) +

βQ

L
(nL) + µQ = (αm+ βn+ µ)Q,

so the rate of growth of output is αm+ βn+ µ.
(ii) Using (14.10) and the assumptions about the rates of growth of K and N ,

dQ

dt
=
∂H

∂K

dK

dt
eµt +

∂H

∂L

dL

dt
eµt + µH(K,L)eµt =

[
nK

∂H

∂K
+ nL

∂H

∂L

]
eµt + µQ.

By Euler’s theorem, the expression in square brackets is equal to nrH(K,L), Hence
dQ

dt
= nrH(K,L)eµt + µQ = (nr + µ)Q.

The rate of growth of output is nr + µ.

14–4. (i) Since F (K,L) is homogeneous of degree 1, F (K,L) = LF (K/L, 1). Obviously F (K/L, 1)
depends only on K/L: call it f(K/L). Letting k = K/L, we have Q = F (K,L) = Lf(k).

(ii) Using the fact that F (K,L) = Lf(k),
∂F

∂K
= Lf ′(k)

∂k

∂K
= Lf ′(k)× 1

L
= f ′(k),

∂F

∂L
= f(k) + Lf ′(k)

∂k

∂L
= f(k) + Lf ′(k)×

(
−K
L2

)
= f(k)− kf ′(k).

(iii) Multiplying K and L by λ leaves k unchanged; hence by (i) and (ii), the average and
marginal products of labour and capital are left unchanged.
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15 IMPLICIT RELATIONS

15–1. Let c > 0. Since V (x, y) = lnU(x, y), any point on the indifference curve U(x, y) = c satisfies
V (x, y) = ln c. Conversely, since U(x, y) = expV (x, y), any point satisfying V (x, y) = ln c
must lie on the indifference curve U(x, y) = c. The curve U(x, y) = c is therefore identical to
the curve V (x, y) = ln c. Similarly, the curve V (x, y) = k is the same as the curve U(x, y) = ek.
Thus V and U give rise to the same indifference curve diagrams. Since the natural logarithm
is a monotonic increasing function, the ordering of the curves is also the same.

The indifference curve diagram for W is the same as that for V except that the lines x = a
and y = b correspond to the axes.

15–2. (i) Using the results of Exercise 14.3.2(a),

dL

dK
= − δAγ(Q/K)1−γ

(1− δ)Aγ(Q/L)1−γ
= − δ

1− δ

[
L

K

]1−γ
.

Since 0 < δ < 1 the isoquants are negatively sloped. Now consider moving along an
isoquant in the direction of K ↑ and L ↓. Then L/K ↓; since γ < 1, it follows that
|dL/dK| decreases. Hence the isoquants are convex.

(ii) Let γ < 0. We may write the the equation of the isoquant Q = Q in the form

δKγ + (1− δ)Lγ = (Q/A)γ . (∗)

As L → ∞, Lγ → 0 (since γ < 0), so δKγ → (Q/A)γ ; therefore, K → d1Q/A, where
d1 = δ−1/γ . It follows that the line K = d1Q/A is an asymptote. Similarly, setting
d2 = (1− δ)−1/γ , we see that the line L = d2Q/A is also an asymptote.

(iii) Let 0 < γ < 1. The equation of the isoquant Q = Q is still (∗). Since we now have γ > 0,
Lγ = 0 when L = 0; thus the isoquant meets the K–axis where δKγ = (Q/A)γ . Hence
the isoquant Q = Q meets the K–axis at the point (d1Q/A, 0), where d1 is defined as in
(ii). Similarly, the isoquant Q = Q meets the L–axis at the point (0, d2Q/A), where d2
is defined as in (ii).
From the formula for dL/dK, the slope of the isoquant is 0 at the first point and −∞ at
the second. The isoquant therefore meets the two axes tangentially.

(iv) ln
Q

A
=
m(γ)

γ
, where

m(γ) = ln[δKγ + (1− δ)Lγ ].

Since m(0) = 0, we infer from l’Hôpital’s rule (or the definition of a derivative) that

ln(Q/A)→ m′(0) as γ → 0. Using the fact that
d

dx
(ax) = ax ln a, we have

m′(γ) =
δKγ lnK + (1− δ)Lγ lnL

δKγ + (1− δ)Lγ
.

If γ = 0, the numerator of this expression is δ lnK + (1 − δ) lnL and the denominator
is 1. Hence

lim
γ→0

ln(Q/A) = m′(0) = δ lnK + (1− δ) lnL = ln
(
KδL1−δ)

and
lim
γ→0

Q = AKδL1−δ.

Notice that this is a Cobb–Douglas production function, with isoquants asymptotic to
the axes.
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(iv) Results (i)–(iii) on the shape of the isoquants remain unchanged. The limiting form (v)
of the production function as γ → 0 is the Cobb–Douglas AKαLβ , where α = νδ and
β = ν(1− δ).

The diagram shows a typical isoquant in each of the three cases γ < 0, γ = 0 (Cobb–Douglas)
and 0 < γ < 1

L

K0
γ < 0

L

K0
γ = 0

L

K0
γ > 0

15–3. (i) dr/dT =
(
f(T )f ′′(T )− [f ′(T )]2

)/
[f(T )]2. So, by the inverse function rule,

dT/dr = [f(T )]2
/(
f(T )f ′′(T )− [f ′(T )]2

)
.

So long as the optimal value of T is in the region for which f is concave, then dT/dr < 0.
(ii) Define the function F (r, T ) = f ′(T )(erT − 1) − f(T )rerT . The Faustmann rule can be

written in the form F (r, T ) = 0, so by implicit differentiation

dT

dr
= −∂F

∂r

/
∂F

∂T
.

By definition of the function F ,

∂F

∂r
= [Tf ′(T )− (1 + rT )f(T )]erT ,

∂F

∂T
= f ′′(T )(erT − 1)− r2f(T )erT .

It follows that
dT

dr
=

[Tf ′(T )/f(T )]− 1− rT
r2 + [−f ′′(T )/f(T )](1− e−rT )

. (†)

So long as the optimal value of T is in the region for which f is concave, the denominator
on the right-hand side of (†) is positive. By the Faustmann rule, the numerator on the

right-hand side of (†) can be written as
1 + rT − erT

erT − 1
, which is easily seen to be negative

(use the series for ex). Hence dT/dr < 0.

Part (ii) of this problem could be solved by the method given in the text for comparative
statics of optima, which directly exploits the second order condition at the optimum. The
above method, which starts by transforming the rule into a form not involving quotients, is
simpler in this case.

15–4. (i) F (Y, r) = Y − f(Y )− φ(r).
(ii) The Jacobian matrix J of (Φ,Ψ) with respect to (Y, r) is[

∂Φ/∂Y ∂Φ/∂r
∂Ψ/∂Y ∂Ψ/∂r

]
=

[
1− f ′(Y ) −φ′(r)
∂L/∂Y ∂L/∂r

]
.

Notice that detJ = (1− f ′(Y ))
∂L

∂r
+ φ′(r)

∂L

∂Y
< 0, so J is invertible.
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(iii) The slope of the IS relation in the (Y, r) plane is

− ∂Φ

∂Y

/
∂Φ

∂r
=

1− f ′(Y )

φ′(r)
< 0.

The slope of the LM relation in the (Y, r) plane is

− ∂Ψ

∂Y

/
∂Ψ

∂r
= − ∂L

∂Y

/
∂L

∂r
> 0.

A typical diagram of the IS–LM model in the non-negative quadrant of the (Y, r) plane
shows the graphs of the two relations sloping as we have just indicated and intersecting
at a unique point.
Since J is invertible at the given equilibrium, there is a unique local solution for Y and
r in terms of G and M which may be differentiated as follows:[

∂Y/∂G
∂r/∂G

]
= −J−1

[
∂Φ/∂G
∂Ψ/∂G

]
,

[
∂Y/∂M
∂r/∂M

]
= −J−1

[
∂Φ/∂M
∂Ψ/∂M

]
.

Since
[
∂Φ/∂G ∂Φ/∂M
∂Ψ/∂G ∂Ψ/∂M

]
= −I,

[
∂Y/∂G ∂Y/∂M
∂r/∂G ∂r/∂M

]
= J−1 =

1

detJ

[
∂L/∂r φ′(r)

−∂L/∂Y 1− f ′(Y )

]
.

Since detJ < 0, the partial derivatives
∂Y

∂G
,
∂Y

∂M
and

∂r

∂G
are all positive, while

∂r

∂M
< 0.

(iv) Using the expressions for detJ and
∂Y

∂G
given in the answers to (i) and (iii) respectively,

we see that
∂Y

∂G
=

1

1− f ′(Y )− sφ′(r)
, where s = − ∂L

∂Y

/
∂L

∂r
.

As we saw in the answer to (ii), s is positive, and is in fact the slope of the LM relation.
If s is small, or if φ′(r) ≈ 0, then ∂Y/∂G ≈ [1−f ′(Y )]−1: this is the expression for dY/dI
in Exercise 15.2.2, and is known as the Keynesian multiplier. Notice that in this case
∂Y/∂G > 1. In the general case, where φ′(r) < 0 < s, ∂Y/∂G is less than the Keynesian
multiplier and may be less than 1.

16 OPTIMISATION WITH SEVERAL VARIABLES

16–1. The contours f(x, y) = k where k = 0, 1, 2, 3, 4, 5 are respectively the origin and circles with
centre the origin and radius 1,

√
2,
√

3, 2,
√

5.

The contour g(x, y) = k can be expressed as x2 + y2 = 2 + k. The contours are therefore
also circles with centre the origin and, as k increases from −2, the same contour diagram is
obtained as for f(x, y), except that the contour for g(x, y) = k is f(x, y) = k + 2.

(i) Provided k ≥ 0, the contour (x2 +y2−2)2 = k can be expressed as x2 +y2−2 = 2±
√
k.

So, for 0 ≤ k ≤ 4, each contour has two branches consisting of circles with centre the
origin and radii (2±

√
k)1/2. Note the extreme cases: when k = 0, the two circles coincide;

when k = 4, one of the circles reduces to the origin. For k > 4, each contour has one
branch consisting of the circle with centre the origin and radius (2 +

√
k)1/2. The global

minimum of (x2 + y2 − 2)2 is 0 which occurs at each point of the circle x2 + y2 = 2.
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(ii) The contour (x2 + y2 − 2)3 = k can be expressed as x2 + y2 = 2 + k1/3 where, for k < 0,
k1/3 is interpreted as −|k|1/3. For k = −8, the contour is the origin. For k > −8, the
contour is a circle with centre the origin. The global minimum of (x2 + y2 − 2)3 is −8
which occurs at the origin.

In case (ii), unlike case (i), the global minimum occurs at the same point as the global minimum
of x2+y2−2. The reason for the difference is that H(w) = w3 is a strictly increasing function,
whereas H(w) = w2 is not. This difference is also illustrated by the ordering of the contours.

The contour (x2 + y2 − 2)−1 = k can be expressed as x2 + y2 = 2 + k−1. For k > 0, the
contours are circles with centre the origin and radius

√
(2k + 1)/k. As k increases the radius

decreases, approaching
√

2 as k →∞. Now consider the case where k ≤ 0. For −1
2 < k ≤ 0,

the contour is undefined; for k = −1
2 , the contour is the origin; and for k < −1

2 , the contour
is a circle with centre the origin. As k decreases from −1

2 the radius increases, approaching√
2 as k → −∞.

16–2. The firm’s profit is

Π(K,L) = pF (K,L)− rK − wL, where F (K,L) = AKαLβ.

Therefore, DΠ(K,L) = pDF (K,L) −
[
r
w

]
and D2Π(K,L) = pD2F (K,L). It follows that

Π is concave if and only if F is concave; as shown in the answer to Exercise 16.2.6, this is so
if and only if α+ β ≤ 1.

From now on, assume that α+ β ≤ 1. The firm’s problem is to maximise Π(K,L) subject to
K ≥ 0, L ≥ 0. Since Π(K,L), a solution to the the first order conditions, if it exists, will give
a global maximum.

The first-order conditions for a solution with K > 0 and L > 0 are

pαAKα−1Lβ = r, pβAKαLβ−1 = w.

Taking natural logarithms and rearranging, we may write this pair of equations as[
α− 1 β
α β − 1

] [
lnK
lnL

]
=

[
ln(r/α)− ln(pA)
ln(w/β)− ln(pA)

]
. (∗)

If α+ β < 1, the coefficient matrix is invertible, and (∗) has the unique solution[
lnK
lnL

]
=

1

1− α− β

[
β − 1 −β
−α α− 1

] [
ln(r/α)− ln(pA)
ln(w/β)− ln(pA)

]
.

Hence the profit-maximising inputs are

K =

[
pA
(α
r

)1−β ( β
w

)β]1/(1−α−β)
, L =

[
pA
(α
r

)α( β
w

)1−α
]1/(1−α−β)

.

Setting

Z =

[
pA
(α
r

)α( β
w

)β]1/(1−α−β)
,

it is not hard to see that, at the optimum, rK = αZ, wL = βZ and pAKαLβ = Z. Hence
the maximal profit is (1− α− β)Z.
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If α + β = 1, the coefficient matrix in (∗) is singular. Before exploring the consequences
of this, consider the expression for profit: if α + β = 1, multiplying the two inputs by any
positive number λ also multiplies the profit by λ. This suggests three possible cases: (a) profit
is positive for some K∗ > 0, L∗ > 0 and can be made arbitrarily large by letting K = MK∗

and L = ML∗ where M is very large; (b) profit is negative for all positive K and L, and is
therefore maximised uniquely at 0 when K = L = 0; (c) profit is non-positive for all positive
K and L, but there are positive (K,L) pairs for which profit is zero. Returning to (∗), with
α + β = 1, there are infinitely many solutions if α ln(r/α) + (1− α) ln(w/(1− α)) = ln(pA),
and no solution otherwise. Setting

p̄ =
1

A

( r
α

)α( w

1− α

)1−α
,

we see that case (c) occurs if and only if p = p̄, in which case the (K,L) pairs which maximise

profit (at zero) are given by
rK

α
=

wL

1− α
. Case (a) occurs if p > p̄, and case (b) if p < p̄; the

reasons for this will become clear when you have read Section 17.3 and done Exercise 17.3.2.

16–3 Denote the expression to be minimised by Q(b1, b2). Then

∂Q

∂b1
=

n∑
i−1

(−2x1i)(yi − b1x1i − b2x2i),
∂Q

∂b2
=

n∑
i−1

(−2x2i)(yi − b1x1i − b2x2i).

It follows that

D2Q(b1, b2) =


2

n∑
i=1

x21i 2
n∑
i=1

x1ix2i

2
n∑
i=1

x1ix2i 2
n∑
i=1

x22i

 = 2XTX.

Since the columns of X are linearly independent, XTX is positive definite. This shows that
the function, Q(b1, b2) has positive definite Hessian and is therefore convex.

Now DQ(b1, b2) = 0 when

n∑
i=1

x21i +
n∑
i=1

x1ix2i =
n∑
i=1

x1iyi,
n∑
i=1

x1ix2i +
n∑
i=1

x22i =
n∑
i=1

x2iyi.

This may be written as (XTX)b = XTy, where y is the n–vector whose ith component is yi.
Since XTX is positive definite, it is invertible. It follows that

b = (XTX)−1XTy.

Since Q is convex, this gives the global minimum.

16–4. Denote the given utility function by W (c, y). The first-order conditions are

∂W

∂c
=
∂U

∂c
− (1 + r)V ′(p) = 0,

∂W

∂y
=
∂U

∂y
+ (1 + r)V ′(p) = 0,

where p = (1 + r)(y − c). [p stands for ‘pension’.]
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The Jacobian matrix J of (∂W/∂c, ∂W/∂y) with respect to (c, y) is the Hessian matrix
D2W (c, y); therefore

J =


∂2U

∂c2
+ s

∂2U

∂c ∂y
− s

∂2U

∂c ∂y
− s ∂2U

∂y2
+ s

 , where s = (1 + r)2V ′′(p).

Assume that for a given value of r there is a unique pair of optimal values c and y which
satisfy the first-order conditions. If in addition J is invertible at the given optimum, then c
and y may be differentiated with respect to r using the implicit function theorem;[

dc/dr
dy/dr

]
= J−1

[
t
−t

]
,

where t is the partial derivative with respect to r of (1 + r)V ′((1 + r)(y− c)), considered as a
function of c, y, and r. Calculating J−1 by the inversion formula for 2×2 matrices, and t by
partial differentiation, we see that

dc

dr
=

t

detJ

[
∂2U

∂y2
+

∂2U

∂c ∂y

]
,

dy

dr
= − t

detJ

[
∂2U

∂c2
+

∂2U

∂c ∂y

]
,

where t = V ′(p) + pV ′′(p).

To discuss the signs of dc/dr and dy/dr, notice that detJ ≥ 0 by the second-order conditions
for a maximum. These second-order conditions will be met, with J invertible, if at the
optimum 0 < c < y (so that p > 0), U is concave and V ′′(p) < 0. From now on, assume these
further conditions are met; in particular detJ > 0. Let

ε = −pV
′′(p)

V ′(p)
> 0,

and let A, B denote the expressions in square brackets in the solutions just given for dc/dr and
dy/dr respectively. Then dc/dr has the sign of (1− ε)A, and dy/dr has the sign of (ε− 1)B.

By the concavity of U , A and B cannot both be positive. If
∂2U

∂c ∂y
≤ 0 both A and B will be

non-positive; in this case

dc

dr
≤ 0 ≤ dy

dr
if ε ≤ 1,

dc

dr
≥ 0 ≥ dy

dr
if ε ≥ 1.

If
∂2U

∂c ∂y
> 0 it is possible, but not inevitable, that dc/dr and dy/dr have the same sign.

Finally,
ds

dr
=
dy

dr
− dc

dr
= − t

detJ

[
∂2U

∂c2
+ 2

∂2U

∂c ∂y
+
∂2U

∂y2

]
.

Since U is concave, the term in square brackets is non-positive, regardless of the sign of
∂2U

∂c ∂y
.

Also, we are assuming that detJ > 0. Hence ds/dr has the same sign as t, so

ds

dr
≥ 0 if ε ≤ 1,

ds

dr
≤ 0 if ε ≥ 1.
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17 PRINCIPLES OF CONSTRAINED OPTIMISATION

17–1. (i) The least-cost combination (K,L) occurs where the isoquant corresponding to the given
output level q is tangential to an isocost line. The result follows from the fact that this
point, and hence also the capital-labour ratio, depend only on q and the slope of the
isocost lines.

(ii) If s increases (i.e. the price of capital increases relative to that of labour) we would expect
the capital-labour ratio to decrease. Thus ∂g/∂s < 0 and therefore σ > 0.

(iii) The first-order conditions are r = µ∂F/∂K, w = µ∂F/∂L. Now

∂F

∂K
= AZ(1/γ)−1δKγ−1,

∂F

∂L
= AZ(1/γ)−1(1− δ)Lγ−1,

where Z = δKγ + (1 − δ)Lγ . Substituting these into the first-order conditions and
dividing, we obtain

r

w
=

δ

1− δ

(
K

L

)γ−1
.

It follows that g(s, q) = (s(1− δ)/δ)1/(γ−1), so σ = (1− γ)−1.

(iv) Proceed as in (iii). Although the expressions for ∂F/∂K and ∂F/∂L are different, division
of one first-order condition by the other yields the same result as in (iii). Hence g(s, q)
and σ are as in (iii).

(v) In both (iii) and (iv), ∂g/∂q = 0. More generally, let F (K,L) be any homogeneous
function of degree ν > 0. Then ∂F/∂K and ∂F/∂L are homogeneous of degree ν − 1 so
their ratio is homogeneous of degree 0. Therefore, r/w is a function of K/L alone, so
K/L depends only on s. The same argument applies to the still more general case where
the production function is G(K,L) = H(F (K,L)), where F (K,L) is homogeneous of
degree ν > 0 and H is a monotonic increasing transformation. [A function which is a
monotonic transformation of a homogeneous function is said to be homothetic.]

17–2. (i) w can be interpreted as the wage rate and t as the firm’s fixed cost per worker.

(ii) The Lagrangian is

L(h,N, µ) = whN + tN − µ(F (h,N)− q),

so the first-order conditions are

wN = µ
∂F

∂h
, wh+ t = µ

∂F

∂N
.

Now ∂F/∂h = bN2(ah+ bN)−2 and ∂F/∂N = ah2(ah+ bN)−2. Substituting these into
the first-order conditions and dividing the second condition by the first gives

wh+ t

wN
=
ah2

bN2
,

whence
ah

bN
= 1 +

t

wh
. But

ah

bN
=

h

bq
− 1 by the output constraint. Equating our two

expressions for
ah

bN
and rearranging, we see that

wh2 − 2bqwh− bqt = 0.
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Solving for h by the quadratic formula and taking the positive root gives

h =

(
1 +

[
1 +

t

bqw

]1/2)
bq.

N is now found by substituting the solution for h into the output constraint.
(iii) The isoquant F (h,N) = q is a negatively sloped convex curve lying in the positive

quadrant with asymptotes h = bq and N = aq. The isocost curves have equations of
the form N = k/(wh + t) for different values of the total cost k. The economically
meaningful parts of these curves lie in the non-negative quadrant, are negatively sloped,
convex, have the h–axis as an asymptote and meet the N–axis at (0, k/t). The answer
to (ii) lies at the point of tangency of the isoquant and an isocost curve. This isocost
curve corresponds to the lowest intercept on the N–axis, and hence the lowest value of
k, consistent with being on the isoquant.

17–3. Two goods: p1x1(p1, p2,m) + p2x2(p1, p2,m) = m. Differentiating with respect to m, p1, p2
respectively gives the results as stated.
n goods:

∑n
i=1 pixi(p1, . . . , pn,m) = m. Differentiating with respect to m gives

n∑
i=1

pi
∂xi
∂m

= 1,

while differentiating with respect to pj gives

xj +
n∑
i=1

pi
∂xi
∂pj

= 0.

17–4. (i) Samantha’s problem is to

maximise xα`β subject to px = w(T − `) +N.

Thus the Lagrangian for the problem is u− λ(px+ w`) + λ(wT +N), where u = xα`β .
The first-order conditions are αu/x = λp, βu/` = λw, whence px = (α/β)w`. This,
together with the constraint, implies that

x =
a

p
(wT +N), ` =

1− a
w

(wT +N), where a =
α

α+ β
.

Hence h = T − ` = aT − (1 − a)(N/w). From this expression, it is clear that as N
increases h decreases. As w increases, h increases or decreases according as N is positive
or negative: notice in particular that h is independent of w if N = 0.

(ii) Samantha’s problem is to

maximise xα1x
β
2 subject to p1x1 + p2x2 = w(T − t1x1 − t2x2) +N.

This is similar to the problem in (i) with x, `, p and w replaced by x1, x2, p1 +wt1 and
p2 + wt2 respectively. Hence the optimal values of x1 and x2 are

x1 =
a(wT +N)

p1 + wt1
, x2 =

(1− a)(wT +N)

p2 + wt2
,

where a = α/(α+ β) as before. It follows that

h = aT − t1x1 + (1− a)T − t2x2 =
a(p1T − t1N)

p1 + wt1
+

(1− a)(p2T − t2N)

p2 + wt2
.

As in (i), ∂h/∂N < 0 and ∂h/∂w may have either sign, but here the criterion for the
sign of the latter derivative is much more complicated.

(iii) The model in (ii), with p1 = p, t1 = 0, p2 = 0 and t1 = 1, reduces to that in (i).
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18 FURTHER TOPICS IN CONSTRAINED
OPTIMISATION

18–1. (i) Since Φ(z0) = Π(p0, z0),

D = [Φ(z0 + h)− Φ(z0)]− [Π(p0, z0 + h)−Π(p0, z0)].

Dividing through by h, letting h→ 0 and using the subscript notation for partial deriva-
tives,

lim
h→0

D

h
= Φ′(z0)−Π2(p0, z0).

The right-hand side is zero by the envelope theorem; therefore D/h ≈ 0 if |h| is small.

(ii) Π(p, z) = −bp2 + (bc+ z)p− (cz + k). Completing the square,

Π(p, z) = −b(p− t)2 + bt2 − (cz + k),

where t = 1
2(c+ [z/b]). It is clear that t is the optimal value of p, given z. Hence

Φ(z1) = bp21 − (cz1 + k), Π(p0, z1) = −b(p0 − p1)2 + bp21 − (cz1 + k),

and pi = 1
2(c+ [zi/b]) for i = 1, 2. It follows that

D = b(p0 − p1)2 = b
(z0

2b
− z1

2b

)2
=
h2

4b
.

[A slightly different way of answering part (i) is to approximate D for small |h| by a quadratic
function of h, using the method of Section 10.3; then use the envelope theorem to show that
only the term in h2 does not vanish. Part (ii) exhibits the case where the approximation is
exact.]

18–2. The Lagrangian for the problem is

L(K1,K2, L1, L2, λ, µ, p1, p2,K, L)

= p1F1(K1, L1) + p2F2(K2, L2)− λ(K1 +K2 −K)− µ(L1 + L2 − L).

(i) For i = 1, 2, ∂V/∂pi = ∂L/∂pi by the envelope theorem, and ∂L/∂pi = Fi(Ki, Li).

(ii) ∂V/∂K = ∂L/∂K by the envelope theorem, and ∂L/∂K = λ. It remains to show that
λ = ∂Fi/∂Ki for i = 1, 2. But this follows from the first-order conditions ∂L/∂Ki = 0
for i = 1, 2.

(iii) Similar to (ii).

18–3. (i) By Roy’s identity,
x1
x2

=
∂V

∂p1

/
∂V

∂p2
=
aαmαp−α−11

bβmβp−β−12

.

Setting A = aα(m/p1)
α, B = bβ(m/p2)

β , we obtain

p1x1
p2x2

=
A

B
.

(ii) By (i), s1 = A/(A+B) and s2 = B/(A+B).
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(iii) lnx1 − lnx2 = ln(x1/x2) = lnA− lnB − ln(p1/p2). Hence

∂

∂m
(lnx1 − lnx2) =

∂

∂m
(lnA)− ∂

∂m
(lnB) =

α

m
− β

m
.

Denoting the income elasticities of demand by η1 and η2, this gives

η1 − η2 = α− β. (1)

The Engel aggregation condition is p1
∂x1
∂m

+ p2
∂x2
∂m

= 1. This can be written in terms of
s1, s2, η1, η2 as

s1η1 + s2η2 = 1. (2)

Solving (1) and (2) simultaneously for η1 and η2 and remembering that s1 + s2 = 1 gives

η1 = 1 + (α− β)s2, η2 = 1− (α− β)s1.

(iv) Differentiating the expression for lnx− lnx2 stated in (iii) with respect to p1,

∂

∂p1
(lnx1 − lnx2) =

∂

∂p1
(lnA)− ∂

∂p1
(ln p1) = − α

p1
− 1

p1
.

Denoting the two own-price elasticities by ε11, ε22 and the two cross-price elasticities by
ε12, ε21, we have

ε11 − ε21 = −(α+ 1). (3)

Similarly
ε22 − ε12 = −(β + 1). (4)

The Cournot aggregation conditions are

p1
∂x1
∂pi

+ p2
∂x2
∂pi

= −xi for i = 1, 2.

These can be written in elasticity form as

s1ε11 + s2ε21 = −s1, (5)

s1ε12 + s2ε22 = −s2. (6)

Solving (3) and (5) simultaneously for ε11 and ε21, remembering that s1 + s2 = 1, gives

ε11 = −(1 + αs2), ε21 = αs1.

A similar argument using (4) and (6) shows that

ε12 = βs2, ε22 = −(1 + βs1).

Since α and β are positive, the own-price elasticities are negative and greater than 1 in
absolute value, and the cross-price elasticities are positive.

18–4. (i) The firm’s problem is to

minimise w1x1 + w2x2 subject to F (x1, x2) ≥ q, φ1x1 + φ2x2 ≤ E.

The feasible set lies above the negatively sloped convex isoquant F (x1, x2) = q and below
the straight line φ1x1 + φ2x2 = E. Suppose the points of intersection of the isoquant
and straight line are A and B, and the absolute values of the slopes of the isoquant at
these points are a b respectively, with a < b. Then there are three possibilities:
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(1) if a < w1/w2 < b, the optimum is at a point of tangency of the isoquant and a
member of the family of isocost lines w1x1 + w2x2 = k;

(2) if w1/w2 ≤ a, the optimum is at A;
(3) if w1/w2 ≥ b, the optimum is at B.

(ii) The Lagrangian is

L(x1, x2, λ, µ) = w1x1 + w2x2 − λ[F (x1, x2)− q] + µ[φ1x1 + φ2x2 − E].

The Kuhn–Tucker conditions are

(a1) w1 − λ(∂F/∂x1) + µφ1 = 0;
(a2) w2 − λ(∂F/∂x2) + µφ2 = 0;
(b) λ ≥ 0, F (x1, x2) ≥ q, with complementary slackness;
(c) µ ≥ 0, φ1x1 + φ2x2 ≤ E, with complementary slackness.

(iii) (a1) and (a2) give

w1/w2 =

(
λ
∂F

∂x1
− µφ1

)/(
λ
∂F

∂x2
− µφ2

)
,

which rearranges to

λ

(
1

w1

∂F

∂x1
− 1

w2

∂F

∂x2

)
= µ

(
φ1
w1
− φ2
w2

)
. (∗)

In case (1), φ1x1 + φ2x2 < E, so the complementary slackness condition of (c) gives
µ = 0 and (∗) reduces to tangency of the isoquant and an isocost line.
In case (2), the isocost lines must be less steep than the line φ1x1 + φ2x2 = E, so
w1/w2 < φ1/φ2. Then (∗) confirms that the isoquant is at least as steep as the isocost
line. Similarly, in case (3), (∗) confirms that isocost line is at least as steep as the
isoquant.

(iv) The firm’s problem now is to

minimise w1x1 + . . .+ wnxn subject to F (x1, . . . , xn) ≥ q, φ1x1 + . . .+ φnxn ≤ E.

The Lagrangian is

L(x1, . . . , xn, λ, µ) = (
∑n

i=1wixi)− λ[F (x1, . . . , xn)− q] + µ[(
∑n

i=1φixi)− E].

The Kuhn–Tucker conditions are

(a) wi − λ(∂F/∂xi) + µφi = 0 for i = 1, . . . , n;
(b) λ ≥ 0, F (x1, . . . , xn) ≥ q, with complementary slackness;
(c) µ ≥ 0, φ1x1 + . . . φnxn ≤ E, with complementary slackness.

19 INTEGRATION

19–1. The first part is simple algebra. Using that result,∫ 4

3

3x− 1

x2 + x− 6
dx =

∫ 4

3

1

x− 2
dx+

∫ 4

3

2

x+ 3
dx =

[
ln(x− 2)

]4
3

+
[

2 ln(x+ 3)
]4
3
,

which is evaluated as ln 2− ln 1 + 2 ln 7− 2 ln 6 = ln 49
18 .
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(i) The more general version of Rule 2 gives the required integral as[
ln |x− 2|

]−4
−5

+ 2
[

ln |x+ 3|
]−4
−5

= ln 6− ln 7 + 2 ln 1− 2 ln 2 = − ln 14
3 .

(ii) Similarly to (i), the required integral is[
ln |x− 2|

]1
−1

+ 2
[

ln |x+ 3|
]1
−1

= ln 1− ln 3 + 2 ln 4− 2 ln 2 = ln 4
3 .

(iii) Since 1 and 4 are on opposite sides of 2, the integral is not defined.

(iv) Since −4 and 0 are on opposite sides of −3, the integral is not defined.

(v) In this case there are two reasons why the integral is undefined!

19–2. The gross consumer’s surplus is
∫ q0

0
f(q) dq. The net consumer’s surplus is the area bounded

by the p–axis, the inverse demand function and the horizontal line p = f(q0) and is given by∫ q0

0
f(q) dq − q0f(q0).

When f(q) = 30− q2, the gross consumer’s surplus is∫ q0

0
(30− q2) dq = 30q0 − 1

3q
3
0

and the net consumer’s surplus is

30q0 − 1
3q

3
0 − q0(30− q20) = 2

3q
3
0.

19–3. (i) The present value at time 0 of the profit gained during the short time interval [t, t+ h]
is approximately e−rtg(t)h. If we split [0, T ] into a large number of small sub-intervals,
the present value at time 0 of the profit stream up to T can be approximated by a sum
of terms of the above form. Passing to the limit as h→ 0, we get

V (T ) =

∫ T

0
e−rtg(t) dt.

(ii) V ′(T ) = e−rT g(T ).

(iii) Let f(t) = e−t/20/(1 +
√
t). Then Simpson’s rule with 5 ordinates gives

V (12) ≈ 60[f(0) + 4f(3) + 2f(6) + 4f(9) + f(12)] ≈ 207.0.

(iv) When T increases from 12 to 12.5, then, by (ii) and the small increments formula,

∆V ≈ 60e−0.6 × (1 +
√

12)−1 × 0.5 ≈ 3.7,

so V (12.5) ≈ 210.7.

19–4. (i) (a) The value of the investment at time t + ∆t is equal to the value at time t plus the
interest gained in the time interval [t, t + ∆t]. Approximating this interest by that
on A(t) at the rate r(t) gives the result as stated.
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(b) Rearranging the result of (a) gives

A(t+ ∆t)−A(t)

A(t) ∆t
= r(t).

Taking the limit as ∆t→ 0, we obtain A′(t)/A(t) = r(t), as required.
Integrating the result of (b) over the interval [0, T ] gives[

lnA(t)
]T
0

=

∫ T

0
r(t) dt. (∗)

Since A(0) = P , the left-hand side of (∗) is ln(A(T )/P ), and the result follows.
(ii) Let P (t, h) be the present value at time 0 of the income received during the short time

interval [t, t+ h]. By the final result of (i), with T replaced by t and t by s,

f(t)h ≈ P (t, h) exp

[∫ t

0
r(s) ds

]
.

Hence P (t, h) ≈ e−R(t)f(t)h, where R(t) =

∫ t

0
r(s) ds. If we split [0, T ] into a large

number of small sub-intervals, the present value at time 0 of the income stream up to
T can be approximated by a sum of terms of the form P (t, h). Passing to the limit as

h→ 0, the present value of the stream is
∫ T

0
e−R(t)f(t) dt.

20 ASPECTS OF INTEGRAL CALCULUS

20–1. (i) Putting t = 1− x2 changes the integral to∫ 0

1
t1/2

(
−1

2
dt

)
=

1

2

∫ 1

0
t1/2 dt =

1

2

[
2

3
t3/2

]1
0

=
1

3
.

(ii) Putting t = 1− x changes the integral to∫ 0

1
(1− t)t1/2(−dt) =

∫ 1

0
(t1/2 − t3/2) dt =

2

3
− 2

5
=

4

15
.

(iii) Putting t = 1− x changes the integral to∫ 0

1
(1− t)2t1/2(−dt) =

∫ 1

0
(t1/2 − 2t3/2 + t5/2) dt =

2

3
− 4

5
+

2

7
=

16

105
.

20–2.
∫ A

−A
f(x) dx = I+J , where I =

∫ 0

−A
f(x) dx and J =

∫ A

0
f(x) dx. Substitution: y = −x Then

I = −
∫ 0

A
f(−y) dy =

∫ A

0
f(−y) dy.

In case (i), I = J and the result follows. In case (ii), I = −J and the result follows.

(iii) Denote the required integral by K. By result (i),

K = 2

∫ 1

0
e−x

2/2 dx.

Using Simpson’s rule with 5 ordinates, K ≈ 1.49 to 2 decimal places.
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(iv) The function y = xe−x
2/2 is odd. Hence by (ii),

∫ A

−A
xe−x

2/2 dx = 0 for all A, and the

result follows by letting A→∞.
This is a special case of the Example in Section 20.2, because we are forcing the limits
of integration to tend to infinity together; in the original example, they tend to infinity
independently.

(v) By a similar argument to (iv),
∫ A

−A
x3 dx = 0 for all A, so the integral remains zero when

we let A → ∞. It is not correct to infer that
∫ ∞
−∞

x3 dx = 0, because the integrals∫ ∞
0
x3 dx and

∫ 0

−∞
x3 dx diverge.

20–3. V (s) =

∫ s

0
(−ce−rt) dt +

∫ T

s
f(s, t)e−rt dt. The first integral on the right-hand side is easily

evaluated as (c/r)(e−rs − 1). Thus

V ′(s) = −ce−rs +
∂

∂s

∫ T

s
f(s, t)e−rt dt = −ce−rs − f(s, s)e−rs +

∫ T

s

∂f

∂s
e−rt dt

by Leibniz’s rule. Therefore, the value of s which maximises V (s) must satisfy the equation

f(s, s) + c =

∫ T

s
er(s−t)

∂f

∂s
dt.

20–4. The equations of the sides are y = 2x, y = 1
2x and x+ y = 3.

y

0 x

1

2

1 2

Let the required integral be I. Dividing the region of integration as in the diagram,

I =

∫ 1

0

[∫ 2x

x/2
(x+ y) dy

]
dx+

∫ 2

1

[∫ 3−x

x/2
(x+ y) dy

]
dx

=

∫ 1

0

[3

2
x2 +

1

2
(2x)2 − 1

2
(x/2)2

]
dx+

∫ 2

1

[
3x
(

1− x

2

)
+

1

2
(3− x)2 − 1

8
x2
]
dx

=
27

8

∫ 1

0
x2 dx+

9

8

∫ 2

1
(4− x2) dx

=
9

8
+

9

2
− 3

8
(8− 1)

= 3.
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21 PROBABILITY

21–1. (i) We number the arriving couples 1, 2, . . . , n, where couple j consists of Mr j and Ms j.
Let A be the event that at least one of these couples leaves together, B the event that
Ms 1 leaves with Mr 1, C the event that Ms 1 leaves with Mr 2. Then

pn = P (A) = P (B) + (n− 1)P (A ∩ C).

Since P (B) = P (C) = 1/n, it follows that

pn =
1

n
[1 + (n− 1)P (A |C)] .

Those present at the party other than Ms 1 and Mr 2 are Mr 1, Ms 2 and couples 3, . . . , n.
Hence

P (A |C) = pn−1 − P (D |C),

where D is the event that Mr 1 leaves with Ms 2 and none of the couples 3, . . . , n leave
together. Now

P (D |C) =
1

n− 1
(1− pn−2),

so
pn =

1

n
(1 + (n− 1)pn−1 − 1 + pn−2) = pn−1 −

1

n
(pn−1 − pn−2).

(ii) p2 − p1 = −1

2
. Hence by (i), p3 − p2 =

(
−1

3

)
×
(
−1

2

)
=

1

3!
, p4 − p3 = −1

4
× 1

3!
and so

on. Thus for all n > 1,

pn − pn−1 =
(−1)n−1

n!
,

whence

pn = p1 + (p2 − p1) + . . .+ (pn − pn−1)

= 1− 1

2
+ . . .+

(−1)n−1

n!
.

It follows that
1− pn = 1− 1

1!
+

1

2!
− . . .+ (−1)n

n!
,

which approaches e−1 as n→∞. Thus

lim
n→∞

pn = 1− e−1 = 0.632 to 3 decimal places.

21–2. P (A) = P (B) = 1
2 . For C you need either Heads at 9am and 11am or Tails at 9am and 10am,

so P (C) = 1
4 + 1

4 = 1
2 . A ∩B is the event that you get Heads at 9am and 10am, while A ∩ C

is the event that you get Heads at 9am and 11am. B ∩ C is the same event as A ∩ B ∩ C,
namely Heads at 9am, 10am and 11am. Therefore

P (A) = P (B) = P (C) =
1

2
, P (A ∩B) = P (A ∩ C) =

1

4
, P (B ∩ C) = P (A ∩B ∩ C) =

1

8
.

In particular (i) P (B ∩ C) 6= P (B)P (C), (ii) P (A ∩ B ∩ C) = P (A)P (B)P (C). (i) says
that B and C are not independent; hence the three events A,B,C are not independent. The
example shows that equation (ii) alone is not enough to ensure that three events A,B,C are
independent.
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21–3. (i)

fX(x) =

{
0 if x ≤ k,
αkαx−α−1 if x > k.

.

(a) If x ≤ K, P (Y > x) =
P (X > K)

P (X > K)
= 1. If x > K,

P (Y > x) =
P (X > x)

P (X > K)
=

(k/x)α

(k/K)α
= (K/x)α.

Thus Y is Pareto with parameters α and K.
(b)

P (Z > z) = P (X/k > ez) =

{
1 if ez ≤ 1,

e−αz if ez > 1.

Hence

FZ(z) =

{
0 if z ≤ 0,

1− e−αz if z > 0.

Z is exponential with parameters α.

(ii) In each case, we denote the median by ν.

(a) Let X be Pareto with parameters α and k. Then (k/ν)α = 1
2 , so ν = 21/αk.

(b) Let X be exponential with parameter α. Then e−αν = 1
2 , so ν = α−1 ln 2.

(c) ν3 = 1
2 , so ν = 2−1/3.

21–4. Let pr(u) be the probability that there are r calls in an interval of length u. This is the
probability that a Poisson variate with parameter λu takes the value r, so

pr(u) =
(λu)r

r!
e−λu. (∗)

P (t < Tk ≤ t+δ) is the probability that the kth call takes place between time t and time t+δ;
it is therefore the probability that for some j = 1, . . . , k there are k − j calls in an interval of
length t followed by j calls in an interval of length δ. Thus

P (t < Tk ≤ t+ δ) =

k∑
j=1

pk−j(t) pj(δ).

If δ is small then p1(δ) ≈ λδ and pj(δ) is negligible for j > 1; hence

P (t < Tk ≤ t+ δ) ≈ pk−1(t)λδ,

and the required result follows from (∗).
Denoting the density function of Tk by f , we have

f(t) = lim
δ↓0

P (t < Tk ≤ t+ δ)

δ
= λpk−1(t)

for all t > 0. Hence by (∗),

f(t) =

0 if t ≤ 0,

λktk−1

(k − 1)!
e−λt if t > 0;
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22 EXPECTATION

22–1. To simplify notation, we denote the function FX by F and the associated density function
by f .

(i) If the rth raw moment exists it is

αkα
∫ ∞
k

xr−α−1 dx.

The integral converges if and only if r−α− 1 < −1, which happens if and only if r < α.
In that case

E(Xr) = αkα
[
0− kr−α

r − α

]
=

α

α− r
kr.

(ii) Let total population be N . Average wealth per person is EX. If x and h are positive,
then the proportion of total wealth held by persons whose wealth is between x and x+h
is

w[F (x+ h)− F (x)]N

NEX
,

where w is some number between x and x+ h. If h is small, this proportion is approxi-
mately xf(x)h/EX. Hence, for x > 1,

V (x) =
1

EX

∫ x

1
uf(u) du =

α− 1

α

∫ x

1
αu−α du = 1− x1−α.

(iii) For x > 1, p = 1− x−α and q = 1− x−(α−1). Thus

L(p) = 1− (1− p)β,

where β = (α − 1)/α. In a notation similar to that of Section 19.4, the Gini coefficient
G is A/(A+B) where A+B = 1

2 and B =
∫ 1
0 L(p) dp. Using the substitution t = 1− p,

B =

∫ 1

0

(
1− (1− p)β

)
dp = 1−

∫ 1

0
tβ dt = 1− 1

β + 1
=

α− 1

2α− 1
.

Hence
G = 1− 2B =

1

2α− 1
.

22–2. (i) By symmetry, each of X and Y has the same c.d.f. F and therefore the same density
function f . Since P (X ≤ x) = P (X ≤ x and Y ≤ 1) for all x, F (x) = 1

2x(x + 1) if
0 ≤ x ≤ 1. Hence

F (x) =


0 if x ≤ 0,
1
2x(x+ 1) if 0 < x < 1,
1 if x ≥ 1,

f(x) =


0 if x ≤ 0,
x+ 1

2 if 0 < x < 1,
0 if x ≥ 1.

(ii) Suppose that 0 < x− δ < x < x+ δ < 1. If 0 ≤ y ≤ 1, then

P (Y ≤ y and x− δ < X < x+ δ)

= 1
2(x+ δ)y(x+ δ + y)− 1

2(x− δ)y(x− δ + y)

= 1
2y((x+ δ)2 − (x− δ)2 + 2yδ)

= (2x+ y)yδ.
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Setting y = 1 , we see that P (x − δ < X < x + δ) = (2x + 1)δ. Hence for any y such
that 0 ≤ y ≤ 1,

P (Y ≤ y |x− δ < X < x+ δ) =
2xy + y2

2x+ 1
.

This remains true as δ ↓ 0, so

P (Y ≤ y |X = x) =
2xy + y2

2x+ 1
.

The corresponding density function is (2x+ 1)−1(2x+ 2y), whence

E(Y |X = x) =
1

2x+ 1

∫ 1

0
y(2x+ 2y) dy =

1

2x+ 1

[
xy2 +

2

3
y3
]y=1

y=0

=
3x+ 2

3(2x+ 1)
.

Hence
E(Y |X) =

3X + 2

3(2X + 1)
.

(iii) Using (ii) and the law of iterated expectations, EY =

∫ 1

0
g(x)f(x) dx, where

g(x) =
3x+ 2

3(2x+ 1)
=

3x+ 2

6f(x)
.

Hence

EY =

∫ 1

0

(
x

2
+

1

3

)
dx =

1

4
+

1

3
=

7

12
.

The same value of EY is obtained by direct calculation:∫ 1

0
yf(y) dy =

∫ 1

0

(
y2 +

y

2

)
dy =

1

3
+

1

4
=

7

12
.

22–3. (i) Since the pair (X,Y ) is bivariate normal, there is an invertible matrix A, a vector b and
a pair of independent, standard normal r.v.s (U, V ) such that[

X
Y

]
= A

[
U
V

]
+ b.

Hence [
W
Z

]
= BA

[
U
V

]
+ (Bb + c).

Since A and B are invertible, so is BA: the pair (W,Z) is bivariate normal.
(ii) Let θ = varX, λ = cov(X,Y ). Then[

X
Z

]
=

[
1 0
−λ θ

] [
X
Y

]
.

The pair (X,Z) is bivariate normal by (i), so to prove that X and Z are independent it
suffices to show that cov(X,Z) = 0. In fact,

cov(X,Z) = θ cov(X,Y )− λ varX = θλ− λθ = 0.

Since X and Z are independent, E(Z |X) = EZ. Therefore

θE(Y |X)− λX = θEY − λEX

and
E(Y |X) = EY +

λ

θ
(X − EX) = EY +

cov(X,Y )

varX
(X − EX).
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22–4. As usual, Φ and φ denote the standard normal c.d.f. and density function.

(i) Let Y = lnX. If x > 0, then

P (X ≤ x) = P (Y ≤ lnx) = Φ

(
lnx− µ

σ

)
.

The c.d.f. of X is therefore

FX(x) =

0 if x ≤ 0,

Φ

(
lnx− µ

σ

)
. if x > 0.

Since X = eY , EX = MY (1). Using the formula for the moment generating function of
a normal r.v. at the end of Section 22.2, we see that

EX = exp
(
µ+ 1

2σ
2
)
.

Similarly
E(X2) = MY (2) = exp(2µ+ 2σ2) = (EX)2 exp(σ2),

whence
varX = (EX)2 [exp(σ2)− 1].

(ii) lnX is the sum of the n independent, identically distributed r.v.s lnY1, . . . , lnYn. Thus
if n is large, lnX has an approximately normal distribution by the central limit theorem,
so X has an approximately log-normal distribution.
In the numerical example, let Wi = lnYi (i = 1, . . . , 100), θ = 0.1. Then

EWi =
1

2θ

∫ θ

−θ
ln(1 + t) dt.

Writing the integrand as ln(1 + t)× d

dt
(1 + t) and integrating by parts, we see that

EWi =
1

2θ
{(1 + θ) ln(1 + θ)− (1− θ) ln(1− θ)} − 1.

A similar integration by parts shows that

E(W 2
i ) =

1

2θ

{
(1 + θ)[ln(1 + θ)]2 − (1− θ)[ln(1− θ)]2

}
− 2EWi.

Since θ = 0.1, EWi = −1.6717×10−3 and E(W 2
i ) = 3.3517×10−3, so varWi = 3.3490×

10−3. It follows from the central limit theorem that lnX is approximately normally
distributed with mean −0.16717 and variance 0.33490. Therefore

P (X ≤ 1) = P (lnX ≤ 0) ≈ Φ(z),

where z = 0.16717/
√

0.33490 = 0.289. From tables, the required probability is approxi-
mately 0.61.
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23 INTRODUCTION TO DYNAMICS

23–1. (i) All solutions of the differential equation satisfy dy/dt = 0 when t = 0 and t = 2. It is
also clear from the differential equation that, as t increases from 0− to 0+, dy/dt changes
from negative to positive. Hence there is a minimum at t = 0. Similarly, as t increases
from 2− to 2+, dy/dt changes from positive to negative; there is therefore a maximum
at t = 2.
From the differential equation, the slopes of the solution curves when t = −1, 1, 3 are
−3, 1,−3 respectively. The directions of the tangents to the curves when t = −1, 0, 1, 2, 3
can be shown as sets of parallel line segments of slopes −3, 0, 1, 0,−3 cutting the lines
t = −1, 0, 1, 2, 3 respectively. This enables us to draw the family of solution curves, each
with a minimum at t = 0, a maximum at t = 2 and with directions of tangents as just
stated at t = −1, 1, 3. It is then clear that, as t increases beyond 2, dy/dt becomes more
negative and y decreases. As t→∞, y → −∞.

(ii) Along the line y = 0, y is constant, so dy/dt = 0; also y(2 − y) = 0; hence y = 0 is a
solution curve. By a similar argument, y = 2 is also a solution curve. The directions
of the tangents to the curves when y = −1, −0.5, 0.5, 1, 1.5, 2.5, 3 can be shown as
sets of parallel line segments of slopes −3, −1.25, 0.75, 1, 0.75, −1.25, −3 cutting the
lines y = −1, −0.5, 0.5, 1, 1.5, 2.5, 3 respectively. This enables us to draw the family of
solution curves. Along the solution curves below y = 0, y decreases as t increases and,
as t→∞, y → −∞. Along the solution curves between y = 0 and y = 2, y increases as
t increases and, as t→∞, y → 2. Along the solution curves above y = 2, y decreases as
t increases and, as t→∞, y → 2.

(iii) This problem corresponds to the case a = 2, b = 1 of Exercise 21.1.5 (see also Exercise
21.3.4). There you were asked to find the solution of the differential equation which
satisfies y = y0 when t = 0 where 0 < y0 < a/b. The solution obtained satisfies
0 < y < a/b for all t and, as t → ∞, y → a/b. This confirms the behaviour of the
solution curves lying between y = 0 and y = 2.

23–2. (i) Separating the variables and integrating,
∫
z−1 dz =

∫
r dt. Hence ln z = rt + B, which

can be arranged in the form z = Cert.
(ii) Since extraction costs are zero, (i) gives p = Cert. Assuming the market for the resource

clears at each instant of time, we have Cert = q−α, which can be arranged in the form
q = Ae(−r/α)t.

(iii) Since the total amount of mineral to be extracted is S,
∫ ∞
0
q(t) dt = S. But

∫ ∞
0

q(t) dt = lim
T→∞

∫ T

0
Ae−γtdt = lim

T→∞

[
(A/γ)(1− e−γT )

]
= A/γ,

where γ = r/α. It follows that A = γS. Summarising,

q(t) =
rS

α
e(−r/α)t, p(t) =

( α
rS

)α
ert.

23–3. (i) K satisfies the differential equation

dK

dt
+ δK = sAKαL1−α.

Hence
1

L

dK

dt
= sAkα − δk,
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where k = K/L. Now

dk

dt
=

1

L

dK

dt
− K

L2

dL

dt
=

1

L

dK

dt
− nk,

since L(t) = L(0)ent. It follows that

dk

dt
+ (δ + n)k = sAkα.

This is similar to (21.17) but with K replaced by k and δ by δ+n. The general solution
for k = K/L is therefore

k(t) =

[
sA

δ + n
+ ce−(1−α)(δ+n)t

]1/(1−α)
,

where c is a constant. Hence

K(t) = L(0)entk(t) = L(0)

[
sA

δ + n
e(1−α)nt + ce−(1−α)δt

]1/(1−α)
.

Notice that c is related to the value of K/L at time 0 by the equation

c = k1−α0 − sA

δ + n
,

where k0 = K(0)/L(0). Thus c has the same sign as k0 − k∗, where

k∗ =

[
sA

δ + n

]1/(1−α)
.

Also notice that k(t)→ k∗ as t→∞.
The graph of K/L against t meets the vertical axis at (0, k0). If k0 < k∗, the graph is
upward-sloping and concave, approaching the horizontal line through (0, k∗) from below
as t→∞. If k0 > k∗, the graph is downward-sloping and convex, approaching the same
horizontal line from above as t→∞.
The graph of lnK against t meets the vertical axis at (0, lnK(0)) and is asymptotic
(as t → ∞) to a straight line S of slope n. If k0 < k∗, the graph is upward-sloping
and concave, approaching S from below as t → ∞. If k0 > k∗, the graph is convex,
approaching S from above as t → ∞. In the latter case the graph is downward-sloping
for large negative t and may slope up or down for small |t|.

(ii) K satisfies the differential equation

dK

dt
+ δK = sAKαLβ.

Setting N = Lβ/(1−α) we obtain the differential equation

dK

dt
+ δK = sAKαN1−α.

We may therefore proceed as in (i), with L replaced by N ; notice that the rate of growth
of L must be replaced by the rate of growth of N , so n is replaced by nβ/(1− α). The
solution for K is therefore

K(t) =

[
L(0)β

(
(1− α)sA

(1− α)δ + βn
eβnt + ce−(1−α)δt

)]1/(1−α)
,

where c is a constant.
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23–4. The discrete-time analogue is ∆yt + ayt = b, or

yt+1 + (a− 1)yt = b.

Letting ȳ = b/a, we may write the general solution of the differential equation as y(t) =
ȳ+Ae−at, and the general solution of the difference equation as yt = ȳ+A(1− a)t. Both for
the differential equation and for the difference equation, the stationary solution is y = ȳ.

For the differential equation, all solutions approach the stationary solution as t→∞, provided
limt→∞ e

−at = 0; this occurs if and only if a > 0. For the difference equation, all solutions
approach the stationary solution as t → ∞, provided limt→∞(1 − a)t = 0; this occurs if and
only if |1 − a| < 1, i.e. 0 < a < 2. The general solution of the difference equation exhibits
alternating behaviour if a > 1.

Notice that the variety of possible behaviour is greater for the difference equation than for the
differential equation, in that alternating behaviour is possible for the latter. The qualitative
behaviour of the discrete-time analogue is not necessarily the same as that of the differential
equation for the same parameter values.

24 THE CIRCULAR FUNCTIONS

24–1. (i) y = e−3x sin 4x cuts the x–axis where sin 4x = 0: x = kπ/4 for k = 0, ±1, ±2, . . .

dy/dx = e−3x(4 cos 4x − 3 sin 4x). Hence dy/dx = 0 if and only if tan 4x = 4
3 . Setting

β = arctan 4
3 (= 0.927 to 3 decimal places), we see that dy/dx = 0 if and only if 4x =

β + kπ for some integer k. Hence the critical points are { (xk, yk) : k = 0, ±1, ±2, . . . },
where xk = 1

4(β + kπ) and

yk = exp(−3
4(β + kπ)) sin(β + kπ) = e−3β/4e−3kπ/4(−1)k sinβ.

Thus yk = auk for all k, where a = e−3β/4 sinβ and u = −e−3π/4: notice that −1 < r < 0.
It is clear from the above that the positive critical values are maxima and the negative
critical values are minima; for a rigorous demonstration of this, see Problem 26–2. As
x→ −∞, |y| → ∞; as x→∞, y → 0. The graph is that of a damped oscillation.

(ii) As in (i), the graph cuts the x–axis where x = kπ/4 for k = 0, ±1, ±2, . . . Also as in
(i), let β = arctan 4

3 . The critical points are now { (Xk, Yk) : k = 0, ±1, ±2, . . . }, where
Xk = 1

4(−β + kπ) and

Yk = exp(34(−β + kπ)) sin(−β + kπ) = e−3β/4e3kπ/4(−1)k+1 sinβ.

Thus Yk = bvk for all k, where b = −e−3β/4 sinβ and v = −e3π/4: notice that s < −1.
The graph is that of an explosive oscillation.

24–2. (i) The graph of 3t+ 1 is a straight line of slope 3 and intercept 1. The graph of 2 sin 6t is
like that of sin t but magnified by a factor of 2 and with period π/3. The graph of lnY
is the sum of these two and is thus an oscillation of period π/3 about 3t+ 1.

(ii) The graph of 2t + 5 is a straight line of slope 2 and intercept 5. If α > 0, the graph
of 3 sin(6t + α) is like that of sin t but magnified by a factor of 3, with period π/3 and
shifted to the left through α/6 (since 6t+ α = 6[t+ 1

6α]). The graph of lnZ is the sum
of these two and is thus an oscillation of period π/3 about 2t + 5. Since, for example,
the maximum and minimum points of 3 sin(6t+ α) occur at a time α/6 earlier than the
corresponding points of 2 sin 6t, the former periodic function is said to lead the latter
by α/6. Similarly, if α < 0, the maximum and minimum points of 3 sin(6t+ α) occur at
a time |α|/6 later than the corresponding points of 2 sin 6t; the former periodic function
is then said to lag behind the latter by |α|/6.
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(a) If α = π, the periodic component of lnZ leads the corresponding component of lnY
by π/6, i.e. half a period. When the periodic component of lnY is at a maximum,
the corresponding component of lnZ is at a minimum and vice versa.

(b) If α = −π, the periodic component of lnZ lags behind the corresponding component
of lnY by π/6, i.e. half a period. Again, when the periodic component of lnY is at
a maximum, the corresponding component of lnZ is at a minimum and vice versa.

(c) If α = 3π, the periodic component of lnZ leads the corresponding component of
lnY by π/2, i.e. 1.5 periods. As in (a), when the periodic component of lnY is at a
maximum, the corresponding component of lnZ is at a minimum and vice versa.

(d) If α = −3π, the periodic component of lnZ lags behind the corresponding component
of lnY by π/2, i.e. 1.5 periods. As in (b), when the periodic component of lnY is at
a maximum, the corresponding component of lnZ is at a minimum and vice versa.

(e) If α = 6π, the periodic component of lnZ leads the corresponding component of
lnY by π, i.e. 3 periods. When the periodic component of lnY is at a maximum or
minimum, the corresponding component of lnZ is at a similar point.

(f) If α = −6π, the periodic component of lnZ lags behind the corresponding component
of lnY by π, i.e. 3 periods. When the periodic component of lnY is at a maximum
or minimum, the corresponding component of lnZ is at a similar point.

(iii) Yes they can. Denote the periodic components of lnY and lnP by y, p respectively.
Suppose for example that

y = a sin 6t, p = −b sin 6t,

where a and b are positive constants. Then A is obviously right. The periodic component
of the inflation rate at time t is

dp/dt = −6b cos 6t = 6b sin
(
6t− π

2

)
.

Hence the periodic component of the inflation rate at time t+ π
12 is 6b sin 6t, so B is also

correct.

24–3. Let (R,α) be the polar coordinates of the point with Cartesian coordinates (A,B). Then

A cos θ +B sin θ = R cosα cos θ +R sinα sin θ

= R(cos θ cosα+ sin θ sinα)

= R cos(θ − α).

In case (i), R = 3
√

2, α = π/4; in case (ii), R = 4, α = π/2; in case (iii), R = 13,
α = arctan 2.4 = 1.176 to 3 decimal places.

From (iii), we may write the function as y = 13 cos(x − α), where α = arctan 2.4. Thus the
graph is like that of y = cosx but magnified by a factor of 13 and shifted to the right by
approximately 1.176 radians. In particular, the maximum and minimum values of y are ±13.

24–4. (i) As x → 0, arctan([m/x]α) → π/2, so G(x) → 1. As x → ∞, arctan([m/x]α) → 0, so
G(x)→ 0.

(ii) G(m) =
2

π
arctan 1 =

2

π
×π

4
=

1

2
.

(iii) Since

lim
x→∞

arctan([m/x]α)

[m/x]α
= lim

y→0

arctan y

y
= 1,

limx→∞G(x) /[m/x]α = 2/π. Therefore xαG(x)→ 2mα/π as x→∞.
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(iv)

f(x) = −G′(x) = − 2

π

(
− α

x

[m
x

]α)/(
1 +

[m
x

]2α)
Simplifying,

f(x) =
2α/π

m−αx1+α +mαx1−α
. (∗)

Since m and α are positive numbers, f(x) > 0 for all x > 0. Also, since α > 1, x1+α → 0
and x1−α → ∞ as x → 0, while x1+α → ∞ and x1−α → 0 as x → ∞. Thus the
denominator on the right-hand side of (∗) becomes very large both as x → 0 and as
x→∞. It follows that limx→0 f(x) = limx→∞ f(x) = 0.

(v) Let h(x) = α/f(x) = 1
2π(m−αx1+α +mαx1−α). Then

h′(x) = 1
2π
(
(1 + α)(x/m)α + (1− α)(x/m)−α

)
.

Since α > 1, we may define the positive number

β =

[
α− 1

α+ 1

]1/(2α)
.

Then β < 1 and h′(βm) = 0. Also, h′(x) < 0 if 0 < x < βm and h′(x) > 0 if x > βm.
Since f ′(x) always has the opposite sign to h′(x), the required properties are satisfied by
x∗ = βm. Since β < 1, x∗ < m.

25 COMPLEX NUMBERS

25–1. 1 + i =
√

2(cos π4 + i sin π
4 ) and 1− i =

√
2(cos π4 − i sin π

4 ). By De Moivre’s theorem and its
corollary, (1 + i)t = 2t/2(cos πt4 + i sin πt

4 ) and (1− i)t = 2t/2(cos πt4 − i sin πt
4 ). Hence

yt = 2t/2 ((A+B) cos(πt/4) + i(A−B) sin(πt/4)) . (∗)

(i) If A and B are real, the real part of yt is (A+B)2t/2 cos πt4 and the imaginary part of yt
is i(A−B)2t/2 sin πt

4 .

(ii) If A and B are conjugates, A+B and i(A−B) are real numbers, so yt is real. Conversely,
if yt is real for all t, then A+B and i(A−B) are real numbers, say C and D respectively.
Then 2iA = iC +D, whence A = 1

2(C − iD) and

B = C −A = 1
2(C + iD) = Ā.

(iii) Here 2 = y0 = A+B and 5 = y1 = A+B+i(A−B). Hence A+B = 2 and i(A−B) = 3.
From (∗),

yt = 2t/2 (2 cos(πt/4) + 3 sin(πt/4)) for all t.

To find A and B, proceed as in (ii) with C = 2 and D = 3: A = 1− 3
2 i and B = 1 + 3

2 i.

25–2. Since e(−2+5i)t = e−2t(cos 5t+ i sin 5t) and e(−2−5i)t = e−2t(cos 5t− i sin 5t),

y = e−2t((A+B) cos 5t+ i(A−B) sin 5t).

(i) If A and B are real, the real part of y is (A+B)e−2t cos 5t and the imaginary part of y
is i(A−B)e−2t cos 5t.

(ii) Similar to Problem 25–1, part (ii).
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(iii) Since y = 0 when t = 0, A+B = 0. Also,

dy/dt = −2y − 5e−2t((A+B) sin 5t− i(A−B) cos 5t) :

setting t = 0 we have 1 = 0 − 5(0 − i[A − B]). Thus B = −A and A − B = −i/5. It
follows that A = −i/10, B = i/10 and

y =
sin 5t

5e2t
.

25–3. (i) Let f(z) = z3 − 2z2 − 2z− 3. Then f(3) = 0, so z− 3 is a factor of f(z). By inspection,
f(z) = (z − 3)(z2 + λz + 1) for some λ; equating coefficients of z (or z2), we see that
λ = 1. It follows that f(z) = (z−3)(z2 +z+1) = (z−3)(z−u)(z−v) where u, v are the
roots of z2 + z + 1 = 0. By the quadratic formula, we may set u = 1

2(−1 +
√

3), v = ū.

(ii) Let g(z) = z3 − 4z2 + 14z − 20; also let u = 1 − 3i. Then u2 = −8 − 6i and u3 =
1− 9i− 27 + 27i = −26 + 18i, so

g(u) = −26 + 18i+ 32 + 24i− 6− 42i = 0.

Thus u is a root; since the polynomial g has real coefficients, ū = 1 + 3i is also a root.
Denoting the third root by v, we see that

g(z) = (z − u)(z − ū)(z − v) = ([z − 1]2 − [3i]2)(z − v).

Thus z3 − 4z2 + 14z − 20 = (z2 − 2z + 10)(z − v) for all z. Putting z = 0 we see that
−20 = −10v, so v = 2.

25–4. (i)
∫ π/2

0
eitdt =

[
eit/i

]π/2
0

= −i(eiπ/2 − 1) = i(1− i) = 1 + i.

(ii) Integrating by parts,∫ π/2

0
teitdt =

[
(t/i)eit

]π/2
0
− (1/i)

∫ π/2

0
eitdt.

Hence, using the result of (i),∫ π/2

0
teitdt = (−iπ/2)eiπ/2 + i(1 + i) = 1

2(π − 2) + i.

Again by integration by parts,∫ π/2

0
t2eitdt =

[
(t2/i)eit

]π/2
0
− (2/i)

∫ π/2

0
teitdt.

Hence, using the result above,∫ π/2

0
t2eitdt = (−iπ2/4)eiπ/2 + 2i(12 [π − 2] + i) = 1

4(π2 − 8) + i(π − 2).

(iii) Denote the integrals by I and J . Then iI is the imaginary part of the first integral in
(ii), so I = 1. J is the real part of the second integral in (ii), so J = 1

4(π2 − 8).
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26 FURTHER DYNAMICS

26–1. Denote the differential equations by (i) and (ii) and observe that (ii) may be rearranged as
follows:

(ii′)
dz

dt
+ 2z = y.

Adding
d

dt
(i) to 2×(i) and using (ii′),

d2y

dt2
+ 2

dy

dt
= 4

(
dy

dt
+ 2y

)
− 5y.

Rearranging,
d2y

dt2
− 2

dy

dt
− 3y = 0.

The characteristic equation is x2−2x−3 = 0, which has roots 3 and −1. The general solution
for y is therefore

y = Ae3t +Be−t,

where A and B are constants. Substituting in (i) gives

z = 1
5Ae

3t +Be−t.

(a) Here A+B = 1 and (A/5) +B = −3; hence A = 5, B = −4.
(b) When t = 0, y = 1 and y − 2z = 7, so z = −3. Therefore the boundary conditions are

equivalent to those of (a), and we have the same solution.
(c) When t = 0, y = 1 and 4y − 5z = −1, so z = 1. Therefore A + B = (A/5) + B = 1;

hence A = 0, B = 1.
(d) Since limt→∞ e

−t = 0, y ≈ Ae3t when t is large and positive. Hence the boundary
condition limt→∞ y = 0 implies that A = 0. Since A+B is again equal to 1, the solution
is as in (c).

The key feature which leads to (d) completely determining the solution is that the charac-
teristic equation has real roots of opposite sign. In this case, the condition y → 0 as t → ∞
means that the coefficient of the component of the solution corresponding to the positive root
must be zero.

26–2. (i) (a) Integrating, dy/dt = −1
6(2t− 1)3 +A. Integrating again,

y = − 1

48
(2t− 1)4 +At+B.

If dy/dt = 0 when t = 0, A = −1/6. If also y = 1 when t = 0, B = 49/48.
From the differential equation, d2y/dt2 < 0 for all t 6= 1

2 and d2y/dt2 = 0 if t = 1
2 .

Hence the function is strictly concave, with its only critical point at t = 0. Therefore
the graph is

⋂
-shaped with vertex at (0, 1).

(b) The equation can be written as d2y/dt2 = 3(t− 1)2 + 1. Integrating,

dy/dt = (t− 1)3 + t+A.

Integrating again,
y = 1

4(t− 1)4 + 1
2 t

2 +At+B.

If dy/dt = 0 when t = 0, A = 1. If also y = 1 when t = 0, B = 3/4.
From the differential equation, d2y/dt2 > 0 for all t. Hence the function is strictly
convex, with its only critical point at t = 0. Therefore the graph is U-shaped with
vertex at (0, 1).
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(c) Integrating twice,
y = 1

3 t
3 − 1

2 t
2 +At+B.

Imposing the initial conditions, we obtain the required solution:

y = 1
3 t

3 − 1
2 t

2 + 1.

From the differential equation, d2y/dt2 < 0 for t < 1
2 and d2y/dt2 > 0 for t > 1

2 .
Hence the function is strictly concave for t < 1

2 and strictly convex for t > 1
2 . The

critical points occur where t is a root of the equation t2− t = 0, i.e. where t is 0 or 1;
there is therefore a local maximum at (0, 1) and a local minimum at (1, 56).

(ii) The characteristic equation is p2 + 2ap + (a2 + b2) = 0, which has roots −a ± ib. The
general solution of the differential equation is therefore

y = Ce−ax cos(bx+ θ),

where C and θ are arbitrary constants.
From the differential equation, d2y/dx2 has the opposite sign to y if dy/dx = 0. There-
fore, any critical point (X,Y ) such that Y > 0 is a maximum, and any critical point
(X,Y ) such that Y < 0 is a minimum.
The function y = e−3x sin 4x of Problem 24–1 is the special case of the general solution
with a = 3, b = 4 and the constants C and θ put equal to 1 and −π/2 respectively.
Therefore, the function satisfies the differential equation and has the above property
concerning critical values. Similarly, y = e3x sin 4x has the same property.

26–3. First look for a particular solution of the form y = At+B. Substituting this into the differential
equation gives

0 + bA+ c(At+B) = kt+ `.

Hence cA = k and bA + cB = `, so A = c−1k and B = c−2(`c − bk). The complementary
solution is oscillatory (O) when the roots of the characteristic equation are complex, i.e. when
b2 < 4c. Otherwise the complementary solution is non-oscillatory (N). The complementary
solution tends to 0 as t→∞ (S) when both roots of the characteristic equation have negative
real parts, the criterion for which is obtained in the text as b > 0, c > 0. Otherwise the
complementary solution does not tend to 0 as t→∞ (U).

We may therefore classify the possible forms taken by the general solution as follows:

SO The general solution oscillates about the particular solution and tends to the particular
solution as t→∞.

SN The general solution is non-oscillatory and tends to the particular solution as t→∞.

UO The general solution oscillates about the particular solution but does not tend to the
particular solution as t→∞.

UN The general solution is non-oscillatory and and does not tend to the particular solution
as t→∞.

26–4. The discrete-time analogue of the differential equation is

∆2yt + b∆yt + cyt = u,
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which may be written as

(yt+2 − 2yt+1 + yt) + b(yt+1 − yt) + cyt = u,

or more simply as
yt+2 + fyt+1 + gyt = u

where f = b − 2, g = 1 − b + c. For the differential equation, the stationary solution occurs
if d2y/dt2 = dy/dt = 0 and is therefore y = u/c. For the difference equation, the stationary
solution occurs if ∆2yt = ∆yt = 0 and is therefore yt = u/c.

The differential equation exhibits oscillatory behaviour if its characteristic equation has com-
plex roots, i.e. if b2 < 4c. The difference equation exhibits oscillatory behaviour if its charac-
teristic equation has complex roots, i.e. if f2 < 4g: this inequality may be written

(b− 2)2 < 4(1− b+ c)

and therefore reduces to b2 < 4c.

For the differential equation, the condition for the stationary solution to be stable has been
obtained in the text as b > 0, c > 0. For the difference equation, the condition for the
stationary solution to be stable is that the roots of the characteristic equation are are both
< 1 in absolute value (or modulus, if the roots are complex). In the case of real roots, it is
therefore necessary that x2 + fx + g > 0 at x = ±1. This ensures that one of the following
three cases occurs: (a) both roots between −1 and 1, (b) both roots < −1, (c) both roots
> 1. But the product of the roots is g, so if we assume that g < 1 then cases (b) and (c) are
eliminated and we are left with (a). In the case of complex roots, we have x2 + fx + g > 0
for all x, and in particular at x = ±1. Also the roots are complex conjugates, so the product
of the roots is r2 where r is the common modulus: to ensure that r < 1 we must therefore
impose the condition g < 1.

To summarise, the criterion ensuring stability in the cases of both real and complex roots is

1 + f + g > 0, 1− f + g > 0, g < 1.

In terms of b and c these three conditions may be written respectively as c > 0, c > 2b−4, c <
b and therefore reduce to the chain of inequalities

0 < c < b < 2 + 1
2c.

As in the first-order case, we note that the qualitative behaviour of the discrete-time analogue
is not necessarily the same as that of the differential equation for the same parameter values.

27 EIGENVALUES AND EIGENVECTORS

27–1. (i) The characteristic polynomial of A is λ2 − λ− 20, so the eigenvalues are −4 and 5.
Ax = −4x if and only if

2x1 + 6x2 = −4x1, 3x1 − x2 = −4x2.

Each of these equations simplifies to x1 + x2 = 0: the eigenvectors corresponding to the
eigenvalue −4 are the non-zero multiples of [1 − 1]T.
Ax = 5x if and only if

2x1 + 6x2 = 5x1, 3x1 − x2 = 5x2.
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Each of these equations simplifies to x1 = 2x2: the eigenvectors corresponding to the
eigenvalue 5 are the non-zero multiples of [2 1]T.
The characteristic polynomial of AT is, as for A, λ2 − λ− 20. Thus the eigenvalues are
also −4 and 5.
ATx = −4x if and only if

2x1 + 3x2 = −4x1, 6x1 − x2 = −4x2.

Each of these equations simplifies to 2x1 +x2 = 0: the eigenvectors corresponding to the
eigenvalue −4 are the non-zero multiples of [1 − 2]T.
ATx = 5x if and only if

2x1 + 3x2 = 5x1, 6x1 − x2 = 5x2.

Each of these equations simplifies to x1 = x2: the eigenvectors corresponding to the
eigenvalue 5 are the non-zero multiples of [1 1]T.

(ii) (a) True for all A. Let λ be any scalar: since λI−AT is the same matrix as (λI−A)T,
it has the same determinant as λI−A.

(b) True for all A. By (a), the eigenvalues of A and AT are the roots of the same
polynomial equation.

(c) False, in general. Suppose λ is an eigenvalue of A and hence, by (b), of AT. The
systems of equations Ax = λx and ATx = λx are in general different and hence
the corresponding eigenvectors are not, in general, the same. See (i) above for an
example.

27–2. (i) zHw = z̄1w1 + . . .+ z̄1w1 and wHz = w1z1 + . . .+ w1z1. In particular,

zHz = z̄1z1 + . . .+ z̄1z1 = |z1|2 + . . .+ |zn|2.

For j = 1, . . . , n, z̄jwj is equal to wj z̄j , whose conjugate is wjzj . Therefore zHw and
wHz are complex conjugates. For each j = 1, . . . , n, |zj | ≥ 0, with equality if zj 6= 0.
Therefore zHz > 0 provided at least one of z1, . . . , zn is non-zero, i.e. provided z 6= 0.

(ii) Since ĀT has the same diagonal entries as Ā, the diagonal entries of AH are the complex
conjugates of those of A. Thus, if A is Hermitian, the diagonal entries must be equal to
their conjugates and hence must be real. When all the entries are real numbers, Ā = A
and the condition for A to be Hermitian reduces to AT = A.

(iii) The general forms are [
a u
ū b

]
and

 a u v
ū b w
v̄ w c

 ,
where a, b, c are real and u, v, w are complex.

(iv) Let A be the 2×2 Hermitian matrix given in (iii) and let z ∈ C2. Multiplying out the
expression for zHAz, we have

zHAz = P +Q,

where P = az̄1z1 + bz̄2z2 and Q = uz̄1z2 + ūz̄2z1. Now a is real and z̄1z1 = |z1|2, so
az̄1z1 is real. A similar argument using the fact that b is real shows that bz̄2z2 is real,
and hence that P is real. Also, since uz̄1z2 and ūz1z̄2 are complex conjugates, their sum
Q is real. Hence P +Q is real, as required.

49



Now let A be the 3×3 Hermitian matrix given in (iii) and let z ∈ C3. Reasoning as in
the 2×2 case, we may write zHAz = P +Q, where P is the real number

a|z1|2 + b|z2|2 + c|z3|2

and Q is twice the real part of

uz̄1z2 + vz̄1z3 + wz̄2z3.

Hence P +Q is real, as required. The general case is similar.

(v) Suppose λ is an eigenvalue. Then there is a non-zero vector z such that Az = λz.
Therefore

zHAz = zHλz = λzHz.

Since z 6= 0, zHz > 0 by (i), so we may define the positive real number p = (zHz)−1.
But then λ = pzHAz, which is real by (iv).

(vi) The (1, 1) entry of A is the value of zHAz when z is the first column of the identity
matrix I; the (2, 2) entry of A is zHAz when z is the second column of I; and so on.
Hence by (iv), the diagonal entries of a Hermitian matrix are real.
Let

A =

[
1 w
w 1

]
, z =

[
z1
z2

]
.

Multiplying out as in (iv), we have

zHAz = |z1|2 + |z2|2 +Q,

where the real number q is twice the real part of wz̄1z2. On the other hand,

|z1 + wz2|2 = (z̄1 + wz̄2)(z1 + wz2) = |z1|2 +Q+ |w|2|z2|2.

Subtracting and rearranging,

zHAz = |z1 + wz2|2 + (1− |w|2)|z2|2.

This is clearly positive if |w|2 < 1 and at least one of z1 and z2 is not zero; while if
|w|2 ≤ 1, we can make zHAz non-positive by setting z1 = w, z2 = −1. Thus A is
positive definite if and only if |w|2 < 1, which happens if and only if detA > 0.
The general result for n = 2 is that a Hermitian matrix is positive definite if and only if
its diagonal entries and its determinant are all positive. The really general result is that
a Hermitian matrix is positive definite if and only if all its principal minors are positive.
[As in the case of real symmetric matrices, it is also true that a Hermitian matrix is
positive definite if and only if all its leading principal minors are positive.]

(vii) When all the entries of a matrix are real numbers, the Hermitian transpose reduces to
the ordinary transpose. So a unitary matrix whose entries are all real numbers has as its
inverse its transpose and hence is the same thing as an orthogonal matrix.
Denoting the given matrix by S,

1√
2

[
1 −i
−i 1

]

By straightforward matrix multiplication, SHS = I, so SH = S−1 as required.
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27–3. (i) By inspection, the given matrix is equal to its transpose. By straightforward matrix
multiplication, we see that the square of the given matrix is equal to the matrix itself.

(ii) Let λ is an eigenvalue of a projection matrix P, and let x be a corresponding eigenvector:
x 6= 0 and Px = λx. Since P = P2, Px = P(Px): hence

λx = P(λx) = λPx = λ2x.

Since x 6= 0, it follows that λ = λ2, so λ is either 1 or 0.
(iii) By (ii), the characteristic polynomial of P is (λ− 1)rλn−r for some r.

Let D be the diagonal matrix whose first r diagonal entries are equal to 1 and whose
remaining diagonal entries are all zero. Since |vP is symmetric, we may apply Theorem
1 of Section 25.3: there is an orthogonal matrix S such that STPS = D. Since S is an
orthogonal matrix, SST = I, whence P = SDST.
Partition S as (Z Y), where Z consists of the first r columns. Then the equation
SST = In may be written [

ZTZ ZTY
YTZ YTY

] [
Ir O
O In−r

]
.

In particular, ZTZ = Ir. Also, the equation P = SDST may be written

P =
[
Z Y

] [ Ir O
O O

] [
ZT

YT

]
.

Hence

P =
[
Z Y

] [ ZT

O

]
= ZZT,

as required.
(iv) Let Z be an n×r matrix such that ZTZ = Ir. Then ZZT is n×n and

(ZZT)T = ZTTZT = ZZT.

Also
(ZZT)2 = ZZTZZT = ZIrZ

T.

Hence ZZT is a projection matrix.

27–4. (i) Let the characteristic polynomial of A be f(λ). Then

f(λ) =

∣∣∣∣∣∣
λ−2 −1 2
−1 λ−2 2

2 2 λ− 5

∣∣∣∣∣∣ .
Subtracting the first row from the second,

f(λ) =

∣∣∣∣∣∣
λ− 2 −1 2
1− λ λ−1 0

2 2 λ− 5

∣∣∣∣∣∣ .
It is now easy to expand by the second row:

f(λ) = (λ− 1)

∣∣∣∣ −1 2
2 λ− 5

∣∣∣∣+ (λ− 1)

∣∣∣∣ λ− 2 2
2 λ− 5

∣∣∣∣
= (λ− 1)(1− λ+ λ2 − 7λ+ 10− 4)

= (λ− 1)(λ2 − 8λ+ 7)

= (λ− 1)2(λ− 7).
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(ii) Ax = x if and only if (I − A)x = 0. By inspection, each row of I − A is a multiple
of (1 1 − 2). Thus Ax = x if and only if x1 + x2 = 2x3. We may therefore choose
x = [1 − 1 0]T; y is then a vector such that y1 + y2 = 2y3 and y1 − y2 = 0. We may
therefore choose y = [1 1 1]T.

(iii) Az = 7z if and only if (7I−A)z = 0. By inspection,

7I−A =

 5 −1 2
−1 5 2

2 2 2

 .
Solving the system by Gaussian elimination, we see that the solution consists of all
vectors for which z1 = z2 = −1

2z3. We may therefore choose z = [1 1 − 2]T.
(iv) Let the vectors x,y, z be as in (ii) and (iii). It is easy to see that these vectors are

linearly independent. Arguing as in the proof of Proposition 1 in Section 25.1, we set
D = diag(1, 1, 7) and let S be a matrix whose columns are scalar multiples of x,y, z.
To ensure that STS = I, each column of S must have length 1; we therefore define the
columns of S to be

(1 + 1)−1/2x, (1 + 1 + 1)−1/2y, (1 + 1 + 4)−1/2z.

Then

S =


1/
√

2 1/
√

3 1/
√

6

−1/
√

2 1/
√

3 1/
√

6

0 1/
√

3 −2/
√

6

 .
28 DYNAMIC SYSTEMS

28–1. (i) Expanding the determinant by its first row,

det(λI−A) = (λ− 1)(λ2 − 3λ+ 1)− (λ− 1) = (λ− 1)(λ2 − 3λ).

Therefore, the characteristic polynomial of A is λ(λ− 1)(λ− 3), and the eigenvalues are
0, 1 and 3. It is easy to show that

u =

 1
1
1

 , v =

 1
0
−1

 , w =

 1
−2

1


are corresponding eigenvectors. Therefore, the general solution is

y(t) = 0tc1u + c2v + 3tc3w.

Here and below, 00 should be interpreted as 1.
(ii) Using the given initial condition and our convention that 00 = 1,

c1 + c2 + c3 = 1, c1 − 2c3 = 2, c1 − c2 + c3 = 4.

Solving these equations simultaneously gives c1 = 7/3, c2 = −3/2, c3 = 1/6. The
solution is therefore

y(t) = αt

 1
1
1

− 3

2

 1
0
−1

+
3t−1

2

 1
−2

1

 ,
where α0 = 7/3 and αt = 0 for all t > 0.
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(iii) Since 1 is an eigenvalue, I − A is not invertible and we cannot use the formula x∗ =
(I −A)−1b for the particular solution. However, all we need for a constant particular
solution is some vector x∗ such that (I−A)x∗ = b, and it is easy to see that, for example,
x∗ = [1 1 0]T does the trick. The general solution is

x(t) =

 1
1
0

+ 0tc1

 1
1
1

+ c2

 1
0
−1

+ 3tc3

 1
−2

1

 .
(iv) In this case, the system of linear equations (I−A)x = b has no solution, so the system

of difference equations does not have a constant particular solution. We therefore look
for a solution of the form x∗(t) = tp + q, where p and q are constant vectors. Then

(t+ 1)p + q = tAp + Aq + b

for all t. Equating coefficients of t, we have Ap = p; equating constant terms, we have
Aq + b = p + q. Hence p is an eigenvector of A corresponding to the eigenvalue 1; we
may therefore set p = βv, where v = [1 0 − 1]T as in (i) and β is a constant. It follows
that

(I−A)q = b− βv =

 1− β
0

2 + β

 .
Hence q2 = 1 − β = β + 2 and q1 + q3 = q2. Therefore β = −1

2 , q2 = 3
2 and we are at

liberty to let q1 = 3
2 , q3 = 0. Our particular solution is

x∗(t) =
3

2

 1
1
0

− t

2

 1
0
−1

 ,
and the general solution is

x(t) =
3

2

 1
1
0

+ 0tc1

 1
1
1

+

(
c2 −

t

2

) 1
0
−1

+ 3tc3

 1
−2

1

 .
28–2. (i) The characteristic polynomial of A is (λ− 1)2 − 4

9 , so the eigenvalues are 1
3 and 5

3 . It is

easy to show that
[
−1

2

]
and

[
1
2

]
are corresponding eigenvectors.

Thus the general solution is

x(t) = x∗(t) +
c1
3t

[
−1

2

]
+

5tc2
3t

[
1

2

]
,

where x∗(t) is a particular solution. To find this, try x∗(t) = tp + q, where p and q are
constant vectors. Then

(t+ 1)p + q = tAp + Aq + b(t)

for all t. Equating coefficients of t and then equating constant terms, we have

(I−A)p =

[
1
3

]
, (I−A)q =

[
2
0

]
− p.
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Hence p2 = −3, p1 = −9/4, q2 = −3(2 + 9
4) = −51/4 and q1 = −3

4(0 + 3) = −9/4.
Thus our particular solution is

x∗(t) = −3t

4

[
3

4

]
− 3

4

[
3

17

]

and the general solution is

x(t) = −3t

4

[
3

4

]
− 3

4

[
3

17

]
+
c1
3t

[
−1

2

]
+

5tc2
3t

[
1

2

]
.

(ii) The characteristic polynomial of A is λ2 + 8λ + 15, so the eigenvalues are −5 and −3.

It is easy to show that
[

1
1

]
and

[
3
1

]
are corresponding eigenvectors. Thus the general

solution is

x(t) = x∗(t) + c1e
−5t
[

1
1

]
+ c2e

−3t
[

3
1

]
,

where x∗(t) is a particular solution, depending on b(t). It remains to find x∗(t) in each
of the cases (a), (b) and (c).

(a) For a particular solution, try x∗(t) = e−tp, where p is a constant vector. Then

−e−tp =
d

dt
(e−tp) = A(e−tp) + b(t) = e−tAp + e−t

[
1
0

]
.

Multiplying by et and rearranging, we obtain

(I + A)p =

[
−1

0

]
.

Solving for p, we have p1 = 5/8, p2 = 1/8. Hence

x∗(t) = e−t
[

5/8
1/8

]
.

(b) For a particular solution, try x∗(t) = e−2tp, where p is a constant vector. Reasoning
as in (a), we obtain

(2I + A)p =

[
0
−1

]
.

Solving for p, we have p1 = −1, p2 = 0. Hence

x∗(t) = −e−2t
[

1
0

]
(c) Let u and v satisfy

du

dt
= Au +

[
e−t

0

]
,

dv

dt
= Av +

[
0
e−2t

]
. (∗)

Then
d

dt
(4u + 3v) = 4Au + 3Av +

[
4e−t

3e−2t

]
= A(4u + 3v) + b(t),
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so 4u + 3v is a solution to our differential equation. But we showed in (a) and (b)
that (∗) is satisfied if

u = e−t
[

5/8
1/8

]
, v = −e−2t

[
1
0

]
.

Hence a particular solution is

x∗(t) = 4u + 3v = 1
2e
−t
[

5
1

]
− 3e−2t

[
1
0

]
.

28–3. For the given functional forms, the system of equations is

ẋ = rx(1− k−1x)− qxy, ẏ = η(pqxy − cy)

There are therefore three fixed points: (0, 0), (k, 0) and the point given by

x =
c

pq
, y =

r

q

(
1− x

k

)
.

Setting θ =
c

kpq
, we may write the coordinates of this third point as

(
kθ,

r

q
(1− θ)

)
. This is

the only fixed point that could be in the positive quadrant: it will be in the positive quadrant
if θ < 1, i.e. if c < kpq. From now on we assume that this condition holds.

Writing the system of differential equations as

ẋ = f(x, y), ẏ = g(x, y),

we have
∂f

∂x
=
f(x, y)

x
− rx

k
,
∂f

∂y
= −qx, ∂g

∂x
= ηpqy,

∂g

∂y
=
g(x, y)

y
.

Thus at the fixed point in the positive quadrant,

∂f

∂x
= −rθ, ∂f

∂y
= −kqθ, ∂g

∂x
= ηpr(1− θ), ∂g

∂y
= 0.

The associated linear sytem is therefore

ẋ = −rθ(x− kθ)− kθ(qy − r(1− θ)), ẏ = ηpr(1− θ)(x− kθ).

Let

vA =

[
−rθ −kqθ

ηpr(1− θ) 0

]
,

the Jacobian matrix of the linearised system. Then

trA = −rθ < 0, detA = ηkpqrθ(1− θ) = ηrc(1− θ) > 0.

It follows that both eigenvalues of A have negative real parts: the fixed point is locally stable.
Also, the characteristic polynomial of A is∣∣∣∣ λ+ rθ kqθ

−ηpr(1− θ) λ

∣∣∣∣ = λ2 + rθλ+ ηrc(1− θ).

Hence the eigenvalues of A are real and distinct if (rθ)2 > 4ηrc(1 − θ); they are complex
conjugates if (rθ)2 < 4ηrc(1 − θ). Thus the fixed point is a stable node of the linearised
system if η < η0 and a spiral sink if η > η0, where

η0 =
rθ2

4c(1− θ)
=

rc

4kpq(kpq − c)
.
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28–4. (i) Writing k = lnK and h = lnH, we have

dk

dt
=

1

K

dK

dt
= s1AK

α−1Hγ − δ1,
dh

dt
=

1

H

dH

dt
= s2AK

αHγ−1 − δ2.

Since k = lnK, K = ek, whence Kθ = eθk for any constant θ. Similarly, Hθ = eθh for
any constant θ. We therefore have the following autonomous system in k and h:

k̇ = s1A exp([α− 1]k + γh)− δ1, ḣ = s2A exp(αk + [γ − 1]h)− δ2.

(ii) Let bi = ln(siA/δi) for i = 1, 2. Then the set of points in the kh–plane for which k̇ = 0
is the straight line

(α− 1)k + γh+ b1 = 0.

Since α < 1 and γ > 0, this is an upward-sloping line of slope (1 − α)/γ. By a similar
argument, the set of points in the kh–plane for which ḣ = 0 is an upward-sloping straight
line of slope α/(1− γ). Since α+ γ < 1,

1− α
γ

> 1 >
α

1− γ
.

Thus the line k̇ = 0 is steeper than the line ḣ = 0, so the two lines intersect at exactly
one point (k∗, h∗).

(iii) The Jacobian of the autonomous system is[
(α− 1)s1e

−kQ γs1e
−kQ

αs2e
−hQ (γ − 1)s2e

−hQ

]
,

where Q = A exp(αk + γh). For all k and h, both diagonal entries are negative and the
determinant is

(1− α− γ)s1s2e
−(k+h)Q2 > 0.

Therefore, conditions (i) and (iia) of Olech’s theorem hold and (k∗, h∗) is globally stable.

29 DYNAMIC OPTIMISATION IN DISCRETE TIME

29–1. (i) The problem may be written

maximise −
9∑
t=0

(3x2t + 4y2t ) subject to yt+1 − yt = xt (t = 0, 1, . . . , 9)

and the given endpoint conditions. The Hamiltonian is −3x2t − 4y2t + λtxt, the control
condition is λt = 6xt and the costate equation is −8yt = λt−1 − λt.

(ii) Eliminating xt between the state equation and the control condition, we see that λt =
6(yt+1 − yt). Hence from the costate equation,

8yt = 6(yt+1 − 2yt + yt−1),

which simplifies to the required equation.
(iii) The characteristic equation of the second-order difference equation has roots 3 and 1/3,

so we can write the solution as 3tA + 3−tB where A and B are constants. From the
left-endpoint condition, A+B = 1, so

yt = 3tA+ 3−t(1−A) (t = 0, 1, . . . , 10). (∗)

From the right-endpoint condition, A =
(
100− 3−10

)/ (
310 − 3−10

)
.
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(iv) The solution is again (∗) but with a different value of A. Instead of a right-endpoint
condition, we have the transversality condition λ9 = 0. As in (ii), λt = 6(yt+1 − yt) for
t = 0, 1, . . . , 9. Therefore y10 = y9, or(

310 − 39
)
A+

(
3−10 − 3−9

)(
1−A

)
= 0.

Hence A =
(
319 + 1

)−1.
29–2. For this problem, it is helpful to use the subscript notation for partial derivatives:

π1(h, s) =
∂π

∂h
, π2(h, s) =

∂π

∂s
.

To simplify further, let
π1t = π1(ht, st), π2t = π2(ht, st).

(i) The resource manager’s optimisation problem is to

maximise
T∑
t=0

(1 + ρ)−tπ(ht, st)

subject to
ht ≥ 0, st+1 − st = g(st)− ht (t = 0, 1, . . . , T )

and given s0.
(ii) The Hamiltonian for period t is

(1 + ρ)−tπ(ht, st) + λt(g(st)− ht).

The control condition is

(1 + ρ)−tπ1t ≤ λt, with equality if ht > 0,

and the costate equation is

(1 + ρ)−tπ2t + λtg
′(st) = λt−1 − λt.

Setting µt = (1 + ρ)tλt, we may write the costate equation in the form

π2t = (1 + ρ)µt−1 − (1 + g′(st))µt.

(iii) The control condition for the steady state says that µt is constant over time and equal
to π1(h̄, s̄). Substituting this into the costate equation,

π2(h̄, s̄) = (ρ− g′(s̄))π1(h̄, s̄),

which rearranges to the required equation.

29–3. (i) It is convenient to use z = I/K as the control variable; the state variable is again K. The
state equation is Kt+1 = (zt−δ)Kt. Denoting the costate variable by λ, the Hamiltonian
for period t is

Ht(Kt, zt, λt) = (1 + r)−t(πt − azt − bz1+γt )Kt + λt(zt − δ)Kt.

The control condition is
(1 + γ)bzγt = (1 + r)tλt − a

if the right-hand side is positive, zt = 0 otherwise. The costate equation is

(1 + r)−t(πt − azt − bz1+γt ) + λt(zt − δ) = λt−1 − λt.

The transversality condition is λT = 0.
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(ii) Let µt = (1 + r)tλt for t = 0, 1, . . . , T ; also let νt = max(µt − a, 0). Then the control
condition may be written

zt =

[
νt

(1 + γ)b

]1/γ
.

From the costate equation and the control condition,

(1 + r)µt−1 = πt + (1− δ)µt +
γ

1 + γ
νtzt. (†)

To find the optimal path of investment, begin by noting that µT = 0 by the transversality
condition; therefore νT and zT are both zero. We can then calculate µT−1 using (†) with
t = T , νT−1 and zT−1 in the obvious way, µT−2 using (†) with t = T − 1, and so on back
to z0. The state equation and the fact that It = ztKt then give It and Kt for all t.
To solve the problem using dynamic programming, one may try a very simple form for
the value function, namely Vt(K) = (1 + r)−tξtK, and solve for ξt for each t. Obviously
there is no investment in period T , so ξT = πT . For t < T , the Bellman equation is

(1 + r)ξt = πt + (1− δ)ξt+1 + max
z≥0

{
(ξt+1 − a)z − bz1+γ

}
.

This gets us back to (†), with µt−1 = ξt.

29–4. (i) Because the only place to go from (i, n) is (i+ 1, n).
(ii) Because the only place to go from (m, j) is (m, j + 1), vmj = amj + vm,j+1.
(iii) By Bellman’s principle of optimality, vij = aij + max(vi,j+1, vi+1,j).
(iv)  12 8 12 7 4 1

10 7 9 3 5 1
3 6 5 7 4 −1


Underlined entries show the optimal path.

(v)  14 10 14 10 4 1
12 9 11 3 5 1
3 6 5 7 4 −1


Underlined entries show the optimal path.

30 DYNAMIC OPTIMISATION IN CONTINUOUS TIME

30–1. (i) The Hamiltonian is

H(h, s, λ, t) = e−ρtR(h(t), t) + λ(g(s)− h(t)).

The control condition is e−ρt∂R/∂h = λ and the costate equation is λg′(s) = −λ̇.
(ii) In the special case, the control condition becomes

e−ρtf ′(h)eαt = λ,

i.e. f ′(h) = µ. Since f is strictly concave, f ′ is a decreasing function; let its inverse be
the decreasing function φ. Then the control condition may be written h = φ(µ), and the
state equation then has the required form. By definition of µ,

µ̇

µ
=
λ̇

λ
+ ρ− α,
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so the costate equation may be written µ̇ = [ρ− α− g′(s)]µ. This and the reformulated
state equation form an autonomous system in s and µ.

(iii) The Jacobian matrix of the autonomous system, evaluated at the unique fixed point
(s̄, µ̄), is [

g′(s̄) −φ′(µ̄)
−µ̄g′′(s̄) − g′(s̄)

]
The determinant is

−
[
g′(s̄)

]2 − µ̄φ′(µ̄)g′′(s̄).

This expression is negative because g is concave and φ is decreasing. It follows that the
fixed point is a saddle point.

µ

s0

µ̄

B

A

µ̄

s0 s1 s̄

C

D

E

ṡ = 0

In the phase diagram, the broken curve is the stable branch. To get an idea of what
optimal paths look like, consider for definiteness the case where s(0) = s0, s(T ) = s1
and s0 < s1 < s̄. Then the solution may look like AB or CD or CDE in the diagram,
depending on the value of T . There is a unique value of T (say T ∗) such that the
solution path is along the stable branch. There is also a unique value of T (say T ∗∗,
where T ∗∗ > T ∗) such that the solution path has the property that ṡ(T ) = 0. If T < T ∗

and a solution exists, the solution path looks like AB. If T ∗ < T < T ∗∗, the solution
path looks like CD; and if T > T ∗∗, like CDE.

30–2. (i) If the given inequality did not hold, then Mark’s initial debt would be at least as great as
the present value of his labour income, discounted at the borrowing rate. Hence it would
be impossible for him to have positive consumption at each moment and die solvent.
An alternative way of making the same point is as follows. Suppose Mark’s problem has
a solution. If a0 ≥ 0 the required inequality obviously holds, so suppose a0 < 0. By the
right-endpoint condition, a(t) ≥ 0 for some t ≤ T ; let τ be the smallest such t. Then
a(τ) = 0 (since a cannot jump), 0 < τ ≤ T and a(t) < 0 for all t such that 0 ≤ t < τ .
For such t, multiplication of the state equation by e−it gives

d

dt

(
e−ita(t)

)
= e−it(w(t)− c(t)).

59



Setting

v(t) = a(t) +

∫ τ

t
e−isw(s) ds (0 ≤ t ≤ τ)

we see that
v̇(t) = −e−itc(t) < 0 (0 < t < τ).

Hence v(0) > v(τ). But v(τ) = a(τ) = 0. Therefore v(0) > 0, whence

a0 +

∫ T

0
e−itw(t) dt = v(0) +

∫ T

τ
e−itw(t) dt > 0.

(ii) The current-value Hamiltonian is ln c+µ(f(a)+w−c). The control condition is c = 1/µ.
Since

f ′(a) =

{
r if a > 0,

i if a < 0,

the costate equation is µ̇ = (ρ − r)µ if a > 0, µ̇ = (ρ − i)µ if a < 0. Since f ′(a) is not
defined if a = 0, nor is the costate equation. This means that µ is allowed to jump when
a = 0, though it may not be optimal for it to do so.

(iii) From the control condition and the costate equation,

ċ =

{
(r − ρ)c if a > 0,

(i− ρ)c if a < 0.

This and the state equation form an autonomous system in a and c. It follows from our
assumptions about i, r and ρ that ċ > 0 if a < 0, ċ < 0 if a > 0. The phase diagram is
as follows.

c

w

a0

slope i

slope r

(iv) Consider first the case where a0 > 0. We see from the phase diagram that a(t) ≥ 0 for
all t; and for as long as a > 0, c > w and c is falling at the proportional rate ρ− r. Thus
there are two possibilities:

(a) c(t) = c0e
(r−ρ)t (0 ≤ t ≤ T ), where c0 is chosen such that c(T ) ≥ w and a(T ) = 0.

To satisfy the latter condition, the present value at time 0 of consumption less labour
income must equal initial assets:∫ T

0
c0e
−ρtdt−

∫ T

0
we−rtdt = a0.

Hence

c0 =
ρa0 + (ρw/r)

[
1− e−rT

]
1− e−ρT

.
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This will be the solution if a0 is sufficiently large that c0e(r−ρ)T ≥ w. Specifically,
this will be so if and only if a0 ≥ a+, where

a+ = we−rT
[
eρT − 1

ρ
− erT − 1

r

]
.

(b) If 0 < a0 < a+, the consumption path is given by c(t) = c0e
(r−ρ)t (0 ≤ t < τ)

and c(t) = w if τ ≤ t ≤ T . Here c0 and τ are chosen such that a(τ) = 0, and
limt↑τ c(t) = w. The latter condition is required because, with a concave utility
function, jumps in consumption are undesirable. [The same conclusion is reached

by considering the free-time problem of maximising
∫ τ

0
(ln c− lnw)e−ρtdt and using

the free-terminal-time optimality condition to obtain τ .] Hence c0 = we(ρ−r)τ and τ
is chosen such that ∫ τ

0
w
[
e(r−ρ)(t−τ) − 1

]
e−rtdt = a0.

Simplifying, τ is given by the equation

we−rτ
[
eρτ − 1

ρ
− erτ − 1

r

]
= a0.

Now suppose −w
i

(
1− e−it

)
< a0 < 0. From the phase diagram, a(t) ≤ 0 for all t; and

for as long as a < 0, c < w and c is rising at the proportional rate i− ρ. There are two
possibilities:
(e) c(t) = c0e

(i−ρ)t (0 ≤ t ≤ T ), where c0 is chosen such that c(T ) ≤ w and a(T ) = 0.
To satisfy the latter condition we must have

c0 =
ρa0 + (ρw/i)

[
1− e−iT

]
1− e−ρT

.

This will be the solution if −a0 is sufficiently large that c0e(i−ρ)T ≤ w. This will be
so if and only if a0 ≤ a−, where

a− = we−iT
[
eρT − 1

ρ
− eiT − 1

i

]
< 0.

(d) If a− < a0 < 0, the consumption path is given by c(t) = c0e
(i−ρ)t (0 ≤ t < τ)

and c(t) = w if τ ≤ t ≤ T . Here c0 and τ are chosen such that a(τ) = 0, and
limt↑τ c(t) = w. Hence c0 = we(ρ−i)τ and τ is chosen such that

we−iτ
[
eiτ − 1

i
− eρτ − 1

ρ

]
= −a0.

Finally, if a0 = 0 then a(t) = 0 and c(t) = w for all t. This is case (c).
(v) See (iv) above, parts (a) and (e).

30–3. (i) Recall from Problem 9–3 that this is the limiting case of (ii) as γ ↓ 1. See below.
(ii) The dynamic system corresponding to (28.12) in the text is

K̇ = (b+ ρ)K − C, Ċ = bC/γ,

where b = A− δ − ρ. Therefore

d

dt
ln
C

K
=
Ċ

C
− K̇

K
=
C

K
− θ,
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where θ =
(
1− γ−1

)
b+ρ. Hence our dynamic system has a solution where C/K remains

unchanged over time and C and K grow at the same constant rate:

C = θK,
Ċ

C
=
K̇

K
=
A− δ − ρ

γ

for all t ≥ 0. By our definitions of b and θ,

θ =
(γ − 1)(A− δ) + ρ

γ
. (†)

Because γ > 1 and A > δ+ρ > δ, θ and the common growth rate of C andK are positive.
To show that this solution satisfies the transversality condition — (28.9) in the text —
notice thatKU ′(C) = C1−γ/θ, which grows at the negative rate (γ−1−1)(A−δ−ρ). Since
also ρ > 0, (28.9) is satisfied. Since the utility function is concave and the differential
equations are linear, the path is optimal. On the optimal path, output AK grows at the
same rate as K, namely (A − δ − ρ)/γ, which is constant, positive and decreasing in ρ
for given A, δ, γ. Also C/K = θ which, by (†), is increasing in ρ for given A, δ, γ.

For part (i) we have the same dynamic system, but with γ = 1. A feasible path is given
by C = θK where θ = ρ. On this path, C and K grow at rate A− δ − ρ and KU ′(C) is
the constant 1/ρ; the transversality condition now follows from the fact that ρ > 0. The
growth rate is again decreasing in ρ for given A and δ.

(iii) If 0 < γ < 1 we may start as above, but now we need extra assumptions to ensure that
θ > 0 and the transversality condition is satisfied. For the former, we need the right-hand
side of (†) to be positive, i.e.

γ > 1− ρ

A− δ
. (††)

Given (††), KU ′(C) grows at the positive rate (γ−1−1)(A− δ−ρ), and for the transver-
sality condition we need this to be less than ρ. In fact,

γρ− (1− γ)(A− δ − ρ) = ρ− (1− γ)(A− δ),

which is positive by (††). Thus if (††) holds, the path along which C/K = θ for all t is
feasible and satisfies the transversality condition; it is therefore optimal.

30–4. We assume throughout that
ψA

1 + ψ
> δ + ρ. (∗)

In particular, A > δ. Let ζ, c be constants such that δ/A < ζ ≤ 1 and 0 < c < 1. If we set
z(t) = ζ, C(t) = (Aζ−δ)cK(t) for all t, then C andK grow at the positive rate (1−c)(Aζ−δ).
Thus endogenous growth is possible. To show that it is not desirable, we derive the optimal
path.

The current-value Hamiltonian is

lnC − bAKz1+ψ + µ(AKz − C − δK).

The control conditions, taking into account the constraint z ≤ 1, are

µ = C−1, (1 + ψ)bzψ = min(µ, [1 + ψ]b).

Setting B =
1

(1 + ψ)b
, we see that

z =

{
1 if C ≤ B;

(B/C)1/ψ if C > B.
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Thus if C ≤ B, the costate equation implies that

− 1

C2

dC

dt
=
ρ

C
+

(
1

(1 + ψ)B
− ρ

C

)
A+

δ

C
=

A

(1 + ψ)B
− A− δ − ρ

C
,

while if C > B,

− 1

C2

dC

dt
=
ρ

C
− ψ

1 + ψ
Aµz +

δ

C
= − Aψ

1 + ψ

(B/C)1/ψ

C
+
δ + ρ

C
.

We therefore have the following autonomous system:

if C ≤ B, K̇

K
= A− δ − C

K
and

Ċ

C
=

[
1− C

(1 + ψ)B

]
A− (δ + ρ);

if C > B,
K̇

K
= A

[
B

C

]1/ψ
− δ − C

K
and

Ċ

C
=

Aψ

1 + ψ

[
B

C

]1/ψ
− (δ + ρ).

Let

C∗ =

[
ψA

(1 + ψ)(δ + ρ)

]1/ψ
B, K∗ =

ψC∗

δ + (1 + ψ)(δ + ρ)
.

By (∗), C∗ > B and (K∗, C∗) is the unique fixed point of the autonomous system.

C

C∗

B

KK∗0

K̇ = 0

;

It is clear from the phase diagram that the fixed point is a saddle point. The optimal policy
is: given K(0), choose C(0) so that (K(0), C(0)) is on the stable branch. the optimal path
then follows the stable branch, which converges to (K∗, C∗). Since C∗ > B, z(t) < 1 for all
sufficiently large t.

How do we know that this path is optimal? If we use the control conditions to express C and z
in terms of K and µ, we see that they depend only on µ and not on K. Hence the maximised
Hamiltonian, like the ordinary one, is linear in the state variable. Thus the standard concavity
condition is satisfied; the transversality condition is satisfied because ρ > 0.
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31 INTRODUCTION TO ANALYSIS

31–1. (i) Let y = 1
2v + v−1, z = 1

2v − v
−1; then y + z = v and y − z = 2v−1, so y2 − z2 = 2. Our

assumptions about v imply that y and z are positive. Since y = v − z and y2 = 2 + z2,
the inequalities y < v and y2 > 2 follow from the fact that z > 0.

(ii) Let x ∈ A. Then y + x is the sum of two positive numbers, while y2 − x2 is the sum
of the two positive numbers y2 − 2 and 2 − x2. Thus, y + x > 0 and y2 − x2 > 0; but
y2− x2 = (y+ x)(y− x); hence y− x > 0. Since this argument is valid for any x in A, y
is an upper bound for A. In particular, y ≥ s; hence v > s.

(iii) By assumption, 2/u is a positive number such that (2/u)2 > 2. Arguing as in (i), we
obtain a real number t such that 0 < t < 2/u and t2 > 2. Then w = 2/t satisfies our
requirements.

(iv) By the axiom of Archimedes, we may choose a natural number N > (w − u)−1. By the
same axiom, the set of non-negative integers k such that k ≤ Nu is finite; let K be the
greatest member of this set. Then

Nu < K + 1 < Nu+N(w − u) = Nw,

so we may let x be the rational number (K + 1)/N . To show that u is not an upper
bound for A, it suffices to show that x ∈ A. We have already ensured that x is positive
and rational, so it remains to prove that x2 < 2. This is so because 2− x2 is the sum of
the positive numbers 2− w2 and (w + x)(w − x).

(v) The proof is by contraposition. Let c be a real number such that c > 0 and c2 6= 2; we
wish to show that c 6= s. If c2 > 2 we may apply (ii) with v = c, inferring that c > s. If
c2 < 2 we may apply (iv) with u = c, inferring that c is not an upper bound for A; in
particular, c 6= s.

(vi) Let a be a real number such that a > 1, and let A = {x ∈ Q : x > 0 and x2 < a }.
Then 1 ∈ A, so A is non-empty. By the axiom of Archimedes there is a positive integer
M such that M > a > 1; hence M2 > M > a. Thus if x ∈ A then

(M − x)(M + x) = M2 − x2 > a− x2 > 0,

so x < M . Therefore A is bounded above by M , and we may define the positive real
number s = supA. We shall show that s2 = a.
Let v be a positive real number such that v2 > a. Let

y = 1
2(v + v−1a), z = 1

2(v − v−1a).

Our assumptions about v imply that y and z are positive, and it is easy to show that
y = v − z < v and y2 = a + z2 > a. This proves the analogue of (i) when 2 is replaced
by a (except where 2 is used as an index); the analogues of (ii)–(v) are proved exactly as
above. Hence s2 = a.
Finally, let b be a real number such that 0 < b ≤ 1; we wish to prove that there is a
positive real number σ such that σ2 = b. If b = 1 then σ = 1. If 0 < b < 1 then, for
reasons just explained, there is a positive real number s such that s2 = 1/b; we may
therefore let σ = 1/s.

31–2. (i) Let an = n1/n − 1 ∀n ∈ N. Since nα > 1 if n > 1 and α > 0, an > 0 ∀n > 1. Let n > 1
and apply the given inequality with a = an:

n >
n(n− 1)

2
a2n, whence a2n <

2

n− 1
.
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If ε > 0 and N is a natural number greater than 2/ε2, then 0 < an < ε ∀n > N .
Therefore limn→∞ an = 0, as required.

(ii) Let a = b−1 − 1 > 0. For all n, b−n > 1
2n(n − 1)a2 by the given inequality. Therefore

0 < nbn < (2/a2)(n− 1)−1 ∀n > 1, and nbn → 0 by SQ1 in Section 31–3.

To prove the last part, let c = b1/k. Then 0 < c < 1 and nkbn = (ncn)k for all n. By (ii),
with b replaced by c, limn→∞ nc

n = 0. But then limn→∞(ncn)k = 0 by repeated application
of SQ2, part (b), in Section 31–3.

31–3. (i) Let

sn =
n∑
r=1

xr, tn =
n∑
r=1

ur.

{tn} is a convergent sequence and therefore a Cauchy sequence. But if m > n,

|sn − sm| =

∣∣∣∣∣
n∑

r=m+1

xr

∣∣∣∣∣ ≤
n∑

r=m+1

|xr| ≤
n∑

r=m+1

ur = |tn − tm|.

Hence {sn} is also a Cauchy sequence and is therefore convergent.
(ii) Since limn→∞(xn/un) = 1, we may choose an integer k such that 0 < xn/un < 2 ∀n > k.

Since un > 0, 0 < xn < 2un ∀n > k, and hence |xn| < 2un for such n. We may therefore
repeat the argument of (i), replacing un by 2un and assuming m > n > k in the chain of
inequalities.

For the last part, let xn =
2n + 3

3n + 2
, un =

2n

3n
. Then

xn
un

=
1 + 3×2−n

1 + 2×3−n
→ 1 as n→∞.

Now
∑∞

r=1 ur = 2
3

/(
1− 2

3

)
= 2. Hence by (ii), the the series

∑n
r=1 xr is convergent.

31–4. (i) Let x0 ∈ I, ε > 0. By definition of uniform continuity, ∃ δ > 0 such that x ∈ I and
|x − x0| < δ imply |f(x) − f(x0)| < ε. Since this argument is valid for all ε > 0, f is
continuous at x0. Since this is so for all x0 ∈ I, f is continuous on I.

(ii) Suppose f : I → R is not uniformly continuous. Then ∃ α > 0 with the following
property: for any δ > 0, however small, there exist u, v ∈ I such that |u − v| < δ and
|f(u) − f(v)| ≥ α. Using this fact for δ = 1, 12 ,

1
3 . . . . , we obtain sequences {un} and

{vn} in I such that |un − vn| < 1/n and |f(un) − f(vn)| ≥ α for every natural number
n. Since a ≤ vn ≤ b for all n, it follows from SQ6 that there is a subsequence {vnk

} of
{vn} which converges to a real number x̄ with the same property; thus x̄ ∈ I. [This is
where we use the assumption that I contains its endpoints. Without that assumption,
the proof doesn’t work and the conclusion may be false: see (iii) below.] We shall prove
that f is not continuous at x̄.
Since un − vn → 0 as n→∞, limk→∞ unk

= limk→∞ vnk
= x̄. But |f(un)− f(vn)| ≥ α

for all n, so the sequences {f(unk
)} and {f(vnk

)} cannot both converge to f(x̄). The
required result now follows from SQ8.

(iii) It suffices to show that for any δ > 0 there exist real numbers u, v satisfying the conditions

0 < u < v < 1, v < u+ δ, u−1 − v−1 ≥ 1.

Let v be a real number such that 0 < v < min(1, 2δ) and let u = v/2. Then the first of
the three conditions is obviously satisfied, v − u = 1

2v < δ and u−1 − v−1 = v−1 > 1.
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32 METRIC SPACES AND EXISTENCE THEOREMS

32–1. (i) 〈a + b〉 = |ai + bi| for some i, say i = k. Hence

〈a + b〉 ≤ |ak|+ |bk| ≤ 〈a〉+ 〈b〉.

Setting a = x − z and b = z − y, we see that d̃ satisfies M4. Also |xi − yi| ≤ 0 for
i = 1, . . . ,m if and only if x = y; thus d̃ satisfies M2. M1 and M3 are obvious.

(ii) Let 1 ≤ i ≤ m; then |ain| ≤ 〈an〉 for all n; therefore, if the sequence {〈an〉} converges
to 0, so does {ain}. Conversely, suppose ain → 0 for i = 1, . . . ,m. Let ε > 0. Then we
may choose natural numbers N1, N2, . . . , Nm such that

|ain| < ε ∀n > Ni (i = 1, . . . ,m).

Let N = max(N1, N2, . . . , Nm); then 〈an〉 < ε ∀n > N . Hence 〈an〉 → 0.
(iii) Let a ∈ Rm, and let the integer k be such that 1 ≤ k ≤ m and |ak| = 〈a〉. Then

a2k ≤ a21 + . . .+ a2m ≤ ma2k,

Taking square roots, we obtain the required result.
(iv) By a basic property of sequences of real numbers (SQ1 in Section 31.3), it suffices

to find positive numbers K and L such that ‖xn − x‖ ≤ K〈xn − x〉 for all n and
〈xn − x〉 ≤ L‖xn − x‖ for all n. By (iii), we may set K =

√
m and L = 1.

(v) By (ii) with an = xn − x, the sequence {xn} converges componentwise to x if and only
if 〈xn − x〉 → 0. By (iv), this happens if and only if ‖xn − x‖ → 0.

32–2. For each n ∈ N, let xn = (2n)−1. Then fn(xn) = 1 and fm(xn) = 0 ∀m ≥ 2n.

If n ∈ N and x ∈ [0, 1], then |fn(x) − f(x)| = fn(x) ≤ 1, with equality if x = xn. Thus
d(fn, f) = 1. If m,n ∈ N and x ∈ [0, 1], then 0 ≤ fm(x) ≤ 1 and 0 ≤ fn(x) ≤ 1, so
|fn(x)− fm(x)| ≤ 1. If m ≥ 2n, fn(xn)− fm(xn) = 1, whence d(fn, fm) = 1.

y

1

x10 n−1(2n)−1

y = fn(x)

(i) Since d(fn, f) = 1 ∀n ∈ N, the sequence {fn} does not converge uniformly to f . To
prove pointwise convergence, let x ∈ [0, 1]; we show that fn(x) = 0 for all sufficiently
large n. If x = 0 then fn(x) = 0 for all n. If 0 < x ≤ 1, we can choose a natural number
N such that N > x−1; then If n ≥ N , x > n−1, so fn(x) = 0.

(ii) Since d(fm, fn) = 1 whenever m ≥ 2n, the sequence {fn} has no subsequence that is a
Cauchy sequence, and hence no convergent subsequence. The sequence {fn} is bounded
because d(fn, f) = 1 ∀n ∈ N.
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(iii) Immediate from the proof of (ii) and the definition of compactness.
(iv) (i)–(iii) remain true when B[0, 1] is replaced by C[0, 1] because each fn is a continuous

function, as is f .

32–3. (i) Let x ∈ I. Then |fm(x) − fn(x)| ≤ d(fm, fn) for all m and n, where d is the metric of
B[a, b]. Hence {fn(x)} is a Cauchy sequence of real numbers. By the completeness of R,
the sequence {fn(x)} converges, say to f(x). This defines a function f : I → R such that
the sequence {fn} converges pointwise to f .

(ii) Fix n > N and x ∈ I; then |fm(x)−fn(x)| < ε ∀m > N . Let α > 0. By definition of the
function f we may choose a positive integer M such that |f(x)− fm(x)| < α ∀m > M .
If m > max(M,N), then

|f(x)− fn(x)| ≤ |f(x)− fm(x)|+ |fm(x)− fn(x)| < α+ ε.

Since this reasoning is valid for any positive number α, however small, |f(x)−fn(x)| ≤ ε.
This is so for all x ∈ I and all n > N .

(iii) Since the argument of (ii) is valid for every positive number ε, the sequence {fn} converges
uniformly to f . We may therefore choose a positive integer k with the property that
|f(x) − fk(x)| < 1 ∀x ∈ I. Since fk is a bounded function, we may choose a positive
number K such that |fk(x)| < K ∀x ∈ I. Then |f(x)| < K + 1 ∀x ∈ I.

(iv) Completeness of B[a, b] follows immediately from (i) and (iii). C[a, b] is a closed set in
B[a, b] (Exercise 32.2.7); the completeness of the metric space C[a, b] now follows from
the completeness of B[a, b] and the result of Exercise 30.2.8.

32–4. (i) Since we are using ‘d’ in the conventional manner of integral calculus, we denote the
standard metric on C[a, b] by δ. We shall show that for all V1, V2 ∈ C[a, b],

δ(Ṽ1, Ṽ2) ≤ βδ(V1, V2). (1)

The required result then follows from the fact that 0 < β < 1.
Let V1, V2 ∈ C[a, b] and let y ∈ [a, b]. Then we may choose x1 ∈ X such that

Ṽ1(y) = f(x1, y) + β

∫ b

a
ψ(x1, y, z)V1(z) dz.

By definition of the function Ṽ2,

Ṽ2(y) ≥ f(x1, y) + β

∫ b

a
ψ(x1, y, z)V2(z) dz.

Hence

Ṽ1(y)− Ṽ2(y) ≤ β
∫ b

a
ψ(x1, y, z) [V1(z)− V2(z)] dz. (2)

For all z ∈ [a, b], V1(z) − V2(z) ≤ δ(V1, V2) and ψ(x1, y, z) ≥ 0, so the integrand on the
right-hand side of (2) cannot exceed δ(V1, V2)ψ(x1, y, z). Thus (2), together with the fact
that

∫ b
a ψ(x1, y, z) dz = 1, implies that

Ṽ1(y)− Ṽ2(y) ≤ βδ(V1, V2). (3)

A similar argument with the roles of V1 and V2 reversed shows that (3) remains true
when its left-hand side is replaced by its absolute value. Since this is so for all y in [a, b],
(1) is also true.

(ii) There is a unique function V ∈ C[a, b] such that

V (y) = max
x∈X

{
f(x, y) + β

∫ b

a
ψ(x, y, z)V (z) dz

}
∀ y ∈ [a, b].

67


