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Social Learning with Coarse Inference†

By Antonio Guarino and Philippe Jehiel*

We study social learning by boundedly rational agents. Agents take 
a decision in sequence, after observing their predecessors and a pri-
vate signal. They are unable to make perfect inferences from their 
predecessors’ decisions: they only understand the relation between 
the aggregate distribution of actions and the state of nature, and 
make their inferences accordingly. We show that, in a discrete action 
space, even if agents receive signals of unbounded precision, there 
are asymptotic inefficiencies. In a continuous action space, com-
pared to the rational case, agents overweight early signals. Despite 
this behavioral bias, eventually agents learn the realized state of the 
world and choose the correct action. (JEL D82, D83)

In many economic and social situations, people learn from observing the decisions 
of others. While they learn from others, they may decide to imitate what others 

do and follow the crowd. Indeed, a central message of the social learning literature 
(Banerjee 1992; Bikhchandani, Hirshleifer, and Welch 1992) is that perfectly ratio-
nal agents may decide to neglect their private information and simply herd on the 
decisions of previous decision makers, thereby leading to long-run inefficiencies.

While the social learning literature offers many insightful results, it also reaches 
some unsettling conclusions. The herding phenomenon suggested above is indeed 
obtained in the full rationality paradigm when agents’ action space is discrete and 
the private signals agents receive have bounded precision. The process of social 
learning is, instead, eventually efficient in the discrete action space case whenever 
signals can have unbounded precision (and agents are fully rational) (Smith and 
Sørensen 2000). In this case, even if a “herd” of one million people occurs, the 
decision of the next agent with a very precise signal to go against the herd overturns 
the weight of the long sequence of predecessors, thus allowing the followers to take 
advantage of his precise information. This is what Smith and Sørensen (2000) refer 
to as the overturning principle.

In another important modification of the basic herd model, agents choose an 
action (in a continuous action space) that matches their expectation about the state 
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of the economy (Lee 1993). When agents are fully rational, the process of social 
learning is eventually efficient because agents can perfectly infer the history of sig-
nals from the observation of the previous actions. As a result, all private informa-
tion is perfectly aggregated. In this setting, history does not matter, in two senses: 
the action of the immediate predecessor already contains all the public information 
an agent needs to make the optimal decision; the actions of the early agents in the 
sequence do not have any long lasting effect on the decisions of the following deci-
sion makers.

Some of the conclusions reached in the full rationality paradigm sound unin-
tuitive. For example, it does not sound fully convincing that human subjects would 
make the right inference after seeing one agent breaking a long herd in Smith and 
Sørensen’s model, nor does it sound fully convincing that human subjects would 
perfectly infer the sequence of past signals just by observing past actions in Lee’s 
continuous action space model. There are several routes to address this: either mod-
ify some aspects of the game while maintaining the rationality assumptions, or stick 
to the original game and try to propose alternative approaches (say with bounded 
rationality) to model the interaction.1

We follow the second route with the view that no matter what the most realistic 
social learning model is, it is likely that the type of inferences required in the full 
rationality paradigm goes beyond what real subjects can reasonably be expected to 
do.2 Specifically, we develop an equilibrium approach in which agents make their 
inferences based only on the knowledge of how the state of the world affects the 
distribution of actions. In simple words, this means that each agent understands 
the frequency with which each action is taken in a given state of the world, but 
does not make inferences based on how the frequency of the action depends on 
the specific history of decisions and on the private signals that agents receive. It 
is an equilibrium approach because the agents’ understanding, although partial, is 
assumed to be correct: the state-dependent distribution of actions assumed by the 
agents matches the aggregate long-run frequencies of actions in each state. From 
a learning perspective, such an approach requires that agents (only) keep track of 
(or pay attention to) how the frequencies of actions depend on the state. Agents do 
not need any further knowledge about other agents’ preferences, information, or 
modes of reasoning. In fact, an important motivation for our approach is that, in a 
number of real life social interactions, individuals do not really know other agents’ 
exact structure of information, preferences or modes of reasoning.3

1 For example, to overcome the overturning principle, Smith and Sørensen (2000) consider the possibility that 
with small probablity agents would choose their decision at random irrespective of the history. Alternatively, Smith 
and Sørensen (2008) dispense with the assumption of perfect observability of the history of actions and propose 
a model in which agents only observe unordered samples from past history. We will discuss these approaches and 
how they differ from ours after we have presented our main results.

2 For example, if along with Smith and Sørensen (2008), we assume the order of moves is not observed, the 
rational inferences in such a model are even more complex than in the standard model.

3 Such a motivation is related to the theme of robust mechanism design (Bergmann and Morris 2005) which 
explicitly acknowledges that beliefs of agents are not easily accessible. Relatedly, one may argue that even if such 
information is available, looking at previous social learning experiences it is probably easier to remember how 
actions are distributed as a function of the state of the world than to know how actions depend on the private history 
of decisions.
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Formally, our analysis relies on the analogy-based expectation equilibrium, 
developed by Jehiel (2005), in which agents use payoff-relevant analogy partitions 
(as defined in Jehiel and Koessler 2008) to form their expectations about others’ 
behaviors and make inferences from observed actions as to the likelihood of the 
state of the economy. Agents use the payoff-relevant analogy partition in that they 
relate others’ behaviors to what they only care about in terms of payoffs, that is, the 
state of the economy.

We apply the analogy-based expectation equilibrium both to the discrete and to 
the continuous action space setups of Smith and Sørensen (2000) and Lee (1993). 
In both setups, our analysis provides new insights. A key finding in the case of dis-
crete action space is that the overturning principle does not hold when signals are of 
unbounded precision. Longer “herds” are less fragile and a single deviation is not 
enough to destroy it. The long-run consequence is that actions do not settle on the 
correct one with probability close to 1, a result in stark contrast with the existing 
literature. In the case of a continuous action space, we find an interesting behavioral 
bias. Early actions have an overwhelming importance for subsequent decisions. 
In that sense, in contrast with the standard approach, history does matter even in 
a continuous action space. Observing the entire history of actions leads the deci-
sion maker to make (biased) choices that he would not make, were he only able to 
observe his immediate predecessor(s). Despite this bias, though, in this set up, even-
tually agents learn the realized true state of the world and choose the correct action.

Related Literature.—Almost all the literature on social learning assumes full 
rationality. Nevertheless, our approach to bounded rationality is obviously not the 
only one that can be applied to study social learning. If agents were fully cursed, as 
modelled in Eyster and Rabin (2005), they would base their decision solely on their 
own signals, as others’ actions would be (wrongly) thought to be uninformative 
about the state of the world. As a result, both in a discrete or in a continuous action 
space, the beliefs would not converge to the truth and decisions would not settle on 
a particular action. More generally, if agents were partially cursed (as considered 
in Eyster and Rabin 2005), early signals could not have a stronger effect than later 
signals on subsequent actions. Such results should be contrasted with our finding in 
the continuous action space model that early signals have significantly more impact 
than later signals on current decisions when agents rely on the payoff relevant model 
of reasoning.4

Elaborating on their previous work, in a recent paper, Eyster and Rabin (2010) 
consider a framework in which agents wrongly believe that other players are cursed, 
whereas they are not, which combines ideas from the cursed equilibrium and the 
subjective prior paradigms. It turns out that in a framework with continuous action 
and signal space, this approach coincides with a heuristic approach in which subjects 

4 Note that the fully cursed equilibrium can be viewed as an analogy-based expectation equilibrium in which 
agents use the private information analogy partition (see Jehiel and Koessler 2008). We believe the payoff relevant 
analogy partition is more suited to the analysis of social learning given that it is more salient to remember from past 
interactions how actions are distributed as a function of the underlying state than it is to remember how actions are 
distributed as a function of the own private information. The payoff-relevant analogy partition also allows for some 
form of non-trivial inference unlike the private information analogy partition.
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would interpret past actions as if they were signals of various precisions. A key 
observation in their model is that early signals are overwhelmingly influential, lead-
ing to asymptotic inefficiencies. In our model with continuous action space, instead, 
despite the behavioral bias that assigns a higher weight to early signals, eventually 
beliefs converge to the true state of nature and actions settle on the correct one. It 
should be noted that there is no analog of our treatment of the discrete action space 
with varying precision in Eyster and Rabin (2010).

A common feature of Eyster and Rabin (2010), and our paper, is that agents 
do not fully understand other agents’ strategies. But there are important qualitative 
differences in the two approaches. Eyster and Rabin’s (2010) approach implicitly 
requires that agents have a good knowledge and understanding of others’ prefer-
ences and of the distribution of private signals. Our approach requires instead some 
form of learning, but is less demanding in terms of what agents must know about 
other agents’ private information and motivation for their choices (preferences).5

Another paper that applies subjective priors to social learning is Bohren (2009). 
In her model, some agents only use private signals to make their choices, while oth-
ers use all the available (public and private) information. There is, however, uncer-
tainty on the proportions of the two types of agents. Moreover, agents can have 
incorrect beliefs about these proportions. In a set up with discrete action space, 
when agents overestimate the proportion of the first type of individuals, incorrect 
herds can persist forever. In contrast, when they overestimate the proportion of the 
second type of individuals, correct herds may break and beliefs fluctuate forever.

Other models of social learning with bounded rationality include Bala and 
Goyal (1998); De Marzo, Vayanos, and Zwiebel (2003); Acemoglu, Ozdaglar, 
and ParandehGheibi (2009); and Ellison and Fudenberg (1993). In Bala and 
Goyal (1998), agents in a network choose after observing their neighbors’ actions 
and payoffs. There is private information in their model, but agents are assumed 
to ignore it to some extent. By assumption, each agent learns from his neigh-
bor’s actions (experiments) but does not ask what information might have led 
the neighbor to choose those actions. De Marzo, Vayanos, and Zwiebel (2003) 
and Acemoglu, Ozdaglar, and ParandehGheibi (2009) also focus on networks, but 
learning in these models is non-Bayesian, whereas our approach maintains the 
basic ingredients of Bayesian updating even if applied to a misspecified model 
(as motivated by incomplete learning considerations). In Ellison and Fudenberg 
(1993), agents consider the experiences of their neighbors and learn using rules of 
thumb. In some cases, even naive rules can lead to efficient decisions, but adjust-
ment to an innovation can be slow.

The paper is organized as follows. In Section I, we present the economy with 
a discrete action space, define the solution concept, and analyze both the short- 
and the long-run properties. In Section II, we study the case of a continuous action 
space. Section III concludes. An Appendix contains the proofs.

5 Approaches based on subjective priors are difficult to justify from a learning perspective (Dekel, Fudenberg, 
and Levine 2004), in contrast with the equilibrium approach pursued here.
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I.  Social Learning with Discrete Action Space

Imagine we run the following experiment. A group of subjects have to choose in 
sequence either action “a” or action “b” (with action a (b) giving the highest payoff 
when the state is A (B)). Before making his decision, a subject observes previous 
decisions and receives a signal with varying precision on whether the true state of 
the world is A or B. The experiment is repeated many times. After each repetition, 
each subject is informed of the true state of the world and of his payoff. Suppose 
now at the end of the experiment, we consider all the repetitions in which the state 
of the world was A. We count the total number of a actions and of b actions (in all 
periods) and find out that action a was chosen 67 percent of the time, while action 
b was chosen 33 percent of the time. When the state of the world was B, instead, 
action a was chosen 35 percent of the time and action b 65 percent. Suppose you 
were told these empirical frequencies. How would you play in this experiment if you 
had the possibility of participating in it?

Our approach assumes that agents expect that the probability of action a condi-
tional on the state A is 67 percent and that the probability of action b conditional 
on the state B is 65 percent irrespective of the time when the action is taken and the 
specific sequence of actions that the agent has observed until then. Moreover, agents 
best respond to these frequencies, that is, they choose the best action assuming oth-
ers’ actions in state A or B are distributed according to these aggregate frequencies, 
no matter what specific sequence of actions was observed.

Putting the example of the laboratory experiment aside, such a mode of reason-
ing is—we believe—plausible when, in social interactions, agents have doubts 
about what drives the behavior of others, or simply do not know the payoff or the 
information that previous agents had when they made their decisions. Instead of 
making complicated and speculative inferences, these agents simply connect the 
state of the world (they care about) to the empirical frequencies of actions that they 
observe. In our formal analysis, we consider a steady state of such a dynamic pro-
cess, in which the behaviors induced by the past empirical frequencies of actions 
by state give rise to the same empirical frequencies. As we said in the introduction, 
this idea is formalized in a solution concept called the analogy-based expectation 
equilibrium. We define it in Section IA and analyze it in Section IB.

A. The Model

In our economy, there are T agents who make a decision in sequence. Time is dis-
crete and indexed by t = 1, 2, … , T. The sequential order in which agents act is exog-
enously, randomly determined. Each agent, indexed by t, is chosen to take an action 
only once, at time t (in other words agents are numbered according to their position).

Agent t takes an action ​a​t​ in the action space { 0, 1 }. The agent’s payoff depends 
on his choice and on the true state of the world ω ∈ { 0, 1}. The two states of the 
world are equally likely. If ω = 1, an agent receives a payoff of 1 if he chooses 
action 1, and a payoff of 0 otherwise; vice versa if ω = 0.

We denote the history of actions until time t − 1 by ​h​t​  , that is, ​h​t​  
= {​a​1​, ​a​2​, … , ​a​t−1​} (and ​h​1​ = ∅). We denote the set of such histories by ​H​t​ . We 
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assume that agent t observes the entire history of actions ​h​t​ . In addition to observing 
the sequence of actions taken by the predecessors, each agent observes a symmetric 
binary private signal ​s​t​, distributed as follows:

	 Pr(​s​t​ = 1 | ω = 1) = Pr(​s​t​ = 0 | ω = 0 ) = ​q​t​ ,

where ​q​t​ represents the precision of the signal (and is private information to agent t). 
We also assume that each signal’s precision ​q​t​ is distributed on the support [0.5, 1 ] 
according to a density function f  (​q​t​ ) with cumulative distribution F(​q​t​ ), where f (.) 
is continuous and f (1 ) > 0. The random variables ​q​t​ and ​q​​t ′​​ for ​t′​ ≠ t are independent 
of each other; given ​q​t​ and ​q​​t′​​ , and conditional on the realized state ω, the private 
signals ​s​t​ and ​s​​t ′​​ are independently distributed.6 Agent t’s information set is repre-
sented by the triple (​h​t​ , ​s​t​ , ​q​t​ ). Given the information (​h​t​ , ​s​t​ , ​q​t​ ), the agent chooses ​a​t​ 
to maximize his expected payoff.

The main innovation of our work is in modelling how agents make inferences 
from past actions as to the likelihood of ω. We adopt the analogy-based expectation 
equilibrium concept first introduced by Jehiel (2005) using, more specifically, the 
payoff-relevant analogy partition (Jehiel and Koessler 2008). We assume that agents 
are unable to understand other agents’ strategies in their finest details, thereby mak-
ing it impossible for them to assess how the choice of action depends on the public 
history and the private signal at every date t. Instead, agents are assumed to make 
their inferences from past play based only on the knowledge of how the state of the 
world ω affects the distribution of actions. This is referred to as the payoff-relevant 
analogy partition, given that final payoffs depend on the state of the world ω and the 
actions but not on the signals directly.

Formally, let us denote a strategy profile by σ, that is, σ = (​σ​1​, ​σ​2​, … , ​σ​T​ ), where 
an agent’s strategy ​σ​t​ maps (​h​t​, ​s​t​, ​q​t​ ) into a distribution of possible actions, that is, ​
σ​t​ : ​H​t​ × {0, 1} × [0.5, 1 ] → Δ{ 0, 1}. For consistency with later sections, and with 
a slight abuse of notation, we denote by ​σ​t​(a | ​h​t​, ​s​t​, ​q​t​ ) the probability that agent t 
picks action a ∈ { 0, 1} when the history is ​h​t​ , the signal is ​s​t​, and the precision is ​q​t​ .

Let us consider a vector of realized precisions q ≡ (​q​1​, ​q​2​, … , ​q​T​ ), and let 
​μ​σ​(​h​t​ , ​s​t​ , q | ω ) denote the probability that history ​h​t​ is realized, ​s​t​ is the signal at 
t, and q is the vector of precisions when ω is the state of the world. Observe that, 
for any t, there are finitely many (​h​t​, ​s​t​ ), so that, for a given vector of precisions 
q, ​μ​σ​(​h​t​, ​s​t​, q | ω ) > 0 only for finitely many (​h​t​, ​s​t​ ). Given the strategy σ, the aggre-
gate distribution of action i = 1, 2 as a function of the state of the world ω can be 
expressed as

(1)	​ _ σ​(a = i | ω ) = ​ 
​E​q​ ​∑ t=1​ 

T
  ​ ​∑ ​h​t​, ​s​t​​ 

 
  ​ ​σ​t​​​(a = i | ​h​t​, ​s​t​, ​q​t​ )​μ​σ​(​h​t​, ​s​t​, q | ω )

    ____   
T

 ​  ,

6 Observe that we are considering a time-independent distribution of precisions. Furthermore, the distribution of 
the likelihood ratio ​q​t​/1 − ​q​t​ has support [0, ∞ ), which means that the distribution of beliefs is unbounded.
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where ​E​q​ denotes the expectation over the possible realizations of q. The right-hand 
side of (1) is the empirical frequency of action a = i that would result in the long 
run if agents kept behaving according to the strategy σ.7 Note that the aggregate 
distribution is obtained considering all periods, not only the preceding periods, since 
agents bundle all decision nodes in the two analogy classes.8

In an analogy-based expectation equilibrium with payoff-relevant analogy par-
titions, every agent t assumes that when the state is ω other agents choose action 
a = i with probability ​

_
 σ​(a = i | ω ), that is, the probability that matches the aggregate 

distribution of the action. Agents also assume that these behaviors are randomized 
independently across periods, and that the signal ​s​t​ (and its precision ​q​t​) is indepen-
dent of the actions of his predecessors (conditional on the state of the world). He 
chooses a best-response accordingly:9

Definition 1: An analogy-based expectation equilibrium with payoff-relevant 
analogy partitions (ABEE) is a strategy profile σ such that for every t, ​σ​t​ is a best 
response to the conjecture that other agents follow the strategy ​

_
 σ​ as defined in (1), 

and that, conditional on ω, agent t’s signal ​s​t​ (and its precision ​q​t​) is independent of 
his predecessors’ actions.

We think of the ABEE as representing a steady state of a learning process and 
not as a result of introspective reasoning. The consistency required by the equi-
librium concept, that is, that the conjecture about ​

_
 σ​(a = i | ω ) matches the empiri-

cal frequency as defined in the right-hand side of (1), should thus be viewed as 
the outcome of a dynamic process in which agents would eventually know how 
actions are distributed as a function of the state the economy. Such a learning pro-
cess only requires that agents be informed of the state of the world as well as of the 
actions chosen in previous plays (together with the structure of their own payoffs 
and the precision of their own signal). Agents need not have a prior knowledge 
about the payoffs or information structure of other players, nor of their ways of 
reasoning (as we have already informally discussed above).

B. Equilibrium Analysis

An ABEE in our environment is fully characterized by the aggregate distribu-
tions of actions in each state of the world ω, that is, ​β​T​ (ω): = ​_ σ​(a = ω | ω ), where 
we make it explicit that the distribution depends on T. Given the symmetry of our 
game, we further restrict attention to ABEE in which the aggregate distribution 
of action a = ω in state ω is the same for ω = 0 and ω = 1, and we denote it by 
​β​ T​ * ​  ≡ ​β​ T​ * ​ (0 ) = ​β​ T​ * ​ (1 ).

7 Observe the endogenous weight of the behavior at (​h​t​, ​s​t​, q ) in this expression, which reflects the fact that 
according to σ various histories have different frequencies of visit.

8 This also explains our choice of presenting the model first with a finite number T of agents (before considering 
the limit of it as T goes to infinity).

9 Compared to the framework developed in Jehiel and Koessler (2008), there are a few differences. First, we 
consider a multi-stage, multi-player setup, whereas Jehiel and Koessler (2008) consider two-person, simultaneous 
move games. Second, the analogy partitions as defined above include the decision nodes of all players and not just 
those of the other players.
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Given ​β​ T​ * ​, it is readily verified that agent t in an ABEE chooses his best response 
on the basis of the following likelihood ratio:

(2)	​ 
P​r​   ​ SUBJ​(ω = 1 | ​h​t​ , ​s​t​ , ​q​t​ )  __  
P​r​   ​ SUBJ​(ω = 0 | ​h​t​ , ​s​t​ , ​q​t​ )

 ​ = (​  ​β​ T​ * ​
 _ 

1 − ​β​ T​ * ​
 ​​)​

| a=1 | − | a=0 |
​ (​  ​q​t​

 _ 
1 − ​q​t​

 ​​)​
(2​s​t​−1 )

​,

where | a = i | denotes the number of times action i was chosen from period 1 to 
period t − 1 (so that the sum | a = 1 | + | a = 0 | is obviously equal to t − 1). (We 
use the superscript “SUBJ” in the probability to emphasize that each agent forms 
a subjective probability.) More precisely, if this likelihood ratio is greater than 1, 
then he finds it optimal to choose action 1, if it is lower than 1, he chooses action 0 
(otherwise he is indifferent between the two actions).

As we will show, in an ABEE, it is always the case that ​β​ T​ * ​ > ​ 1 _ 2 ​ . Agents’ strate-
gies are then derived as follows. Agent 1 obviously follows his signal, whatever its 
precision, given that he has no predecessors and thus no other information on which 
to base his decision. The decision of agent t to follow his signal or not depends on 
the following trade-off. Given that ​β​ T​ * ​ > ​ 1 _ 2 ​  , in the absence of any private signal, this 
agent would follow the action chosen by the majority of predecessors. With a private 
signal, this agent would, of course, continue to follow the majority if the private sig-
nal agreed with the choice of the majority; and he may consider following his own 
signal against the majority if the private signal were sufficiently precise. The exact 
cut-off precision is determined by the value of ​q​t​ for which the likelihood ratio as 
defined in (2) is equal to 1.

In the next proposition we show that an equilibrium exists, and that any symmet-
ric equilibrium is of the form just described. We also derive important asymptotic 
properties of the equilibrium as the number T of periods grows large.

Proposition 1:

	 (i)	 For any T, there exists a symmetric ABEE with ​β​ T​ * ​ (0 ) = ​β​ T​ * ​ (1 ) ≡ ​β​ T​ *
 ​ ∈ (​ 1 _ 2 ​, 1). 

There exists no symmetric ABEE with ​β​ T​ * ​ ≤ ​ 1 _ 2 ​ . That is, an action chosen by 
the majority is more likely to be followed by the next agent in line.

	 (ii)	 There exists no sequence ​β​ T​ * ​ (ω ) of corresponding ABEE such that as T → ∞, ​
β​ T​ * ​ (ω ) → 1 for ω = 0 and ω = 1. That is, there are asymptotic inefficiencies.

The argument for the existence of a symmetric ABEE is standard in this finite 
environment (Jehiel 2005; Jehiel and Koessler 2008). In the proof we simply invoke 
the intermediate value theorem to show the existence of a fixed point. The fixed 
point cannot be ​β​ T​ * ​ < ​ 1 _ 2 ​, as it would lead agents either to go against the majority 
(thereby leading to a long-run frequency of ​ 1 _ 2 ​) or to follow their own signal, imply-
ing that the overall frequency of action a = ω in state ω would be no less than ​ 1 _ 2 ​, 
which contradicts the premise that ​β​ T​ *

 ​ < ​ 1 _ 2 ​  .
10

10 It is interesting to note that, in our model, the evolution of beliefs contains a bias towards the more popular action. 
By contrast, in the model with rational agents, beliefs evolve according to a martingale, and sometimes the minority is 
followed (because it is inferred that the minority choice results from high-precision signals—see Section IC).
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As for the asymptotic properties of our economy, as stated in the second part of 
the proposition, when T grows large, the actions cannot settle on the correct one with 
probability close to 1. In the Appendix, we show that assuming that ​β​ T​ * ​ (ω )  converges 
to 1 as T goes to ∞ implies that the probability of taking the incorrect action is 
bounded away from 0, thereby leading to a contradiction. Intuitively, if the aggregate 
distribution of the correct action converged to 1, it would mean that in an ABEE all 
agents except the first one would disregard their own signal and follow the decision 
that was most popular among the predecessors: that is, the first agent would follow 
his own signal and all subsequent agents would imitate him. Since there is a strictly 
positive probability (equal to 1 − E​q​1​  ) that the first agent makes the incorrect choice, 
this implies that the probability that everyone chooses the incorrect action would be 
bounded away from zero, contradicting the assumed convergence to efficiency.11

In order to understand more concretely the asymptotic properties of our social 
learning problem, we have simulated the equilibrium value of ​β​T​ for various T, 
assuming the ​q​t​’s are uniformly distributed on [ ​ 1 _ 2 ​, 1 ].12 The equilibrium value ​β​ T​ * ​ 
is approximately equal to 0.79 when T = 3, and changes only slightly when we 
increase T. For large T, ​β​ T​ * ​ tends towards 0.82. This means that there is a rather sig-
nificant inefficiency, since approximately 18 percent of agents are making the wrong 
decision. Moreover, the probability that the agent makes a mistake is approximately 
the same whether an agent acts at time 10 or at time 200, since the impact of early 
actions becomes soon overwhelming.

C. Discussion

It is instructive to compare our result to that of a model with fully rational agents. 
We know from Smith and Sørensen (2000) that in a model like ours (with possibly 
unbounded precisions of signals) but with fully rational agents, beliefs converge to 
the truth and the actions settle on the correct one (see their theorems 1 and 3). The 
bias introduced by the coarse inference has, therefore, a long-lasting effect, imped-
ing complete learning. One may wonder what causes these differences. Intuitively, 
note that in the case of fully rational agents, unbounded precisions of signals have a  
very powerful effect for the decision of an agent and of his successors. Even after 
a large majority of agents have chosen one alternative, an agent with a high precision 
signal that contradicts the previous history chooses an action against the majority. 
The probability of this event is never zero. Moreover, after observing the devia-
tion of this agent, the following one updates his belief knowing that the previous 
agent had received a very high precision signal. Thus, this agent may decide to go 
against the majority even upon receiving a low precision signal, because the action 
of the predecessor is viewed as highly informative on what the correct state is. In 
other words, even if a “herd” of one million people occurs, the decision of the next 

11 Such an intuition is somehow reminiscent of the Grossman-Stiglitz paradox (Grossman and Stiglitz 1980): 
our economy cannot be informationally efficient since, otherwise, all agents but the first one would neglect their 
signals, contradicting the efficiency.

12 To find the fixed point, for a given ​β​T​ we have set ω = 1 and simulated the agents’ choices according to the 
best response described above. We have repeated the simulation 100,000 times. We have then computed the empiri-
cal frequency of a = 1. We have repeated the procedure until the empirical frequency was indeed equal to ​β​T​ .
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agent with a very precise signal to go against the herd overturns the weight of the 
long sequence of predecessors, thus allowing the followers to take advantage of his 
precise information (the “overturning principle,” as defined by Smith and Sørensen, 
2000). In our model, when an agent receives a very precise signal contradicting the 
consensus, he goes against the majority as in the standard case, but the following 
agent does not do so unless he himself receives a very precise signal. The reason is 
that, by considering the aggregate distributions only, he misses the inference that if 
someone went against a strong majority it must be that he received a very precise 
signal. In other words, in an ABEE, even though private signals can have unbounded 
precision, the observed actions always have a bounded informational content, and 
long-run inefficiencies may prevail.

Clearly our model assumes a form of bounded rationality, in that agents do not 
make the right inference from what they observe. Alternatively, one can try to mod-
ify the basic setup (either the preferences or the information) while maintaining the 
rationality assumption and see how the insights thus obtained differ from ours.

A first modification that concerns preferences is proposed by Smith and Sørensen 
(2000) themselves. They consider a model in which with positive but small probabil-
ity agents choose their decisions at random (such agents are called crazy types). In 
such a variant, an agent who would not follow the herd could either be a crazy type 
or, as in the basic case, a normal type having received very precise information (that 
contradicts the previous history). Rational agents weigh correctly the two events so 
as to make the correct inference from what they observe. The resulting behavior may 
depend in a complex way on the history of play, but, eventually convergence to the 
correct action would prevail (essentially because the fine knowledge of the propor-
tion of crazy types and of the distributions of precisions and of the equilibrium strat-
egy would allow a rational observer to infer the true state of the economy from long 
sequences of actions). Such a model and results differ from ours in several respects. 
First, in our model, we do not obtain convergence to the correct action. Second, 
behaviors in our model depend in equilibrium only on the number of 0 and 1 actions 
in the history of play, which would typically not be so in the variant studied in Smith 
and Sørensen (2000). Third, and maybe more importantly, the inferences made by 
the agents in our model require only the knowledge of the aggregate proportion of 
actions being observed in the two states of the economy (as resulting from the obser-
vation of many similar social learning games), which sounds far less demanding 
than the knowledge required in the above proposed variant (that goes even beyond 
the knowledge required in the classic, unperturbed setup).13

Another modification that concerns observability is proposed in Smith and 
Sørensen (2008) who maintain (together with the rationality assumption) the same 
preferences for agents as in the basic Smith and Sørensen (2000), but assume 
that agents only observe unordered samples from past history. In a similar vein, 
Callander and Hörner (2009) propose a model in which agents do not know the 

13 Observe that in our analysis, the aggregate distributions are determined as a fixed point, which is not so in the 
basic or modified setup of Smith and Sørensen (2000). This may induce some difficulties for the researcher in find-
ing out this fixed point. Yet, it is not a difficulty encountered by the agents who are assumed to have acquired this 
knowledge by observing (many) other similar social learning interactions (in a learning interpretation).
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order in which previous actions have been made. Again, with imperfect observabil-
ity, the inference process is typically much harder than with perfect observability 
(as, for example, it typically involves weighing possible sequences of actions as a 
function of the precisions of signals as opposed to just considering a given sequence 
in the basic set up).14 Despite these difficulties (which apply both to the modeler and 
the agents), Callander and Hörner (2009) were able to make progress in the special 
case in which signals only have two possible precisions. One interesting result they 
obtain is that it may be optimal for an agent to neglect his own private information 
and follow the minority (rather than the majority). In their model, they observe 
that learning is asymptotically efficient, since the herd on the minority action is 
eventually broken.15 Smith and Sørensen (2008) also obtain asymptotic efficiency 
results under their finite sampling assumptions (and unbounded beliefs). In recent 
papers, Acemoglu et al. (2011) and Monzon and Rapp (2012) also show complete 
learning when beliefs are unbounded. In Acemoglu et al. (2011) complete learning 
obtains when agents observe an ordered sample of predecessors (to whom they are 
linked in a network) as long as it is not the case that an infinite number of agents 
only observe the same (finite) number of predecessors. Monzon and Rapp (2012) 
show that complete learning obtains even in the case in which agents do not know 
their own position in the sequence of decision makers (neither that of the sample of 
predecessors they observe).

These results are again in sharp contrast with ours. In our set-up, agents never fol-
low the minority (remember that ​β​ T​ * ​ > ​ 1 _ 2 ​ ), and asymptotic inefficiencies necessarily 
arise. Besides, our analysis does not depend on whether agents observe the order of 
the previous actions or not, since their behavior in an ABEE depends only on the 
number of various actions previously observed (not their order). Even though we 
did not consider the possibility of finite sampling, it is not hard to see that we would 
a fortiori obtain asymptotic inefficiencies with finite sampling in the ABEE setup.

So far we have analyzed the case in which agents receive signals with vary-
ing precision. One may wonder what happens in the canonical model with sig-
nals of deterministic and equal precision (i.e., ​q​t​ = ​_ q​ ∈ (0.5, 1) for all t). In the 
standard perfect Bayesian equilibrium (PBE), first considered by Bikhchandani, 
Hirshleifer, and Welch (1992), agents follow their private signals, unless their 
predecessors having chosen one option outnumber those in favor of the other by 
at least two.16 This is the case in which an informational cascade (i.e., a situation 
in which agents neglect their private information) arises. In our setup, with agents 
making inferences according to the payoff-relevant analogy reasoning, instead, 
there exists a unique ABEE in which an informational cascade starts already at 
time 2, with the first agent choosing the action dictated by his signal and all the 

14 Other work with imperfect observability of the predecessors’ actions includes Çelen and Kariv (2004) (agents 
only observe the immediate predecessor’s action); Guarino, Harmgart, and Huck (2011) (agents only observe the 
total number of predecessors who have chosen one of the two actions); and Larson (2011) (agents only observe a 
summary statistic of predecessors’ actions).

15 For this result, Callander and Hörner (2009) specifiy their model even further by considering one signal preci-
sion of ​ 1 _ 2 ​ and the other of 1.

16 This is true under any tie-breaking rule so that, if indifferent, an agent plays the action in agreement with his 
signal with some positive probability.
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following ones imitating him.17 While the strategies in the standard equilibrium 
and in the ABEE are similar, still there is an interesting difference. In the standard 
equilibrium, when the cascade starts, no information is aggregated. As a result, 
after a cascade of one million people, agents have the same beliefs as after a cas-
cade of two people (i.e., the public belief never exceeds the belief arising from 
having two signals in favor of the chosen state), a quite unsettling conclusion. 
In the ABEE, as more and more agents choose the same action, agents’ beliefs 
are updated every time in favour of the chosen action. The likelihood in favor of 
the chosen action, similar to that in (2), keeps increasing. Eventually, agents put 
weight 1 on the state corresponding to the action chosen by the first agent—not 
necessarily the correct one. In the standard set-up, since it is built on very limited 
information, a cascade is fragile. If after a cascade of one million people there is 
a small shock (e.g., public information), in the canonical model, the cascade is 
broken. In our set-up, instead, the herd becomes less and less fragile, and bigger 
shocks would be required to make successors switch to the alternative action. This 
is consistent with experimental findings, according to which longer cascades are 
less fragile (Kübler and Weizsäcker 2005).

II.  Social Learning with Continuous Action Space

We now turn to illustrate which insights our bounded rationality approach offers 
when agents can choose their action in a continuous space, in a model similar to Lee 
(1993). Specifically, we assume that agent t takes an action ​a​t​ in the space [0, 1 ]. 
The agent’s payoff function is quadratic and equal to −(ω − ​a​t​​ )​2​. This ensures that 
agents want to take an action as close as possible to what they believe the state is 
(given what they observe and what they infer from it). As in Section I, we assume 
that agent t observes previous actions ​h​t​ = (​a​1​, … , ​a​t−1​ ) together with a binary signal ​
s​t​ distributed as follows:

	 Pr(​s​t​ = 1 | ω = 1 ) = Pr(​s​t​ = 0 | ω = 0 ) = ​q​t​ ∈ ​( ​ 1 _ 
2
 ​, 1 )​ ,

where ​q​t​ is the precision of signal ​s​t​. As before, conditional on the state of the world, 
the signals are independent over time. In contrast with Section I, however, we 
assume that each signal has a given precision, lower than 1, that may deterministi-
cally vary from one period to another. Later on, when we will consider large T, we 
will assume that all ​q​t​ s are bounded from above by some ​

_
 q​ < 1 (i.e., the distribution 

of beliefs is bounded).

17 We refer the reader to the working paper version of the article (Guarino and Jehiel 2009), available on the 
journal’s website, for a complete analysis.
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For convenience, we denote the ratio ​ Pr(​s​i​ | ω = 1)
 _ Pr(​s​i​ | ω = 0 ) ​ = ​​( ​  ​q​i​

 _ 1 − ​q​i​ ​ )​​
2​s​i​−1​ by m(​s​i​ ). As will prove 

useful in the following analysis, we make the following (genericity) assumption:18

(A1)    For ​( ​n​1​, ​n​2​, … ,  ​n​T​ )​ ∈ ​핑​T​,  if ​∏​ 
i=1

 ​ 
T

  ​ ​​( ​  ​q​i​ _ 
1 − ​q​i​

 ​ )​​​n​i​
​ = 1,  then ​n​i​ = 0 for all i.

Such an assumption means that receiving ​k​i​ signals ​s​i​ of precision ​q​i​ for i = 1, … , T 
must result in a different belief than that resulting from receiving ​k​ i​ ′​ signals ​s​ i​ ′​ of 
precision ​q​i​ for i = 1, … , T unless for all i, ​k​i​ = ​k​ i​ ′​ and ​s​i​ = ​s​ i​ ′​ . Since the bias high-
lighted below takes the form of multiple counting of signals, such an assumption 
will guarantee that no two different sequences of signals can generate the same 
action (thereby making the inference process much simpler).

Given the information (​h​t​ , ​s​t​ ), agent t chooses ​a​t​ to maximize the expected payoff ​
E​ SUBJ​[−(ω − ​a​t​​ )​2​ | ​h​t​ , ​s​t​ ]. That is, he chooses ​a​ t​ *​ = ​E​ SUBJ​[ω | ​h​t​ , ​s​t​ ].19 We can restrict 
attention to pure strategies, given that ​E​ SUBJ​[ω | ​h​t​  , ​s​t​ ] reduces to the choice of a sin-
gle action.

A. Equilibrium Analysis

An agent’s strategy ​σ​t​ maps (​h​t​ , ​s​t​ ) into an action, that is, ​σ​t​ : ​H​t​ × ​{ 0, 1 }​ → [0, 1 ]. 
Similarly to the previous section, ​σ​t​(a | ​h​t​ , ​s​t​ ) denotes the probability that agent t 
picks action a when the history is ​h​t​ and the signal is ​s​t​. Since, as already men-
tioned, we will consider equilibria in pure strategies, ​σ​t​(a | ​h​t​ , ​s​t​ ) will either be equal 
to 0 or to 1. Given a particular strategy profile σ = (​σ​1​, ​σ​2​, … , ​σ​T​ ), the probability 
​μ​σ​(​h​t​ , ​s​t​ | ω ) that history ​h​t​ is realized and ​s​t​ is the signal at t when ω is the state of the 
world is strictly positive only for finitely many (​h​t​, ​s​t​) (since ​s​t​ takes values in {0, 1} and 
the strategies ​σ​t​ s are pure). As a result, analogously to the previous analysis, we can 
define the aggregate distribution of actions as a function of the state of the world ω as

(3)	​ _ σ​(a | ω ) = ​ 
​∑ t=1​ 

T
  ​  ​∑ ​h​t​, ​s​t​​ 

 
  ​ ​σ​t​​​(a | ​h​t​, ​s​t​ )​μ​σ​(​h​t​, ​s​t​ | ω )

    ___  
T

 ​  .

Given this aggregate distribution of actions, an ABEE is defined analogously to 
the previous section. Based on the history of actions ​h​t​ = (​a​1​, … , ​a​t−1​ ), and the sig-
nal ​s​t​ at date t, the agent forms the subjective likelihood ratio

(4)	​
__

 LR​(​h​t​, ​s​t​ ) = ​∏​ 
i=1

 ​ 
t−1

 ​  ​ 
​
_
 σ​(​a​i​ | ω = 1 )

  _  
​_ σ​(​a​i​ | ω = 0 )

 ​  m(​s​t​ ),

18 Such an assumption is met for almost every (​q​1​, … , ​q​T​ ), whatever the Lebesgue measure on (​ 1 _ 2 ​, 1​ )​T​. (Note 
that 핑 denotes the set of integers.) Essentially, the assumption means that, whatever the weight given to two or more 
signals, they never cancel out, giving a posterior likelihood ratio of 1. One obvious case in which the assumption 
is not satisfied is when all signals have the same precision. In that case, for instance, a signal 1 and a signal 0 taken 
with equal weight (i.e., ​n​i​ = 1) would offset each other. Of course, one can choose precisions arbitrarily close to 
each other and still satisfy A1.

19 Obviously agent t also knows the (deterministic) precision ​q​t​ of his signal. We do no explicitly indicate this 
in the information set. Whether the agent also knows the other signals’ precisions or not is instead immaterial, as 
will become clear in the analysis.
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and chooses action ​a​t​ so that

(5)	​ 
​a​t​ _ 

1 − ​a​t​
 ​ = ​

__
 LR​(​h​t​ , ​s​t​ ).

We now start the construction of an ABEE. Let α(​s​1​, ​s​2​, … , ​s​k​ ) denote the equi-
librium action taken after the sequence of signal realizations {​s​1​, ​s​2​, … , ​s​k​ }. We con-
jecture that the agents’ strategies are such that, in equilibrium, for any two different 
sequences of signal realizations, {​s​1​, ​s​2​, … , ​s​k​ } ≠ {​s​ 1​ ′ ​, ​s​ 2​ ′ ​, … , ​s​ l​ ′​   }, an agent chooses 
two distinct actions in [0, 1 ], that is, α(​s​1​, ​s​2​, … , ​s​k​ ) ≠ α(​s​ 1​ ′ ​, ​s​ 2​ ′ ​, … , ​s​ l​ ′​   ). Note that 
this requirement comprises both the case in which k = l and ​s​t​ ≠ ​s​ t​ ′​ for at least one 
t = 1, 2, … , k, and the case in which k ≠ l. Given this conjecture, we construct an 
equilibrium and then we verify that, because of A1, it satisfies the conjecture.

Specifically, consider a sequence of signals {​s​1​, … , ​s​t−1​ } and the corresponding 
actions ​a​1​ = α(​s​1​ ), … , ​a​t−1​ = α(​s​1​, … , ​s​t−1​ ). Given our conjecture that all αs are dif-
ferent, it is readily verified that a given action is observed only at one time and after 

one sequence of signals. Thus, ​ ​
_
 σ​(​a​i​ | ω = 1)
 _ ​

_
 σ​(​a​i​ | ω = 0 ) ​ = ​ Pr(​s​1​, … , ​s​i​ | ω = 1)

  _  Pr(​s​1​, … , ​s​i​ | ω = 0 ) ​, which (given the indepen-
dence of ​s​k​ s conditional on ω) simplifies into

(6)	​ 
​_ σ​(​a​i​ | ω = 1 )

  _  
​_ σ​(​a​i​ | ω = 0 )

 ​ = ​∏​ 
k=1

​ 
i

  ​m(​s​k​ ).

A simple rewriting of ​
__

 LR​(​h​t​, ​s​t​ ) yields20

(7)	​
__

 LR​(​h​t​, ​s​t​ ) = ​∏​ 
i=1

 ​ 
t−1

 ​m(​s​i​​ )​t−i​ m(​s​t​ ).

Note that in this updating, signal ​s​1​ is counted t − 1 times, signal ​s​2​ is counted 
t − 2 times and so on. Thus, agent t chooses action α(​s​1​, ​s​2​, … , ​s​t​ ) such that

(8)	​ 
α(​s​1​, ​s​2​, … , ​s​t​ )  __  

1 − α(​s​1​, ​s​2​, … , ​s​t​ )
 ​ = ​∏​ 

i=1
 ​ 

t−1

 ​m(​s​i​​ )​t−i​ m(​s​t​ ).

In other words, agent t chooses his action as if he had observed signal ​s​1​, t − 1 times; 
signal ​s​2​ , t − 2 times; … , signal ​s​i​, t − i times. The reason is that, in this construc-
tion, a signal ​s​i​ affects the aggregate distribution of actions at every time t ≥ i. This 
overweight of early signals is the essence of the bias induced by the (boundedly 
rational) reasoning the agents use.

To ensure that the construction of this equilibrium is correct, we still need to check 
our conjecture that the actions α(​s​1​, ​s​2​, … , ​s​t​ )s, as defined by (8), are all different. 

20 We use the convention that ​Π​ i=1​ 0
  ​​x​ i​ is equal to 1.
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This is clearly implied by our genericity assumption (A1), thereby allowing us to 
conclude:21

Proposition 2: There exists an ABEE in which, after a sequence of signals 
{​s​1​, ​s​2​, … , ​s​t​}, agent t chooses action ​a​ t​ *​ = α(​s​1​, ​s​2​, … , ​s​t​ ) such that ​  ​a​ t​ *​

 _ 
1 − ​a​ t​ *​

 ​ 
= ​  α(​s​1​, ​s​2​, … , ​s​t​ ) _  1 − α(​s​1​, ​s​2​, … , ​s​t​ )

 ​ =​∏​ i=1​ t−1​(​  ​q​i​
 _ 1 − ​q​i​ ​​)​(2​s​i​−1)(t−i )​(​  ​q​t​

 _ 1 − ​q​t​ ​​)​
2​s​t​−1​. That is, the agent at time t acts 

as if he received (t − i ) times the signal at time i (drawn from independent distribu-
tions of precisions ​q​i​). 

In the above proposition, the strategy of agent t is not explicitly constructed 
as a function of the history and of agent t’s private signal. Yet, such a strategy 
is easily determined for the histories {​a​1​, ​a​2​, … , ​a​t−1​ } such that ​a​1​ = α(​s​1​ ), ​a​2​  
= α(​s​1​, ​s​2​ ), … , ​a​t−1​ = α(​s​1​, ​s​2​, … , ​s​t−1​ ) and by the signal ​s​t​, by identifying the 
strategy ​σ​t​(a | {​a​1​, ​a​2​, … , ​a​t−1​}, ​s​t​ ) with the choice of the action a = α(​s​1​, ​s​2​, … , ​s​t​ ) 
with probability 1. For other histories, the strategy is not specified, but this is irrel-
evant for the analysis of the equilibrium path.22, 23

It is worth contrasting the result in Proposition 2 with what happens in the 
case in which agents are fully rational. As we know from Lee (1993), in the case 
of fully rational agents, in the perfect Bayesian equilibrium, after a sequence 
of signals {​s​1​, ​s​2​, … , ​s​t​ }, agent t chooses action ​a​PBE​ = ​α​PBE​(​s​1​, ​s​2​, … , ​s​t​ ) such 

that ​  ​a​ t​ PBE​
 _ 

1 − ​a​ t​ PBE​
 ​ = ​  ​α​ PBE​(​s​1​, ​s​2​,..., ​s​t​ )  __  

1 − ​α​ PBE​(​s​1​, ​s​2​,..., ​s​t​ )
 ​ = ​∏​ i=1​ 

t
  ​(​  ​q​i​

 _ 1 − ​q​i​ ​​)​
2​s​i​−1​. In the PBE, agents perfectly infer 

the signals observed by their predecessors from their actions. As a result, agents pick 
the action that corresponds to the expected value of the state of the world conditional 
on the signals received by themselves and all their predecessors.24 The comparison 
between the expressions obtained for the ABEE and for the PBE makes it very 
easy to appreciate the difference between the two approaches. Essentially, while in 
the ABEE earlier signals receive a higher weight, in a PBE they all have the same 
weight. In the ABEE, history matters, in that a signal (and thus an action) early in 
the game has more impact than later signals (actions).

21 Essentially, the genericity assumption A1 ensures that the private likelihood ratio is distinct at every possible 
history, and thus there is a one-to-one correspondence between the history and the action choice. Therefore, the 
probability of each action is determined by the probability of the sequence of signals that leads to that action. A 
natural question is whether there are other ABEE and what happens if assumption A1 is violated. Since these are 
mainly technical issues, we refer the reader to the working paper version of the article (Guarino and Jehiel 2009). 
Here we only mention our main findings: generically, the ABEE is unique. Moreover, when A1 is violated, like 
in the case of signals of equal precision, there is no guarantee that an ABEE exists. This does not contradict the 
previous existence results by Jehiel (2005) and Jehiel and Koessler (2008), since they consider cases in which the 
space of actions is finite. The reason why an ABEE may not exist when A1 is not satisfied is that the action space 
is continuous.

22 Obviously, the construction presented above is only our way (i.e., the modelers’ way) of constructing the 
equilibrium strategies. Boundedly rational agents do not go through our steps of reasoning to choose their actions. 
The premise is that they have learned ​

_
 σ​(a | ω ) for the various a and ω through past observations, and choose their 

actions according to the likelihood ratio ​
__

 LR​ as defined in (4).
23 From this construction it should be clear that agents need not know the precisions of other agents’ signals (nei-

ther they need to know their realizations, of course). Indeed, the equilibrium is constructed considering the aggregate 
distributions of actions given the state of the world, which does not require knowledge of others’ precisions.

24 Also, in the case of the PBE, agents do not need to know the other agents’ signal precisions. The reason is 
quite different from the case of the ABEE, though. Here this knowledge is not required since rational agents can 
infer the precision of the signals (as well as their realizations) from the observation of the sequence of actions.
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The behavioral bias we have identified implies that if early in the history of play 
agents receive the incorrect signals, this will have a more severe effect on future 
actions in an ABEE than in the PBE, since these signals receive more weight. A natu-
ral question is whether this effect will persist over time, so that beliefs may converge 
to the wrong value, or whether, eventually, despite the behavioral bias, convergence of 
beliefs to the truth obtains. And if convergence obtains, obviously we are also inter-
ested in whether boundedly rational agents learn as fast as rational agents do.

In Proposition 3, we consider the case in which for all t, precision 
​q​t​ ∈ [ ​q _​, ​_ q​  ], where ​_ q​ and ​

_
 q​ are such that

(9)	​​ ( ​  ​q _​
 _ 

1 − ​q _​
 ​ )​​​q _​

​ ​​( ​ 1 − ​_ q​
 _ ​_ q​

 ​  )​​(1−​q _​)
​ > 1 .

Observe that (9) is always satisfied whenever ​q _​ and ​
_
 q​ are not too far apart from 

each other.25 When (9) is met, we show that, in the ABEE, beliefs converge almost 
surely to the true state of the world, and, eventually, actions settle on the correct one. 
Furthermore, convergence occurs exponentially fast in the ABEE as it does in the 
PBE. These results are reported in the next proposition (where, of course, we keep 
assuming that T ≥ t  ):

Proposition 3: Suppose condition (9) is satisfied. In the ABEE, the public belief 
converges almost surely to the true state of the world, that is, for t → ∞, when 
ω = 1, P​r​   ​ SUBJ​(ω = 1 | ​h​t​ ) ​→​ a.s.

 ​ 1 (and, similarly, when ω = 0, P​r​   ​ SUBJ​(ω = 1 | ​h​t​ ) ​→​ a.s.
 ​ 0). 

Moreover, the action becomes arbitrarily close to the efficient one with a probability 
arbitrarily close to one. Precisely, for any ε > 0, there exist a c > 0 and a t  ′ such that, 
for any t > t  ′, Pr(1 − ​a​ t​ *​ < ε | ω = 1) ≥ 1 − ​e​−ct​ and Pr(​a​ t​ *​ < ε | ω = 0) ≥ 1 − ​e​−ct​.

Despite the bias in our ABEE, the signals are taken into account in the choice 
of each action. Since the distribution of signals is markedly different in the two 
states, eventually the true state of the world is discovered almost surely.26 Given 
that early signals receive a higher weight, clearly, for histories in which early signal 
realizations happen not to be representative of the true state, convergence will be 
slowed down. If the early signal realizations are representative of the state, instead, 
convergence will be faster. Our proposition shows that, for almost all sequences of 
signal realizations, the bias does not affect the form of long-run convergence, since 
it occurs exponentially in the ABEE as it does in the PBE.27 Our boundedly rational 
agents learn in the long run, as fully rational agents do.28

25 It is easy to check that (​  q
 _ 

1 − q ​​)​
q

​(​ 1 − q
 _ q  ​​)​

(1−q)

​ > 1 for all 0.5 < q < 1.
26 The result would hold a fortiori if we considered unbounded beliefs.
27 Indeed, the analogous result for the PBE is that convergence to the truth obtains, with 

Pr​( 1 − ​a​ t​ PBE​ < ε | ω = 1 )​ ≥ 1 − ​e​−2 t Φ(ε​ )​2​​, where

Φ(ε) := ​ 
log​ 

1 + ε
 _ ε  ​ − log(​ 1 − ​_ q​

 _ ​_ q​
  ​)   __   

log(​  ​q _​
 _ 

1 − ​q _​
 ​) − log(​ 1 − ​_ q​

 _ ​_ q​
  ​)

 ​. 
The proof of this result is standard and available on request from the authors.

28 Another way to understand this convergence result is to observe that beliefs evolve by putting excessive 
weight on the overall correct Bayesian belief, as opposed to just adding the extra inference from the new signal. 
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To gain further intuition on this result, consider the case in which all ​q​t​ are 
close to q. Consider the first n consecutive signals. We know from the analysis of 
the standard case that, when n is large enough, the probability that the difference 
between q and the frequency of signal realizations 1 in state ω = 1 (0 in state ω = 0) 
is higher than ε is exponentially small in n. Now, in our ABEE, at time t > n the 
first signal is counted t − 1 times and the n-th signal is counted t − n times. When t 
grows large, the difference of weight between the first and the n-th signal becomes, 
however, negligible since (t − n)/t approximates 1. In other words, since the over-
counting determined by the bias takes a polynomial form, it vanishes in the limit and 
convergence takes an exponential form in the ABEE as it does in the PBE.

We have simulated the model for various parameter values. Figure 1 shows 
the average distance of the public belief from the true state of the world (i.e., 
| Pr(ω | ​h​t​ ) − ω | and | P​r​   ​ SUBJ​(ω | ​h​t​ ) − ω | ) in the case in which all signals are drawn 
randomly from a uniform distribution on the interval (0.69, 0.71 ). The average dis-
tance at any time t is taken over 100, 000 replications (the same number of repeti-
tions is also used for the other simulations presented below). Essentially, this figure 
is a graphical representation of our proposition. The two graphs in the figure are 
almost overlapping, indicating that the long-run properties of our ABEE are not dis-
similar from those of the PBE.

In the long run, however, such a bias vanishes, given that the Bayesian belief becomes arbitrartily concentrated on 
the correct state.
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Figure 1. Average Distance of the Public Belief from the Fundamental Value

Notes: The solid line refers to the PBE. The dotted line refers to the ABEE.
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Figure 2 shows the average distance between belief and fundamental in the ABEE 
and the PBE, conditional on the first five signals being incorrect. In the PBE, starting 
at time 6, when signal realizations are randomly drawn (from the same interval as 
before, and, therefore, are correct approximately 70 percent of the repetitions), the 
belief starts approaching the true state of the world: the distance between belief and 
state of the world decreases quickly and monotonically. The graph for the ABEE 
looks rather different. First, after the first wrong signals, the agents become almost 
certain of the wrong state of the world (the distance is close to 1). After time 5, 
despite signals are now correct with frequency close to 70 percent, the difference 
between subjective public belief and the true state of the world remains close to 
one. This is because agents put more and more weight on early signals. It takes 25 
periods before the impact of the first signals is offset by the later signals and the 
belief starts converging to the truth.29

29 While Figures 1 and 2 were obtained for the case in which ​q​t​ ∈ (0.69, 0.71 ), we have run further simulations 
for the case in which ​q​t​ is drawn according to a uniform distribution between 0.5 and 1, and we have obtained very 
similar graphs. This suggests that the results on convergence, summarized in our proposition, also hold when our 
sufficient condition is not satisfied.
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Figure 2. Average Distance of the Public Belief from the Fundamental Value after 
Five Incorrect Signals

Notes: The solid line refers to the PBE. The dotted line refers to the ABEE.
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B. Discussion

The inability of agents to understand the fine details of the inference problem 
from the predecessors’ actions could lead, in principle, to different predictions. For 
instance, suppose agents essentially ignore the information content of past history. 
Then, we would observe no convergence of actions (even though a Bayesian external 
observer would, of course, learn the true state of the world). On the other hand, sup-
pose agents put a lot of weight on previous actions. Then they may be prone to a sort 
of herding and, although actions would settle, there would be no information aggrega-
tion. We view our results as somehow in between these two extremes. In our model, 
coarse inference does determine a behavioral bias. This, however, does not preclude 
the aggregation of information, which actually occurs as in a world of rational agents.

It is also worth noting that our result on convergence, similar to that of the PBE, 
is instead in sharp contrast with what happens if agents use the heuristic reason-
ing that upon observing action a ∈ (​ 1 _ 2 ​, 1 ) of one of his predecessors, the agent 
believes this corresponds to an independent signal s = 1 having precision q(a ) such  
that ​  q(a )

 _ 1 − q(a ) ​ = ​  a
 _ 1 − q ​ . In this case (which corresponds to the case studied in Eyster and 

Rabin 2010), the weight of the first signal is approximately equal to the sum of the 
weights of all other signals. Given the overwhelming weight of the (possibly wrong) 
early signals—growing at an exponential rate with t, as opposed to a linear rate in 
our model—there must be asymptotic inefficiencies.

The analysis we have presented can be extended in several directions. One 
can consider the case in which agents are not aware of the order of moves; the 
case in which agents can only observe some (e.g., a sample of, or the immediate) 
predecessor(s); and the case in which more than one action is taken at the same 
time. Our finding that early signals have more weight continues to hold in these 
extensions. One notable exception is when agents only observe their immediate 
predecessor, in which case ABEE and PBE offer the same result. In fact, accord-
ing to the PBE, different assumptions on the observability of past actions do not 
change the agents’ behavior: observing the entire sequence or a number n ≥ 1 of 
immediate predecessors leads anyway to efficient learning. In the ABEE, instead, 
the longer the sequence of immediate predecessors an agent can observe, the 
higher the bias in favor of early signals. We refer the reader to the working paper 
version of the article (Guarino and Jehiel 2009) for a comprehensive analysis of 
these cases.

III.  Conclusion

Social learning in real economies is a fascinating and complex phenomenon. The 
models of rational social learning have helped us in understanding many mecha-
nisms through which people learn from others. They have shed light on phenomena 
such as fads, fashion, and cultural change. While a number of insights obtained in 
that literature sound intuitively appealing (such as the explanation of herding), oth-
ers are less so (such as the overturning principle), and many of the obtained insights 
rely on inference processes that seem too complex to describe accurately the mode 
of reasoning of real subjects.
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In this paper, we have proposed an alternative model of inference based on 
coarse knowledge about how others’ choices relate to the state of the economy. 
We have developed the corresponding analysis in two classic extensions of the 
basic social learning model, and shown how and when biases and long-run inef-
ficiencies could arise in such frameworks. While the type of coarse knowledge 
assumed in this paper sounds plausible to us in that it requires that agents link 
only the state of the economy to the distribution of individual actions (as opposed 
to the profile of actions in their detailed sequencing), there are obviously alterna-
tive forms of coarse inferences that could be considered. It would be of interest, in 
future research, to explore experimentally the extent to which the mode of infer-
ence assumed in this paper captures the mode of reasoning of human subjects, and 
in which circumstances.

Appendix: Proofs

Proof of Proposition 1 (i):
First, we prove the existence of a symmetric equilibrium in which ​β​T​ (0 ) 

= ​β​T​ (1 ) ≡ ​β​T​ ∈ (​ 1 _ 2 ​, 1). The argument is standard. Let us define the function 
ϕ: [0.5, 1 ] → [0.5, 1 ] that, for a given ​β​T​  , gives the aggregate distribution of actions 
conditional on a state of the world (in the best response to ​β​T​), ϕ(​β​T​ ). We want to 
prove that there exists a ​β​T​ such that ​β​T​ = ϕ(​β​T​ ). Recall that for a given ​β​T​ , the best 
response of agent t consists in choosing action ​a​t​ = 1 (0) when the likelihood ratio

	​ 
Pr(ω = 1 | ​h​t​ , ​s​t​ )  __  
Pr(ω = 0 | ​h​t​ , ​s​t​ )

 ​ = ​​( ​  ​β​T​
 _ 

1 − ​β​T​
 ​ )​​| a=1 | − | a=0 |

​​​( ​  ​q​t​ _ 
1 − ​q​t​

 ​ )​​2​s​t​−1
​

is greater (lower) than 1.
Consider, first, the case of ​β​T​ = ​ 1 _ 2 ​. In this case, other agents’ decisions are per-

ceived as uninformative. Therefore, each agent just follows his private signal. 
As a result, the aggregate distribution of a = ω in state ω is ϕ(​ 1 _ 2 ​ ) = E(​q​t​ ) > ​ 1 _ 2 ​ . 
Consider, now, the case of ​β​T​ = 1. In this case, other agents’ decisions are per-
ceived as perfectly informative. Therefore, after the first agent chooses (by follow-
ing his own signal), all the others simply imitate him. As a result, the aggregate 
distribution of a = ω in state ω is again ϕ(1 ) = E(​q​t​ ) < 1. Finally, notice that, at 
any time t, the probability that an agent receiving signal ω chooses a = ω is 1 

if | a = ω | ≥ | a = 1 − ω | and is 1 − F ​( ​  (1 − ​β​T​​)​ | a=ω | − | a=1−ω |​
   ___    

(1 − ​β​T​)​ ​  ​ 
| a=ω | − | a=1−ω |

​ + ​β​ T​ 
| a=ω | − | a=1−ω |

​
 ​ )​  

otherwise. Since ​q​t​ is distributed according to a continuous density function, ϕ(​β​T​ ) is 
a continuous function. By the intermediate value theorem, there exists a ​β​T​ ∈ (​ 1 _ 2 ​, 1)  
such that ϕ(​β​T​ ) = ​β​T​ .

Now we prove that there does not exist an ABEE with ​β​T​ < ​ 1 _ 2 ​.
By contradiction, suppose ​β​T​ < ​ 1 _ 2 ​. Without loss of generality, let us consider 

the case in which ω = 1. Let us define ​​   β​​t​ as the aggregate distribution of actions at 
time t. Note that ​β​T​ = ​ 1 _ T ​ ​∑​ t=1​ T

  ​ ​​   β​​t​  .
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Observation: an agent who observes | a = 1 | − | a = 0 | = n > 0, chooses action 1  

with probability E​q​t​​( 1 − F​( ​  (1 − ​β​T​​ )​ n​
 _ 

​β​ T​ n ​ + (1 − ​β​T​​ )​ n​
 ​ )​ )​ and action 0 with complementary probability  

​( 1 − E​q​t​ )​ + E​q​t​F​( ​  (1 − ​β​T​​ )​ n​
 _ 

​β​ T​ n ​ + (1 − ​β​T​​ )​ n​
 ​ )​. Similarly, an agent who observes | a = 1 | − | a = 0 |  

= −n < 0, chooses action 0 with probability ​( 1 − E​q​t​ )​ ​( 1 − F​( ​  (1 − ​β​T​​ )​ n​
 _ 

​β​ T​ n ​ + (1 − ​β​T​​ )​ n​
 ​ )​ )​ and 

action 1 with complementary probability E​q​t​ + ​( 1 − E​q​t​ )​ F​( ​  (1 − ​β​T​​ )​ n​
 _ 

​β​ T​ n ​ + (1 − ​β​T​​ )​ n​
 ​ )​. (Of course, 

an agent who observes | a = 1 | − | a = 0 | = 0, chooses action 1 with probability E​q​t​ 
and action 0 with complementary probability 1 − E​q​t​ .)

Now, consider any time t. Observe that for odd t, the total number of actions 
1 minus the total number of actions 0 until time t included (let us denote it by 
​θ​t​), can take the following values ±1, ±3, … , ±(t − 1 ). For even t, the values are 
0,  ± 2, … , ± (t − 1 ). Note that for each history of actions ​( ​a​1​, ​a​2​, ​a​3​, … , ​a​t​ )​ leading 
to ​θ​t​ = −m < 0, there exists the history of actions ​( 1 − ​a​1​, 1 − ​a​2​, 1 − ​a​3​, … , 1 − ​a​t​ )​ 
leading to ​θ​t​ = m > 0. By using the expressions in the above Observation, it is 
immediate to verify that the probability of the latter history is always higher than 
the probability of the former. (The only remaining histories are such that ​θ​t​ = 0.) 
Therefore, at each time t, ​​   β​​t​ > ​ 1 _ 2 ​. It is then immediate to conclude that ​β​T​ > ​ 1 _ 2 ​,  
a contradiction.

Proof of Proposition 1 (ii):
Without loss of generality, suppose the state of the world is ω = 0. Suppose 

​β​ T​ * ​ (0 ) → ​   
 

 β​ and ​β​ T​ * ​ (1 ) → ​   
 

 β​, for ​   
 

 β​ = 1 − ε, and for a small ε.
First, note that if ​β​ T​ * ​ (0 ) → ​   

 
 β​, then an agent receiving a signal of precision ​q​t​ < ​   

 
 β​ 

always follows the majority. Consider the least favorable case in which the major-

ity is by only one. Clearly, the likelihood ratio is (​  ​ ̂  
 

 β​
 _ 

1 − ​   
 

 β​ ​​)​
I

​ (​  ​q​t​
 

_ 1 − ​q​t​ ​​)​
2​s​t​−1

​, where I takes 

value 1 if the majority action is 1 and  −1 if it is 0. This likelihood ratio is higher or 
lower than 1 (and so the action chosen by the agent is either 1 or 0) depending only 
on the choice of the predecessors, since ​q​t​ < ​   

 
 β​. The argument holds a fortiori if the 

majority is by a number greater than one.
Now, we find a lower bound for the probability of the incorrect action. Consider 

the event that the first agent receives the signal ​s​1​ = 1 (an event that occurs with 
probability 1 − E​q​1​). The first agent obviously chooses ​a​1​ = 1. Now, consider the 
second agent. If he receives the signal ​s​2​ = 1, he chooses ​a​2​ = 1. If he observes ​
s​2​ = 0, he chooses ​a​2​ = 1 with the same probability as the probability that ​q​2​ < ​   

 
 β​, 

F(​   
 

 β​ ), as we know from the previous reasoning. Using Taylor’s expansion, it is easy 
to show that this probability is F(​   

 
 β​ ) > 1 − 2 f (1 )ε, for ε < ​_ ε​ and some ​

_
 ε​ > 0.

Similarly, if the third agent receives the signal ​s​2​ = 1, he chooses ​a​3​ = 1, and if 

he observes ​s​3​ = 0, he chooses ​a​3​ = 1 with a probability equal to F  (​  ​​ ̂  
 

 β​​ 2​
 

_ 
​​   
 

 β​​ 2​ + (1 − ​   
 

 β ​​)​ 2​
 ​).  

Note that ​  ​​   
 

 β​​ 2​
 _ 

​​   
 

 β​​ 2​ + (1 − ​   
 

 β​ ​)​ 2​
 ​ > ​​   

 
 β​​ 2​ and so F (​  ​​ ̂  

 
 β​​ 2​
 

_ 
​​   
 

 β​​ 2​ + (1 − ​   
 

 β​ ​)​ 2​
 ​) > F(​​   

 
 β​​ 2​ ). Using again Taylor’s 

expansion, it is easy to prove that F(​​   
 

 β​​ 2​ ) is greater than 1 − 4 f (1 )​ε​2​ for ε < ​_ ε​ and 
some ​

_
 ε​ > 0. A similar analysis proves that if agent t observes ​s​t​ = 0, he chooses ​

a​t​ = 1 with a probability not lower than 1 − ​2​t−1​ f (1 )​ε​t​.
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Therefore, the probability that every agent t chooses action ​a​t​ = 1 is higher than

	 (1 − E​q​1​ )​∏ ​ 
k=2

 ​ 
T

  ​​( 1 − ​2​k−1​f (1 )​ε​k−1​ )​ .

Taking the logarithm of ​∏​ k=1​ T
  ​ ​( 1 − ​2​k​ f (1 )​ε​k​ )​, we obtain

	 log ​∏ ​ 
k=1

 ​ 
T

  ​​( 1 − ​2​k​ f (1 )​ε​k​ )​ = ​∑ ​ 
k=1

​ 
T

  ​log​( 1 − ​2​k​ f (1 )​ε​k​ )​ ,

which, using Taylor’s expansion again, can be shown to be greater than

	​ ∑ ​ 
k=1

​ 
T

  ​ − a​2​k​ f (1 )​ε​k​,

for some a > 1. Therefore, the probability that every agent chooses the incorrect 
action is bounded below by

	 (1 − E​q​1​ )exp ​{ −a f (1 )​∑ ​ 
k=1

​ 
T

  ​​2​k​​ε​k​ }​ ,
which, for T → ∞, is equal to

	 (1 − E​q​1​ )exp ​{ −a f (1 ) ​  2ε _ 
1 − 2ε

 ​ }​ .
This expression is close to (1 − E​q​1​ ) > 0 for ε close to zero, thus contradicting that ​
β​ T​ *

 ​ (0 ) → ​   
 

 β​ = 1 − ε.

Proof of Proposition 3:
To prove our result, we first prove a lemma. Let us define ​Z​t​ := ​ ​∑​ i=1​ t  ​​u​i​

 _ 
t(t + 1)/2 ​ , 

where the random variables ​u​i​ are distributed as follows: Pr(​u​i​ = i | ω = 1 )  
= Pr(​u​i​ = 0 | ω = 0) = q, Pr(​u​i​ = 0 | ω = 1) = Pr(​u​i​ = i | ω = 0) = 1 − q, for 
q ∈ (0.5, 1). For interpretation, note that in an ABEE, at time t + 1, the subjective 
public belief is obtained by counting the first signal t times, the second t − 1 times, 
etc. These are the numbers taken by the random variable ​u​i​ (for i = t, t − 1, …) when 
the first signal takes value ​ ​u​t​

 _ t ​, the second signal takes value ​ ​u​t−1​
 _ t − 1 ​, etc. Therefore, ​Z​t​ 

summarizes the subjective public belief at time t + 1 in our ABEE in the limit case in 
which all signals’ precisions tend to the same value q. We have the following lemma:

Lemma 1: Consider the limit case in which the precisions of all signals have the 
same value q ∈ (0.5, 1 ). Then, Pr( ​| ​Z​t​ − q |​ > ε) ≤ 2​e​−t​m​ *​​ε​   2​​, where ​m​*​ is the value of 
m that solves the equation (q + ε )m = log((1 − q ) + q​e​m​).

Proof of Lemma 1:
We consider the case of ω = 1. We prove the proposition in four steps.
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Step 1: Consider a number a ∈ (q, 1 ). By applying Chebychev’s inequality, we obtain

Pr(​Z​t​ ≥ a) = Pr​( λ​∑ ​ 
i=1

 ​ 
t

  ​​u​i​ ≥ λa ​ 
t(t + 1 )
 _ 

2
 ​  )​ = Pr​( ​e​λ​∑​ i=1​ t  ​​u​i​​ ≥ ​e​λa  ​ 

t(t+1 )
 _ 

2
 ​

​ )​ ≤ ​ ​Ee​λ​∑​ i=1​ t  ​​u​i​​ _ 
​e​λa  ​ 

t(t+1 )
 _ 

2
 ​

​

 ​ ,

where λ > 0. Since λ is arbitrary, it is also true that

	  Pr(λ​∑ ​ 
i=1

 ​ 
t

  ​​u​i​ ≥ λa ​ 
t(t + 1 )
 _ 

2
 ​ ) ≤ ​ inf   

λ>0
​ E(​e​λ​( ​∑ 

i=1
​ 

t

  ​ ​u​i​​−a  ​ 
t(t+1 )
 _ 

2
 ​  )​

​) = ​ inf   
λ>0

​ E​e​λ​∑ 
i=1

​ 
t

  ​ ​u​i​​​ ​e​−λa  ​ 
t(t+1 )
 _ 

2
 ​

​.

Now, note that

	 E​e​λ​∑​ i=1​ t  ​ ​u​i​​ =  ​∏​ i=1​ 
n
  ​ E​e​λ​u​i​​ = ​∏​ i=1​ 

n
  ​(1 − q ) + q​e​λi​ )  

 	 =  exp ​{ ​∑ ​ 
i=1

 ​ 
t

  ​log((1 − q ) + q​e​λi​ ) }​ ,
where we use the fact that the random variables ​u​i​ are independently distributed. 
Therefore, we can conclude that

	 Pr ​( ​Z​t​ ≥ a )​ = Pr ​( λ​∑ ​ 
i=1

 ​ 
t

  ​ ​u​i​ ≥ λa  ​ 
t(t + 1 )
 _ 

2
 ​  )​ 

	 ≤ ​ inf   
λ>0

​ exp ​{  ​∑ ​ 
i=1

 ​ 
t

  ​ log((1 − q ) + q​e​λi​ ) − λa​ 
 t(t + 1 )
 _ 

2
 ​  }​ .

Step 2: Now we rewrite this upper bound in a more convenient form. First, let us 
rewrite the sum in the exponent as follows:

​∑ ​ 
i=1

 ​ 
t

  ​log((1 − q ) + q​e​λi​ ) − λa ​ 
t(t + 1 )
 _ 

2
 ​  = ​∑ ​ 

i=1
 ​ 

t

  ​​( log((1 − q ) + q​e​λi​ ) − λai )​ .

Now let us replace λ with m = tλ and obtain

​∑ ​ 
i=1

 ​ 
t

  ​​( log((1 − q ) + q​e​λi​ ) − λai )​ = t​∑ ​ 
i=1

 ​ 
t

  ​​ 1 _ 
t
 ​ ​( log((1 − q ) + q​e​m ​ i _ 

t
 ​​ ) − ma ​ i _ 

t
 ​ )​ .

When t gets large, the sum on the right-hand side approaches the Riemann inte-
gral of the function log((1 − q ) + q​e​mx​ ) − amx, for x that goes from 0 to 1. For large 
t the following approximation is, therefore, exact:

​∑ ​ 
i=1

 ​ 
t

  ​​ 1 _ 
t
 ​​( log((1 − q ) + q​e​λi​ ) − λai )​ ≈ t​∫​ 

0
​ 
1

​​( log((1 − q ) + q​e​mx​ ) − amx )​ dx.
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Hence, we can write

Pr ​( ​Z​t​ ≥ a )​ ≤ ​ inf   
m>0

​ exp ​{ − t​∫​ 
0
​ 
1

​​( amx − log​( (1 − q ) + q​e​mx​  )​ )​ dx }​ .
Step 3: Now we look for the m that makes the integral as large as possi-

ble, since we want to make our upper bound tight. Note that the integrand f (y ) 
= ​( ay − log((1 − q ) + q​e​ y​ ) )​ is strictly concave, it takes value 0 when y = 0, it is 
then positive and eventually becomes negative. In particular, for x = 1, it becomes 
zero in the point ​m​*​ > 0 that solves a​m​*​ = log(1 − q + q​e​ ​m​*​​ ). To maximize the inte-
gral, we want to integrate the function under all its positive area. Therefore, we have

Pr ​( ​Z​t​ ≥ a )​ ≤ exp ​{ − t​∫​ 
0
​ 
1

​(a​m​*​x − log((1 − q ) + q​e​​m​*​x​ )) dx  }​.
Step 4: Finally, we find an approximation for the integral. The integrand f (y ) is 

maximized at y = log​ a(1 − q )
 _ q(1 − a ) ​ > 0 (since q < a ). Moreover, at the maximum, its value 

is a log​ a _ q ​ + (1 − a )log​ 
(1 − a )
 _ 

(1 − q )
 ​  : = H(a ) ≥ 0. Now, since ​( ay − log((1 − q ) + q​e​ y​ ) )​ 

is positive in the interval (0, ​m​*​ ), is concave and has a maximum value H(a ), we can 
draw a triangle underneath it with a base [0, ​m​*​ ] and a height H(a ), and the area of 
this triangle is a lower bound on our integral. That is,

​∫​ 
0
​ 
1

​(a​m​*​x − log((1 − q ) + q​e​​m​*​x​ )) dx ≥ ​ ​m​*​ _ 
2
 ​  H(a ) ≥ ​m​*​(a − q​ )​2​,

where the last inequality comes from the fact that H( p + x ) ≥ 2​x​ 2​.
Therefore, we can conclude that

Pr ​( ​Z​t​ − q ≥ ε )​ ≤ ​e​
−t ​ ​m​*​ _ 

2
 ​  H(q+ε )​ ≤ ​e​−t​m​*​​ε​ 2​​.

Analogous arguments show that

Pr ​( ​Z​t​ − q ≤ −ε )​ ≤ ​e​
−t ​ ​m​*​ _ 

2
 ​ H(q−ε )​ ≤ ​e​−t​m​*​​ε​ 2​​.

Finally, we can conclude that

Pr ​( ​| ​Z​t​ − q |​ ≥ ε )​ ≤ 2​e​−t​m​*​​ε​ 2​​.

Proof of Proposition:
Equipped with this lemma, we now prove the proposition. As we know,

	​ 
​a​ t+1​ *  ​
 _ 

1 − ​a​ t+1​ *  ​
 ​ = ​∏​ i=1​ 

t
  ​(​  ​q​i​

 _ 
1 − ​q​i​

 ​​)​
(2​s​i​−1)(t+1−i )

​(​  ​q​t+1​
 _ 

1 − ​q​t+1​
 ​​)​

2​s​t+1​−1

​.
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Let us consider the case in which ω = 1. Suppose all correct signals (i.e., ​s​i​ = 1) 
are received with the lowest precision ​_ q​ , and all the incorrect signals (i.e., ​s​i​ = 0) are 
received with the highest precision ​

_
 q​. Furthermore, assume signals are drawn from 

a Bernoulli distribution with Pr(​s​i​ = 1 | ω = 1 ) = ​_ q​. Note that this is the worst case 
for convergence to the true state of the world.

In such a case, the likelihood ratio becomes

	​ 
​a​ t+1​ *  ​
 _ 

1 − ​a​ t+1​ *  ​
 ​ = (​  ​q _​

 _ 
1 − ​q _​

 ​​)​
​∑ ​ 
i=1

 ​ 
t

  ​ ​u​i​
​(​ 1 − ​_ q​

 _ ​_ q​ ​​ )​
​( ​ t(t+1 )

 _ 
2

 ​  − ​∑ ​ 
i=1

 ​ 
t

  ​
 
​u​i​ )​

​(​  ​q​t+1​
 _ 

1 − ​q​t+1​
 ​​)​

2​s​t+1​−1

​.

By taking the logarithm of both sides, we have

  log ​ 
​a​ t+1​ *  ​
 _ 

1 − ​a​ t+1​ *  ​
 ​ = ​( ​∑ ​ 

i=1
 ​ 

t

  ​ ​u​i​ )​ log (​  ​q _​
 _ 

1 − ​q _​
 ​)  

	 +  (​ t(t + 1 )
 _ 

2
 ​  − ​∑ ​ 

i=1
 ​ 

t

  ​​u​i​ )log(​ 1 − ​_ q​
 _ ​_ q​ ​ ) + log(​  ​q​t+1​

 _ 
1 − ​q​t+1​

 ​​)​
2​s​t+1​−1

​.

By dividing both sides by ​ 
t(t + 1 )
 _ 

2
  ​,

	​   1 _ 
​ 
t(t + 1 )
 _ 

2
  ​

 ​ log ​ 
​a​ t+1​ *  ​
 _ 

1 − ​a​ t+1​ *  ​
 ​ = ​ 

​∑ ​ 
i=1

 ​ 
t

  ​​u​i​
 _ 

​ 
t(t + 1 )
 _ 

2
  ​

 ​ log(​  ​q _​
 _ 

1 − ​q _​
 ​) + ​ 

(​ t(t + 1 )
 _ 

2
  ​ − ​∑ ​ 

i=1
 ​ 

t

  ​​u​i​) 
  __  

​ 
t(t + 1 )
 _ 

2
  ​

 ​  log(​ 1 − ​_ q​
 _ ​_ q​ ​ )

			   + ​  1 _ 
​ 
t(t + 1 )
 _ 

2
  ​

 ​ log(​  ​q​t+1​
 _ 

1 − ​q​t+1​
 ​​)​

2​s​t+1​−1

​ 

		  = ​Z​t​ log(​  ​q _​
 _ 

1 − ​q _​
 ​) + ​( 1 − ​Z​t​ )​ log(​ 1 − ​_ q​

 _ ​_ q​ ​ ) 

			   + ​  1 _ 
​ 
t(t + 1 )
 _ 

2
  ​

 ​ log(​  ​q​t+1​
 _ 

1 − ​q​t+1​
 ​​)​

2​s​t+1​−1

​.
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By our previous proof, ​Z​t​ ​→​ a.s.
 ​ ​_ q​ as t → ∞. Therefore,

​ lim   
t→∞

​ ​  1 _ 
​ 
t(t + 1 )
 _ 

2
  ​

 ​ log ​ 
​a​ t+1​ *  ​
 _ 

1 − ​a​ t+1​ *  ​
 ​ = ​q _​ log(​  ​q _​

 _ 
1 − ​q _​

 ​) + ​( 1 − ​q _​ )​ log(​ 1 − ​_ q​
 _ ​_ q​ ​ ) .

By our assumption, the right-hand side is positive, which implies that log 

​ 
​a​ t+1​ *  ​
 _ 

1 − ​a​ t+1​ *  ​
 ​ converges almost surely to infinity.

Finally, consider the worst case in which agent t receives the incorrect signal, and 
observe that

	 Pr (1 − ​a​ t​ *​ < ε | ω = 1 )  

      = Pr (​  ​a​ t​ *​
 _ 

1 − ​a​ t​ *​
 ​ > ​ 1 − ε _ ε ​  | ω = 1) 

  	   = Pr (​  1 _ 
​ 
t(t − 1 )
 _ 

2
  ​

 ​ log ​ 
​a​ t​ *​ _ 

1 − ​a​ t​ *​
 ​ > ​  1 _ 

​ 
t(t − 1 )
 _ 

2
  ​

 ​ log ​ 1 − ε _ ε ​  | ω = 1)
  	   = Pr (​Z​t−1​log(​  ​q _​

 _ 
1 − ​q _​

 ​) + ​( 1 − ​Z​t−1​ )​ log(​ 1 − ​_ q​
 _ ​_ q​ ​ ) + ​  1 _ 

​ 
t(t − 1 )
 _ 

2
  ​

 ​log(​ 1 − ​q _​
 _ ​q _​ ​ ) 

			   > ​  1 _ 
​ 
t(t − 1 )
 _ 

2
  ​

 ​ log ​ 1 − ε _ ε ​  | ω = 1) .

Therefore,

	 Pr (1 − ​a​ t​ *​ < ε | ω = 1 ) = Pr (​Z​t−1​ > ​   
 

 Ψ​(t, ε) | ω = 1 ),

where ​ ˜ 
 

 Ψ​(t, ε) := ​ 
​  2

 _ 
t(t − 1 )

 ​(log ​ 1 − ε _ ε ​  − log ​ 
1 − ​q _​

 _ ​q _​ ​ ) − log ​ 
1 − ​_ q​

 _ ​_ q​
 ​

   ___   
log(​  ​q _​

 _ 
1 − ​q _​

 ​) − log(​ 1 − ​_ q​
 _ ​_ q​ ​  )  ​ .

By our lemma, for large t, for any δ = ​_ q​ − ε,

Pr (​Z​t−1​ > δ) | ω = 1 ) ≥ 1 − ​e​−​m​*​t​ε​ 2​​.
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Therefore,

	 Pr (1 − ​a​ t​ *​ < ε | ω = 1 ) = Pr (​Z​t−1​ > ​   
 

 Ψ​(t, ε) | ω = 1 ) ≥ 1 − ​e​−​m​*​t​​( q−Ψ(ε ) )​​ 2​​,

where Ψ(ε) := ​ 
log ​ 1 − ε _ ε ​

  __  
log​ 

​q _​
 _ 

1 − ​q _​
 ​ − log​ 

1 − ​_ q​
 _ ​_ q​

 ​

 ​ + 1 (note that Ψ(ε ) is an upper bound for 

​ ˜ 
 

 Ψ​(t, ε ), since ​ ˜ 
 

 Ψ​(t, ε ) is decreasing in t).

Given that we considered the worst case, the above expression for 
Pr(1 − ​a​ t​ *​ < ε | ω = 1) is lower than the correct value, and the result of Proposition 3 
follows.
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