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We introduce a new model of aggregate information cascades where only one of two
possible actions is observable to others. Agents make a binary decision in sequence.
The order is random and agents are not aware of their own position in the sequence.
When called upon, they are only informed about the total number of others who have
chosen the observable action before them. This informational structure arises naturally in
many applications. Our most important result is that only one type of cascade arises in
equilibrium, the aggregate cascade on the observable action. A cascade on the unobservable
action never arises.
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1. Introduction

A hiring committee must make a decision on a job candidate who has just been interviewed. The candidate mentions
that three other companies have already made him an offer, information that the committee can verify. On the other hand,
the committee can only speculate on how many rival companies have already rejected the candidate’s job application.

A manager of a venture capital firm discusses a project with an inventor who needs capital to develop a new product.
The inventor has already secured funds from two other venture capital firms, information that the present manager can
verify. The manager will also have some private information about the viability of the project but he can only speculate
about how often the inventor was turned down by other rival firms who thought that the project was bad.1

A restaurant goer must decide whether or not he wants to dine at a particular restaurant he stands in front of. He has
some private information on how good the restaurant is, and he is able to peer through the window to see how many
others have already decided to dine there. But he can only speculate about how many others stood before the same door
and decided to pass.

✩ We thank Roberto Burguet, Marco Cipriani, Olivier Compte, Giuseppe Della Corte, Douglas Gale, Nicola Pavoni, Giulia Sestieri and participants in the June
2007 IESE Workshop on Industrial Organization and Finance for useful comments. The revision of the paper owes a lot to the very insightful comments and
suggestions of an advisory editor and of a referee. We thank Silvia Camussi and Minyu Chen for excellent research assistance. Errors are ours. We gratefully
acknowledge financial support from the ESRC, the ERC and the Leverhulme Trust.

* Corresponding author.
E-mail addresses: aguarino@ucl.ac.uk (A. Guarino), harmgarh@ebrd.com (H. Harmgart), s.huck@ucl.ac.uk (S. Huck).

1 This example could also be extended to the market for syndicated loans where several banks jointly offer funds to a borrowing firm. See for example
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contract.
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What these examples have in common is that agents who have to decide between two options have only aggregate infor-
mation about one of the two options (offering a job, financing a project, dining in a restaurant), simply because the choice
of the other option is not observable. In this paper we study the properties of social learning in this type of environment.

This informational environment arises naturally in many social interactions. Like in the case of the restaurant goer or
the venture capital firm, in many circumstances, a decision maker can gather some aggregate information (how many firms
have already adopted a new technology, invested in a specific project, etc.), but he can rarely observe all the individual
decisions. Clearly, if the decision is binary, knowing the number of agents who have made a certain decision also helps to
update on the number of agents who have made the opposite decision. But this is not equivalent to knowing it. And, as we
will show in this paper, this makes an important difference for social learning.

The social learning literature so far has focused on situations where, in principle, all available actions are observable.
The seminal models of informational cascades (Banerjee, 1992; and Bikhchandani et al., 1992), for instance, contemplates
a sequence of binary decisions which are all observable. Agent i knows whether each predecessor in the sequence, from
agent 1 to agent i − 1, decided in favor of one option or the other. Several studies since have relaxed these stringent
assumptions, some of which we will discuss briefly below. The question of what happens if some actions are not observable
at all, however, has not yet been addressed.

In the sequential models of Banerjee (1992) and Bikhchandani et al. (1992) informational cascades arise: at a certain
point in the sequence, agents rationally neglect their own private information, that is, they choose the same action inde-
pendently of the information they receive (and follow the decisions of the predecessors). In particular, different types of
cascades can arise. If the decision is binary, say, between investing and not, there can be cascades in which, from a certain
point onwards, all decision makers decide to invest, as well as cascades in which, from a certain point onwards, all decision
makers decide not to invest.

At a first glance, one could think that this may be the case in our set up, too. If a restaurant goer sees many people in a
restaurant, he could disregard his information and just join the crowd; and if he sees the restaurant empty, he could decide
to go somewhere else independently of his private signal.

We will show, on the contrary, that only the first cascade is possible. In equilibrium, cascades on the unobservable action
cannot arise and a restaurant about which some people have read good reviews will not remain empty forever. Intuitively,
a cascade on the unobservable action cannot be an equilibrium outcome since if all agents chose the unobservable action
(not dining at the restaurant) independently of their signal, then the observation that no one has chosen the observable
action (dining at the restaurant) would be completely uninformative. Then it would be optimal for an agent with a signal
in favor of the observable action to deviate, that is, to follow his signal and choose that action.

After showing that cascades on the unobservable action cannot occur, we will show that the equilibrium in our model
predicts a very simple behavior, with agents following their private signal until a threshold in the aggregate number of the
observable action has been reached: after that threshold a cascade occurs, with all agents choosing the observable action
independently of their signal. We will illustrate the properties of these cascades, and compare the welfare in our economy
with that in the seminal model of Bikhchandani et al. (1992). We will see that under some conditions welfare can even be
higher in our model, despite agents having access to less information.

Our work contributes to the study of social learning when there is imperfect observability of other agents’ actions. The
paper most closely related to ours is probably the recent work by Herrera and Hörner (2009). This paper shares the same
motivation with ours, in that it focuses on social learning when only one action is observable. While the motivation is the
same, the framework is very different. In their continuous time model, agents arrive randomly over time, and only those
who invest are observed. Therefore, the lack of observed investments may reflect either the choice of predecessors not to
invest or the lack of investment opportunities. Time itself is informative. In terms of results, exactly as it happens in the
standard model (Smith and Sørensen, 2000), in their model cascades can occur on both actions if and only if beliefs are
bounded while, with unbounded beliefs, learning is asymptotically complete.2 The probability of an incorrect cascade is
higher or lower than in the standard model depending on some properties of the signal distributions.

Other papers in the social learning literature study what happens when we remove the strong assumption that agents
can observe the entire history of individual decisions.3 Çelen and Kariv (2004) extend the standard model of sequential
social learning by allowing each agent to observe the decision of his immediate predecessor only. The prediction of these
authors is that behavior does not settle on a single action. Long periods of herding can be observed, but switches to the
other action occur. As time passes, the periods of herding become longer and longer, and the switches increasingly rare.
Larson (2008) analyzes a situation in which agents observe a weighted average of past actions before making a choice
in a continuous action space. In contrast to our work, the focus is not on whether a cascade occurs or not, but on the
speed of learning (since the continuous action space guarantees that complete learning eventually occurs). An interesting
observation of this study is that the speed of learning depends on how effectively the noise coming from early actions is
purged. Collander and Hörner (2009) present a model in which an agent observes only the total number of choices of each
type (in a binary action setting), rather than the full sequence of actions. They characterize conditions under which later
agents optimally imitate the minority, rather than the majority action.

2 Beliefs are (un)bounded when the support of the loglikelihood ratio—the logarithm of the ratio between the probabilities of a signal conditional on one
state relative to the other—is (un)bounded.

3 For comprehensive surveys of the literature see, among others, Gale (1996), Hirshleifer and Teoh (2003), Chamley (2004) and Vives (2008).
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Banerjee and Fudenberg (2004), Smith and Sørensen (2008) and Acemoglu et al. (2010) study social learning when agents
can only observe a sample of predecessors’ actions. Banerjee and Fudenberg (2004) present a model in which, at every time,
a continuum of agents choose a binary action after observing a sample of previous decisions (and, possibly, of signals on
the outcomes). This can be interpreted as a model of word of mouth communication in large populations. The authors find
sufficient conditions (on the sampling rule, etc.) for herding to arise, and conditions for all agents to settle on the correct
choice. Smith and Sørensen (2008) study a sequential decision model in which agents can only observe unordered random
samples from predecessors’ actions (e.g., because of word of mouth communication). They characterize different conditions
on the sampling procedure and on the beliefs to have complete or incomplete learning. When the past is not over-sampled,
that is, not affected forever by any one individual, and when beliefs are unbounded, complete learning eventually obtains.
Acemoglu et al. (2010) analyze a situation in which agents observe the past actions of a stochastically-generated neighbor-
hood of individuals. Differently from Smith and Sørensen (2008), who assume that “samples are unordered” (individuals
do not know the identity of the agents they have observed), in Acemoglu et al. (2010) individuals know the identity of
the agents in their realized neighborhood. In this sense, their work studies social learning in social networks. In this set
up, when beliefs are unbounded, there is asymptotic learning (defined as convergence of the actions to the correct one) as
long as there is some minimal amount of “expansion in observations”. For many common deterministic and stochastic net-
works, bounded private beliefs are, instead, incompatible with asymptotic learning, as in the standard model. Nevertheless,
the authors find conditions under which asymptotic learning obtains even with bounded private beliefs for a large class of
stochastic network topologies.

Finally the issue of imperfect observability is also discussed in recent papers by Eyster and Rabin (2008) and Guarino and
Jehiel (2009) in contexts in which agents are not fully rational. The imperfect observability can actually alleviate some biases
that bounded rationality produces in a classical model of learning with continuous action space similar to that of Lee (1992).

The remainder of the paper is organized as follows. In Section 2 we introduce the formal model. We present its equi-
librium analysis in Section 3. Section 4 discusses when informational cascades arise in the sequence of decisions. Section 5
studies the welfare properties of our equilibrium. Section 6 illustrates extensions of our model. Section 7 concludes with a
discussion. Appendix A contains some of the proofs.

2. The model

In our economy there are n agents who have to decide in sequence whether or not to take up a certain option. For
convenience, we shall refer to this choice as the decision about whether or not to invest. Time is discrete and indexed by
i = 1,2, . . . ,n. Each agent makes his choice only once in the sequence. Agents are numbered according to their positions:
agent i chooses at time i only. An agent’s action space is given by {0,1}, and his action is denoted by I i ∈ {0,1} (where
1 is interpreted as investment). An agent’s payoff πi depends on his choice and on the true state of the world ω ∈ {0,1}.
The prior probability of ω = 1 is r � 1

2 .4 If ω = 1, an agent receives a payoff of 1 if he chooses to invest, and a payoff of 0
otherwise; vice versa if ω = 0, that is,

πi = ωIi + (1 − ω)(1 − Ii).

The sequence in which agents make their choices is randomly determined. All sequences are equally likely. The agents,
however, are not informed about which sequence has been chosen, and do not know their own position in the sequence.
Aggregate investments are the only observable variable: when called upon, agent i is informed about the total number of
agents who have decided to invest before him. While the aggregate number of investments is observable, each individual
decision to invest or not is not publicly known, nor is the total number of non-investments. We denote the total number of
agents who have invested before agent i by Ti : agent i is informed about Ti = ∑i−1

j=1 I j .5 In addition to observing Ti , each
agent i receives a symmetric binary signal σi distributed as follows:

Pr(σi = 1 | ω = 1) = Pr(σi = 0 | ω = 0) ≡ q.

Note that, conditional on the state of the world, the private signals are i.i.d. We shall refer to ω = 1 as the “good state”
and to ω = 0 as the “bad state”. A signal pointing in the direction of the good state (σi = 1) shall be called a “good signal”
and a signal pointing in the opposite direction (σi = 0) a “bad signal”. We assume that 1 > q > r. This condition ensures
that, in the one-agent case, an agent would not invest upon a bad signal while he would invest upon a good signal, which
renders the problem interesting. The condition also implies that q > 1

2 , that is, the signal respects the monotone likelihood
ratio property. Finally, the signal is not perfectly informative, which makes social learning possible and relevant.

An agent’s information set is, therefore, {Ti, σi}. An agent’s mixed strategy induces a probability with which the agent
invests for each {Ti, σi}. We denote such a probability by Ii(Ti, σi).6

4 Later we will also discuss the case r < 1
2 .

5 As we have already mentioned, and will write formally below, an agent does not know his index i. The only thing agent i, the ith agent in the sequence,
knows about his position is that he is not among the first Ti agents.

6 We use the same symbol to indicate both a random variable and its realization, unless it creates ambiguities.
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To conclude the description of our model, it is useful to introduce the notion of an aggregate information cascade. The
definition is similar to the standard definition of information cascade, with the characteristic that histories are summarized
by the aggregate statistic Ti .

Definition 1. An aggregate information cascade occurs when there is a critical value of Ti after which all agents choose the
same action independently of their signals. In particular:

In an aggregate up cascade (AUC) there is a critical value T UP such that if Tk = T UP all agents from k onwards choose to
invest regardless of their signals. Consequently, there is some k such that Tk+ j = Tk + j for all j = 1, . . . ,n − k.

In an aggregate down cascade (ADC) there is a critical value T DOWN such that if Tk = T DOWN all agents from k onwards
choose not to invest regardless of their signals. Consequently, in an ADC there is some k such that Tk+ j = Tk for all j =
1, . . . ,n − k.

We are now ready to start analyzing the equilibrium decisions in our economy.

3. Equilibrium analysis

The ultimate goal of our analysis is to understand the social learning process that occurs in our economy. Each agent can
learn about the true state of the world from the aggregate information that he receives about his predecessors’ choices. This
can lead to better decisions. On the other hand, it may be that in our economy, as in the canonical models of social learning
of Banerjee (1992) and Bikhchandani et al. (1992), there is room for information cascades. In such a case, the process of
information aggregation will not be efficient. We will show that, indeed, AUCs, that is, cascades of investments, are possible
even in our set up, just as in the canonical models. In contrast, ADCs, that is, cascades of non-investments, never occur in
equilibrium, unlike in the canonical models.

We shall restrict the entire analysis to symmetric Perfect Bayesian equilibria (PBEs). For convenience, we shall drop the
qualification and simply speak of an “equilibrium”.7 Since the equilibrium is symmetric, we will drop the subscript and
simply write I(Ti, σi).

To start our analysis, it is convenient to focus first on the case of Ti = 0, in which an agent observes that no one has
invested before him. At first glance, the decision problem in such a situation appears to be fairly complicated. If the agent
knew that Ti = 0 simply because he is the first decision maker, then he should certainly follow his private signal, since that
is the only information available. If, instead, he knew that he is not the first decision maker, then he could decide not to
invest independently of the signal, as other agents have already chosen the non-investment option. Intuitively, one might
think of Ti = 0 as bad information if there are many agents. Suppose that n is very large and you observe that nobody has
invested before you. But at the same time your own private signal is good. Would you trust your own signal? Of course,
the answer to this question would depend on the other agents’ strategies. While the problem is made hard due to the fact
that the agent does not know his position in the sequence, it is made easier due to the fact that the only thing that matters
about other agents’ strategies is what these specify for the very same case of Ti = 0.

We now prove that in equilibrium, after observing Ti = 0, agents do not play independently of their signal or against it.

Lemma 1. There exists no equilibrium in which an agent, after observing Ti = 0, always invests (i.e., for both signal realizations) or
never invests, or plays against his signal.

Proof. We prove the lemma by contradiction. Suppose that for Ti = 0 agents choose either to invest always or never
(independently of their private signals). Consider the latter possibility first, i.e., consider a pure-strategy equilibrium with
I(0,0) = I(0,1) = 0. Then, along the equilibrium path, nobody ever invests and, for any agent i = 1, . . . ,n, Ti = 0. Hence,
Ti = 0 does not reveal any information on the true state of the world and agent i is better off by following his informative
signal σi . Now, consider the case of investment after Ti = 0, i.e., an equilibrium with I(0,0) = I(0,1) = 1. In this case, along
the equilibrium path, only the first agent in the sequence observes that nobody else has invested before, that is, Ti = 0 if
and only if i = 1. Hence, after observing Ti = 0 agent i knows that he is the first agent in the sequence and follows his
signal. Finally, suppose that for Ti = 0 agents choose to play against their private information, i.e., consider an equilibrium
with I(0, σi) = 1 − σi . Then, along the equilibrium path, after observing Ti = 0, agent i knows that he is either the first in
the sequence or all other agents before him have received good signals. In both cases, if the agent receives a good signal,
he follows it. �

According to the previous lemma, the only remaining possibilities are that an agent observing Ti = 0 either follows his
own signal, that is, I(0, σi) = σi , or mixes (for at least one signal realization). We will show that, in equilibrium, agents do
follow their signal. To this aim, we first state a lemma that trivially follows from Bayesian updating.

7 Our economy is represented by a symmetric game and there is nothing in the environment that could help agents to coordinate on an asymmetric
outcome. Therefore, the restriction to symmetric equilibria is natural.
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Lemma 2. In equilibrium, I(Ti,1) � I(Ti,0) for all T i . In particular, if 0 < I(Ti,0) < 1 then I(Ti,1) = 1, and if 0 < I(Ti,1) < 1
then I(Ti,0) = 0.

Proof. In equilibrium, each agent will infer the same information from observing a particular value of Ti . Whatever the pos-
terior induced by just observing Ti , it follows immediately from Bayes’s rule that an agent who has an additional good signal
cannot be more pessimistic than an agent with a bad signal. The first part of the lemma results from this consideration and
from expected payoff maximization. The second part follows from the same argument and the additional observation that
mixing requires the agent being indifferent between the two actions. �

We are now ready to prove the following result:

Lemma 3. In equilibrium, after observing Ti = 0, an agent follows his own signal, that is, I(0, σi) = σi .

Proof. We first prove that it is indeed optimal for an agent i to follow his own good signal after Ti = 0 provided that
everybody else does the same. Assuming such behavior of others, an agent i who observes Ti = 0 and σi = 1 attaches to
the good state a posterior of

Pr(ω = 1 | Ti = 0, σi = 1) = rq
∑n

j=1(1 − q) j−1

rq
∑n

j=1(1 − q) j−1 + (1 − r)(1 − q)
∑n

j=1 q j−1
.

He will follow his good signal if this posterior is greater than 1/2, that is, if

rq
n∑

j=1

(1 − q) j−1 > (1 − r)(1 − q)

n∑
j=1

q j−1.

Solving for the sums and rearranging the terms, we obtain the condition r >
1−qn

2−(1−q)n−qn , which is always satisfied for r � 1
2 .

Now we show that an agent i who assumes that the others play according to their signals and observes Ti = 0 and σi = 0
does not invest, that is, we need that

Pr(ω = 1 | Ti = 0, σi = 0) = r(1 − q)
∑n

j=1(1 − q) j−1

r(1 − q)
∑n

j=1(1 − q) j−1 + (1 − r)q
∑n

j=1 q j−1
<

1

2
,

or

r(1 − q)

n∑
j=1

(1 − q) j−1 < (1 − r)q
n∑

j=1

q j−1,

which can be written as

r

(1 − r)
<

q2

(1 − q)2

1 − qn

1 − (1 − q)n
.

Since r < q we also have r
1−r <

q
1−q . Hence, the above inequality holds if q

1−q
1−qn

1−(1−q)n > 1. This can be rewritten as 2q >

1 + qn+1 − (1 − q)n+1 which is true for q > 1/2.
Finally, to complete the proof, we have to show that a mixed strategy equilibrium does not exist. By the previous lemma

we know that mixing cannot occur for both signals. We now rule out the case in which 0 < I(0,0) < 1 and I(0,1) = 1.
For an agent to be indifferent between investing and not investing after observing Ti = 0 and σi = 0 it must be that
Pr(ω = 1 | Ti = 0, σi = 0) = 1/2. Using Bayes’s rule, this can be re-written as

r Pr(Ti = 0, σi = 0 | ω = 1) = (1 − r)Pr(Ti = 0, σi = 0 | ω = 0),

or

r
n∑

j=1

(1 − q) j(1 − p) j−1 = (1 − r)
n∑

j=1

q j(1 − p) j−1,

where p denotes the probability with which all other agents who see Ti = 0 and σi = 0 invest. Rewriting this as

n∑[(
r(1 − q) j − (1 − r)q j)(1 − p) j−1] = 0
j=1
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makes it obvious that there is no p > 0 that solves the equation: since q > r, the left-hand side is strictly negative for
any positive p. To conclude, we rule out the case of mixing after observing the good signal. Agent i’s indifference between
investing and not investing after observing Ti = 0 and σi = 1 requires Pr(ω = 1 | Ti = 0, σi = 1) = 1/2. If all other agents
j �= i behave according to I(0,0) = 0 and I(0,1) = p, after applying Bayes’s rule and some algebraic manipulation, this
equality becomes

rq
n∑

j=1

(1 − pq) j−1 = (1 − r)(1 − q)

n∑
j=1

(
1 − p(1 − q)

) j−1
.

For r � 1
2 the left-hand side is strictly greater than the right-hand side for any value of p, which ends the proof. �

Our analysis essentially shows that, when facing a situation with no previous investments, an agent follows his signal.8

This clearly indicates that an ADC in which all agents choose not to invest, never occurs in equilibrium. In other words, to
go back to one of our examples, a restaurant will not stay empty forever only because it is empty when it opens.

While this puts already a lot of structure on the equilibrium solution of our game, we still have to investigate what
happens for different values of the aggregate investment Ti . Before we start this analysis, it is worth mentioning that, as
we will see, in some cases there are multiple equilibria in our model: an equilibrium in which a cascade starts after T
investments can coexist with one without a cascade after T . In these cases, agents who coordinate on the AUC equilibrium
at T could revert to the other equilibrium at T + 1. We rule out this trivial issue, by making the following assumption:

Assumption. Once agents have coordinated on an AUC at T UP , they will remain coordinated on that cascade for any T > T UP .

We now start our analysis by establishing an intuitive monotonicity result: a higher value of Ti is always good news, that
is, when an agent observes a higher number of investments made before him, he cannot be less willing to invest himself.
Once this monotonicity lemma is established, we will be able to show two fundamental results about aggregate cascades.

Lemma 4. In equilibrium, if T ′
i < T ′′

i then I(T ′
i , σi) � I(T ′′

i , σi) for both σi = 0 and σi = 1. If 0 < I(Ti, σi) < 1, then
I(Ti − 1, σi) = 0 and I(Ti + 1, σi) = 1.

Proof. See Appendix A. �
While this lemma seems very intuitive (how could a fuller restaurant be worse news than an emptier one?) it is actually

not trivial to prove it. At the core of the proof there is, however, a very simple logic. Essentially, it is the earlier monotonicity
result (Lemma 2) that drives this one. Agents with good signals are more likely to invest than agents with bad signals. Good
signals are more likely to be generated in the good state than in the bad state. Hence, Ti grows, on average, “faster” in the
good state than in the bad state. Therefore, the higher Ti the more confident can the agent be of being in the good state.

Equipped with these lemmata, we are now ready to state a proposition that characterizes which form of cascades will
or will not arise. We will show that ADCs never occur in equilibrium, while AUCs are always part of an equilibrium.

Proposition 1.

(i) An equilibrium in pure strategies exists. In any such equilibrium, an agent with a good signal invests with probability one in-
dependently of Ti (i.e., I(Ti,1) = 1 for all T i ); an agent with a bad signal does not invest up to a threshold T UP, and invests
with probability one after the threshold is reached (i.e., I(Ti,0) = 0 for all T i < T UP, and I(Ti,0) = 1 for all T i � T UP). For the
threshold T UP that triggers an AUC it holds that 0 < T UP � n

2 + 1.
(ii) There can exist an equilibrium in which, for a T MIX (0 < T MIX < n

2 +1), an agent with a bad signal mixes (i.e., 0 < I(T MIX,0) < 1).
In this equilibrium, for Ti < T MIX , an agent follows his bad signal and does not invest and for all T i > T MIX , he invests with
probability one. An agent with a good signal invests with probability one for all T i . In this equilibrium an AUC occurs for T UP =
T MIX + 1. If an equilibrium with such a T MIX exists, then there exist also an equilibrium in which I(T MIX,0) = 0 and one in which

I(T MIX,0) = 1.9

Proof. We will first prove part (i) of the proposition in four steps.

8 It is worth pointing out that in the proof of the previous lemma we use the condition r � 1
2 . For r < 1

2 , the same results obtain under some conditions
on the parameters r and q. When these conditions are not satisfied, there can be a mixed strategy equilibrium in which an agent does not invest upon
receiving a bad signal and mixes upon receiving a good signal. We refer the reader to the working paper version of the paper (Guarino et al., 2007) for all
the details. Apart from this aspect, the entire analysis for r < 1

2 is identical to that presented in the main text.
9 In social learning models of sequential decision making, typically the equilibrium solution requires a tie-breaking rule for the cases of indifference, and

there is no need to invoke mixed strategies. In our case, mixed strategies are needed since the optimal decision of an agent observing Ti depends on what
other agents do when facing the same situation.
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(1) The part of the proposition concerning agents’ behavior upon observing good signals follows immediately from
Lemma 3 and Lemma 4. According to Lemma 3, I(0,1) = 1, and according to Lemma 4, I(Ti,1) � I(0,1) = 1.

(2) In regard to agents’ behavior upon observing bad signals, note that from Lemma 3, I(0,0) = 0, and from Lemma 4
I(Ti,0) � I(Ti − 1,0).

(3) To show that T UP � n
2 + 1, consider an agent i who observes Ti > n

2 and suppose he knew that he was the last agent
in the sequence. This agent knows that there were Ti good signals and n − Ti − 1 bad signals. Hence, even if this agent’s
own signal is bad, he knows that there were altogether more good signals than bad signals and he will decide to invest.
Now, agent i cannot be sure that he is the last agent. But if he is not the last agent, then there were fewer bad signals and
still Ti good signals, which would be even better news. Hence, an agent who observes Ti > n

2 will always invest and an AUC
occurs, a contradiction.

(4) To prove the existence, in Appendix A, we show that the belief of an agent receiving a bad signal and observing any
Ti = t is higher if all other agents invest after observing the same t than if they do not invest. If in both cases the belief
of the agent is lower than 1

2 , then I(Ti,0) = 0 is part of the equilibrium. If in both cases the belief of the agent is higher
than 1

2 , then I(Ti,0) = 1 is part of the equilibrium. If one belief is lower and the other is higher, then both pure-strategy
equilibria with I(Ti,0) = 0 and I(Ti,0) = 1 exist.

As for part (ii), we prove the possibility of such a (partially) mixed strategy equilibrium by example. This is contained in
the next section. The same argument as in point (4) (and developed in Appendix A) proves that when such an equilibrium
exists, there exist also two pure-strategy equilibria. Lemma 3 implies that T MIX must be greater than 0. The same argument
as in point (2) above establishes that T MIX must be lower than n

2 + 1. Lemma 4 implies that, along the equilibrium path,
mixing can only occur for one value of the aggregate investments. �

The proposition clearly implies that there are no cascades on the unobservable action, since agents with good signals
always invest. Incidentally, we note that such a result just comes from an equilibrium argument. One could imagine that,
when facing a “low” value of Ti , in order to make his decision, agent i should consider all possible sequences and attach
a probability to the event that he is the first in the sequence, or the second, etc. After all, a low number of investments
may merely come from the fact that only few agents had the opportunity to invest so far, in which case the low value of Ti
should be considered good news. Or it could arise from many agents having had the option of investing but only few using
it, in which case the low Ti should be viewed as bad news. This inference process could be quite complicated. Our analysis
solves the problems by just invoking some equilibrium arguments.

The proposition also shows that AUCs do arise—and are, in fact, part of any equilibrium. The value n
2 + 1 is, obviously,

just an upper bound for the critical value T UP that triggers an AUC. Depending on the parameters’ values, AUCs may well
be triggered by a lower number of investments. But AUCs are indeed part of all equilibria. Of course, this does not imply
that AUCs will necessarily occur in a population of finite size n, since there is always the possibility of sufficiently many bad
signals occurring such that T UP is not reached. In the next section we will show how the threshold T UP varies with n and
the other parameters of the model. We will also show that in a large population (for n tending to infinity) this threshold is
reached almost surely, that is, an AUC occurs with probability one.

Before we move to this analysis, it is worth noticing that, despite the AUC consists in agents investing independently
of the signal, agents keep learning even during a cascade. In particular, during an AUC the belief on the good state of the
world is increasing in the number of investments.

Proposition 2. During an AUC, agents revise their beliefs upwards, that is, Pr(ω = 1 | Ti = T UP + j + 1, σi) > Pr(ω = 1 | Ti =
T UP + j, σi) for j = 0,1,2, . . . ,n − T UP − 2, and for both σi = 0 and σi = 1.

Proof. See Appendix A. �
To understand the proposition intuitively, consider the case in which Ti = n − 1. In this case agent i learns that he is

the last agent in the sequence and that all predecessors have invested. In particular, this implies that the first T UP agents
invested, which gives the highest posterior on ω = 1. If, instead, the agent observes Ti = n − 2, with some probability he
is the last in the sequence and one of the first T UP agents did not invest, which means he received a bad signal. This, of
course, implies a lower posterior on ω = 1. Similarly for lower levels of Ti . Put it differently, a Ti higher than T UP reveals
the information that other agents have already observed T UP , which is good news, since it increases the probability that the
AUC started earlier in the sequence and there were fewer bad signals.

4. Aggregate up cascades

We now illustrate our theory, focusing in particular on when an AUC occurs. The case in which there are only three
agents will provide a useful starting point.

4.1. An example with three agents

Consider the case in which n = 3. From Lemma 3 we know that I(0, σi) = σi and from Proposition 1 we know that
I(2, σi) = 1 and that I(1,1) = 1. Thus, these results alone immediately give us the equilibrium actions for five out of the
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six possible contingencies agents can face. The only remaining question is now what agents do after observing Ti = 1 and
σi = 0. This depends on the values of parameters r and q. Let us first check under which conditions agent i rationally
follows his bad signal. Recall that we are analyzing a symmetric equilibrium, therefore suppose each other agent j chooses
I(1,0) = 0. Then it is optimal for agent i to do the same if his posterior for the good state is not bigger than 1/2, that is, if

r[q(1 − q) + 2q(1 − q)2]
r[q(1 − q) + 2q(1 − q)2] + (1 − r)[q(1 − q) + 2q2(1 − q)] � 1

2

which is equivalent to

q � 2r − 1

2
≡ q.

Similarly, I(1,0) = 1 is optimal if

r
[
q(1 − q) + q(1 − q)2] � (1 − r)

[
q(1 − q) + q2(1 − q)

]
which is equivalent to

q � 3r − 1 ≡ q̄.

Note that q � q̄. Hence, in the case in which q > 0.5 and q̄ < 1, we obtain three equilibrium regions. For q < q there
is a unique pure-strategy equilibrium in which I(1,0) = 1 and an AUC starts with Ti = 1. For q > q̄ there is a unique
pure-strategy equilibrium in which I(1,0) = 0 and an AUC starts only with Ti = 2. Finally, for q � q � q̄ both the two

pure-strategy equilibria exist and there is a mixed-strategy equilibrium as well—with I(1,0) = 1+2q−4r
q−r and an AUC starts

only with Ti = 2. Note that, when the two states of the world are equally likely (r = 0.5), q = q̄ = 0.5 and, in the unique
pure-strategy equilibrium, I(1,0) = 0 and an AUC starts with Ti = 2.

4.2. The general case with n agents

The logic of the previous example can easily be generalized to any finite number of agents. We focus our attention to
equilibria in pure strategies only, since the possibility that agents mix for a particular value of Ti does not modify our
analysis substantially.

The first pure-strategy equilibrium threshold T UP illustrated in the example can be computed by verifying, for each
Ti = 1,2,3, . . . , that an agent has an incentive to follow his bad signal when facing Ti assuming that for all values up to
(and including) Ti other agents do follow their bad signals. The first Ti for which this is not verified is the threshold T UP .
In other words, the threshold T UP is the first Ti for which the following equality is not satisfied:

n−Ti−1∑
k=0

(
Ti + k

Ti

)
qTi (1 − q)k+1r �

n−Ti−1∑
k=0

(
Ti + k

Ti

)
(1 − q)Ti qk+1(1 − r).

The left-(right-)hand side represents the probability of observing Ti investments and a bad signal when ω = 1 (ω = 0),
multiplied by the prior probability of the good (bad) state of the world. The agent observing Ti investments could be in
position Ti + 1, Ti + 2, . . . ,n. If he is in position Ti + k + 1 then any combination of Ti investments (i.e., good signals) and
k decisions not to invest (i.e., bad signals) before him in the sequence is possible, which explains the binomial coefficient.
As long as the inequality is satisfied, the agent observing T investments will find it optimal to follow his bad signal. The
first Ti for which this is not optimal represents the threshold for an AUC.

The second pure-strategy equilibrium threshold T UP is computed assuming that agents follow their signals up to (but
excluding) a certain Ti = 1,2, . . . and invest independently of their signals (i.e., they are in an AUC) for Ti , and then verifying
that an agent actually finds it optimal to neglect his bad signal when facing Ti . The first Ti for which this is verified is the
threshold T UP . In other words, the threshold T UP is the first Ti for which the following equality is satisfied:

n−Ti−1∑
k=0

(
Ti + k − 1

k

)
qTi (1 − q)k+1r �

n−Ti−1∑
k=0

(
Ti + k − 1

k

)
(1 − q)Ti qk+1(1 − r).

The interpretation of the inequality is the same as for the previous one, given the different assumption on the behavior
upon observing Ti investments. In particular, note that since we start from the assumption of a cascade after Ti investments,
the agent’s predecessor must have observed Ti − 1 investments and invested, so that the agent is the first to observe Ti .
This explains the differences in the binomial coefficients between the two expressions. It is clear that, by construction, for
any set of parameters, this threshold is (weakly) lower than that illustrated above.

Note that the multiplicity of equilibria, with possibly more than one T UP , arises from a sort of information complemen-
tarity: if all other agents invest upon any signal realization after observing a specific Ti , then that Ti is better news (than
if agents invested only upon a good signal). To see why, compare the two equilibria above. In the first type of equilibrium,
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Fig. 1. Thresholds for an AUC for different values of the number of agents n in the population (from 3 to 50), r = 0.5, q = 0.75. The dashed line refers to
the first equilibrium and the solid line to the second.

observing any Ti is worse news than in the second. In the first equilibrium the assumption is that Ti does not induce a
cascade. Therefore, if agent i observes Ti , it is possible that other agents have observed it too and did not to invest because
they received the bad signal. In the other equilibrium, Ti triggers a cascade. Therefore, if agent i observes it, it means he is
the first one to observe it, which lowers the probability of predecessors having received the bad signal.

Note also that these two types of equilibria provide the upper bound and the lower bound on the equilibrium T UP . It is
easy to verify that when these bounds are not consecutive integers, there exist other equilibria in which the threshold is in
between these two values.10

Fig. 1 shows the threshold values in the two equilibria above for r = 0.5 and q = 0.75 and various values of n (the dashed
line refers to the first equilibrium; the solid line to the second).11 When n = 3, an AUC occurs after T UP = 2 investments.
For n = 10, it occurs after 4 investments in the first type of equilibrium and after 5 in the second. For n = 50, the thresholds
become 14 and 16.

Perhaps not surprisingly, the thresholds are (weakly) increasing in n. This is true not only for the specific example of
Fig. 1 but generally. With a slight abuse of notation, let us define by T UP(r,q,n) the threshold level for a cascade as a
function of the parameters r and q and the number of agents in the economy. We have the following result:

Lemma 5. For any n, T UP(r,q,n) � T UP(r,q,n + 1).

Proof. See Appendix A. �
While for finite n the threshold cannot be expressed in an explicit form, things are different in the case of a large

population (n tending to infinity). In the next proposition, we compute the threshold for n going to infinity and show that
it is reached almost surely.

Proposition 3. For n going to infinity, an AUC occurs with probability one at a threshold level T UP(r,q,n) such that limn→∞ T UP(r,q,n)
n

= q(q−1)(q−r)
q2(2r−1)−r(2q−1)

. For r = 1
2 , limn→∞

T UP( 1
2 ,q,n)

n = q(1 − q).

Proof. See Appendix A. �
In our model, as in the canonical model of Bikhchandani et al. (1992), when n goes to infinity, an informational cascade

occurs almost surely. Whereas in the canonical model it can occur on either action (and be incorrect, i.e., a cascade can
occur on action 1 when the state of the world is 0 and vice versa), in our model it always occurs on the observable action,
independently of the state of the world (therefore being incorrect whenever the state of the world is 0).

10 To see why, suppose in the first equilibrium T UP = t′ and in the second T UP = t′′ , with t′ > t′′ + 1. Now consider t = t′′ + 1. Let us verify that an
equilibrium with T UP = t exists. First, observe that following the signal for Ti = t′′ can be part of an equilibrium (actually, so is in the first equilibrium).
Second, using a monotonicity argument as that illustrated in the text, one can show that if the posterior on ω = 1 is higher than 1/2 assuming agents are
in a cascade the first time for T UP = t′′ , then this posterior is higher than 1/2 also for T UP = t in the conjectured equilibrium.
11 The thresholds have been computed in Matlab.



176 A. Guarino et al. / Games and Economic Behavior 73 (2011) 167–185
5. A welfare analysis

In our economy agents can make mistakes. This happens whenever a cascade has not occurred and the agent receives
the incorrect signal, or whenever an AUC has occurred and the state of the world is ω = 0.

One may wonder what the probability of a mistake is. Recall that ex ante all agents are identical, and receive a payoff
of 1 for a correct decision and of 0 for an incorrect one. Therefore, the ex ante probability of a mistake is also an (inverse)
measure of the ex ante welfare in our economy. More precisely, it is equivalent to the per capita, ex ante welfare loss.

In the next proposition we illustrate this probability for a large economy:

Proposition 4. For n going to infinity, the ex ante probability that an agent makes the incorrect decision is 1 − q.

Proof. See Appendix A. �
The ex ante probability of a mistake in our economy is equal to 1 − q, which is also the probability of a mistake in the

case each agent just decides on the basis of his own private signal. Observing others’ decisions is, therefore, not payoff
improving for an agent in this large economy. Although surprising at a first glance, the result can be easily understood.
A cascade is a situation in which public information swamps private information. As we know from the previous analysis,
when the population grows large, the threshold T UP(r,q,n) is such that the information contained in the observable history
of decisions is just enough to swamp the information contained in the private signal. Therefore, if the agent acts before the
AUC occurs, just following the noisy signal, he makes a mistake with probability 1 − q. And if he acts after the occurrence
of an AUC, he makes a mistake with the same probability, since the information contained in T UP(r,q,n) has the same
precision as the noisy signal. Hence, the result.

In our economy agents have less information than in the canonical model of Bikhchandani et al. (1992), where they can
observe the entire sequence of actions. How does less information affect welfare? Intuitively, one may believe that more
information cannot harm agents. On the other hand, if more information means a higher probability of cascades and if
during cascades agents are more likely to take the wrong decision, information may indeed be harmful.

To attack the problem, we compare the ex ante welfare in our model with that in a set up in which, like in Bikhchandani
et al. (1992), agents can observe the decision of each predecessor to invest or not, that is, agent i’s information set is
{I1, I2, . . . , Ii−1, σi}. In all other aspects the two models are identical. We restrict the analysis to n � 3, since for n < 3 the
two models give identical predictions. Moreover, we only present the case in which both states of the world are equally
likely (r = 0.5).12

When agents can observe the entire history of actions, they can be indifferent between the two actions, like when the
second agent observes an investment and receives a bad signal. For these cases, one needs to adopt a tie-breaking rule.
It turns out that the tie-breaking rule is relevant for our comparison. We will compare the two models under different
tie-breaking rules, which will help us to understand the forces that drive the results. The following proposition summarizes
our findings:

Proposition 5. The ex ante probability of making a mistake when agents can only observe {Ti, σi}:

(a) is higher than when they can observe {I1, . . . , Ii−1, σi} for any n � 3 if the tie-breaking rule is “follow the own signal with
probability 1”;

(b) is lower than when they can observe {I1, . . . , Ii−1, σi} for any finite n � 3 if the tie-breaking rule is “follow the predecessor’s
decision with probability 1”; asymptotically, for n going to infinity, the two probabilities are identical and equal to 1 − q.

Proof. See Appendix A. �
Let us discuss the intuition behind this result. The first tie-breaking rule contemplated in the proposition implies that an

agent neglects his signal only when there is a majority of at least two identical actions in the history of actions {I1, . . . , Ii−1}.
When an agent acts in a cascade, his decision is, therefore, based on two signals pointing in the same direction. The ex ante

probability that he makes a mistake under this circumstance is (1−q)2

q2+(1−q)2 and lower than when he acts alone deciding on

the basis of one signal only, (1 − q). In the proof of the proposition, we show that, when agents can only observe the
aggregate number of investments, the ex ante probability of a mistake, once in a cascade, lies between these two values.
Moreover, we prove that cascades are more likely to occur when agents observe the entire history than when they only
know aggregate investments. These two observations prove the result.

The second tie-breaking rule in the proposition implies that, when agents can observe the entire history, they simply
follow the first decision I1. Thus, each agent’s decision is based on the first signal realization, and the probability of a
mistake is equal to 1 − q for everyone. When agents can only observe the aggregate number of investments, instead, as we

12 The analysis of the case r > 0.5 is similar and does not offer more intuitions.
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said, when a cascade occurs the probability of a mistake is lower than 1 − q for any finite n � 3, and is equal to 1 − q only
asymptotically (as we know from Proposition 4). This proves point b in the proposition.

In simple words, agents are better off in Bikhchandani et al. (1992) economy under the first tie-breaking rule, and ex
ante better off in our economy under the second one. These two tie-breaking rules are at the two extremes. Other rules
would require agents to randomize between investing and not. When agents randomize putting a higher weight on their
signal and less on the predecessors’ decisions, the history of decisions becomes more informative and the probability of
a mistake, conditional on being in a cascade, decreases. It is, therefore, easy to conjecture that for any n and q there is a
threshold such that if agents follow their own signal with a probability lower than this threshold when indifferent, agents
are better off in our model.13

6. Extensions

We have presented our model in its simplest form, with two states, two signals and two actions. We chose this simple
model since we had in mind applications (like the case of an investment in a new technology, or the decision to hire
a candidate or not) in which typically there are only two available actions and one is normally non-observable (e.g., the
decision not to invest, or not to hire).

Nevertheless, one may wonder whether the main message of our study extends to other set ups. In the social learning
literature, two main extensions have been considered, one concerning the signal space and one concerning the action space.
In this section, we will consider these extensions and show that our main results are not altered. We do not intend to
replicate the entire analysis for more general structures of the signal and of the action space, but only briefly illustrate how
our main result on the impossibility of ADCs can be generalized.

6.1. Signal space

Smith and Sørensen (2000) have extended the classical model of Bikhchandani et al. (1992) to a general structure of the
signal space. Their main result is that an information cascade occurs almost surely if the beliefs are bounded.14 If, instead,
beliefs are unbounded, an information cascade never occurs and beliefs converge to the truth.

Let us consider what happens in our model when we generalize the signal space. Recall that our main result is that an
ADC cannot occur, while an AUC occurs almost surely. If we allow for signals of unbounded precision, a fortiori, an ADC
cannot occur. An AUC cannot occur either, since, whatever the content of the aggregate public information, there is always
the possibility that an agent receives a very precise signal and decides not to invest even if many other agents have opted
for investment. Since the argument is standard, we do not develop it further and refer the reader to Smith and Sørensen
(2000).

The remaining question is whether the impossibility of an ADC is a result of our binary signals or holds more generally.
Suppose the signals {σi} are i.i.d. and drawn according to a state-contingent density function f (σi |ω) on a support [e, E]
(with e < E). To avoid trivialities, we assume that, for almost all signal realizations, either f (σi |ω=1)

f (σi |ω=0)
r

1−r < 1 (the “bad

signals”) or f (σi |ω=1)
f (σi |ω=0)

r
1−r > 1 (the “good signals”), and that signals respect the standard monotone likelihood ratio property.

We now show that the result at the heart of our finding on the impossibility of ADCs holds under this more general
structure of private information (keeping all other aspects of the model unchanged).

Proposition 6. Given this structure of the private signal, there exists no equilibrium in which, if nobody has invested so far (i.e., T i = 0),
an agent chooses not to invest for any signal, that is, I(0, σi) = 0 for all σi ∈ [e, E].

Proof. By contradiction, suppose that for Ti = 0 agents choose never to invest (independently of their private signals). Then,
along the equilibrium path, nobody ever invests and, for any agent i = 1, . . . ,n, Ti = 0. Hence, Ti = 0 does not reveal any
information on the true state of the world. Since the posterior probability (conditional on public information) that ω = 1 is
still r, agent i is better off by following his informative signal σi . �

According to this proposition, an ADC in which all agents do not invest is, indeed, impossible. To conclude that an ADC
cannot occur, one has only to show that also the intuitive monotonicity result (Lemma 4) can be extended to this more
general structure. In the interest of space, we do not provide such a proof, but note that our proof of Lemma 4 can easily
be extended to this case.15

13 We actually computed this threshold numerically for various parameter values. We do not report them in the interest of space.
14 Beliefs are said to be bounded if the support of the likelihood ratio is bounded.
15 For a given Ti = t , one can partition the set of all signal realizations in the set for which the agent invests and that for which he does not. Then, one

can prove that for the first set an agent would invest after observing t + 1 by following the same steps as in the proof of Lemma 4 (realizations of the first
set would play the same role as σi = 1, and realizations of the second set would play the same role as σi = 0).
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6.2. Action space

Let us now consider a more general action space on top of the more general signal space. Suppose each agent i can
choose his action ai among m + 1 possible alternatives, denoted by 0,1,2, . . . ,m, and let the action 0 be the unobservable
one. A simple interpretation could be that agents must choose the scale of an investment project. While the total number of
each type (size) of project is observable, the decision not to invest (action 0) is unobservable. Let us say that agents choose
the optimal action to maximize the conditional expected value of a standard quadratic payoff function −(ai − ω).

Now, the analog of our case Ti = 0 is the case in which an agent observes that no investment of any size has yet been
chosen. Let us denote such a case by an m-dimensional vector (0,0, . . . ,0), where each entry represents the number of
investments of size 1, . . . ,m.

We now prove a proposition similar to the previous one:

Proposition 7. Given this structure of the private signal and this action space, there exists no equilibrium in which, if nobody has
invested so far, that is, agent i observes (0,0, . . . ,0), the agent chooses not to invest for any signal, that is, I((0,0, . . . ,0),σi) = 0 for
σi ∈ [e, E].

Proof. By contradiction, suppose that when observing (0,0, . . . ,0), agents choose never to invest (independently of their
private signals). Then, along the equilibrium path, nobody ever invests and, any agent i = 1, . . . ,n, observes (0,0, . . . ,0).
Hence, (0,0, . . . ,0) does not reveal any information on the true state of the world. Since the posterior probability (condi-
tional on public information) that ω = 1 is still r, agent i is better off by following his informative signal σi . �

Again, according to this result, an ADC in which all agents do not invest is impossible. And, again, to conclude that an
ADC is impossible, one has only to extend the monotonicity result, a proof that we omit in the interest of space.16

Finally, an alternative set up considered in the literature is that of a continuous action space (Lee, 1992). The standard
result in this case is that learning is efficient and cascades do not occur. This structure, however, is not interesting for our
case, since the probability of a specific action would be zero. Of course, one could discretize the action space and assume
that actions belonging to an interval of positive measure are unobservable. This would render the model identical to the
one just described and the same considerations would apply.

7. Conclusion

We have introduced a new model of information cascades. The crucial difference between our model and those already
in the literature is that only one action taken by agents is observable by others. When it is their turn to make the binary
decision, agents simply receive aggregate information about how many others before them took the observable action. We
have argue that this setup arises naturally in many scenarios: for example, when entrepreneurs seek investors they will
typically not inform them about how many others have turned them down before, but, surely, they will mention who else
decided previously to invest in their project. This asymmetry in observability significantly affects the equilibria in such
games. Most importantly, there can be no information cascades on the unobservable action.

Our result has important implications. In particular, it implies that a new, good project (e.g., a technological innovation,
a new product or service, a new medical treatment) will not be neglected forever simply because there is lack of interest
at the beginning. Sooner or later (i.e., as soon as people start receiving good information on it) the new project will start
diffusing. A lack of initial interest will not represent a barrier to future adoption because of informational considerations.

Our study has also an interesting consequence for applications where a third party can decide which information to
release. Consider the introduction of a new medical treatment. An agency in health policy must decide how to disclose
information on the adoption of this treatment: it can release information on how many physicians have already adopted
it; or on how many have considered it but have decided not to adopt it; or, finally, it can reveal both figures. Suppose
the agency considers as the worst case scenario the situation in which the treatment is widely adopted while ultimately
resulting in bad health outcomes, for instance because of potential side effects.17 As we know from our analysis, the way
the information is disclosed makes a big difference for the diffusion of the new treatment. By withholding information on
a particular decision the agency can, in fact, guarantee that an informational cascade on that decision does not occur.18 In

16 In this set up, the monotonicity result states that if an investment of a certain size is chosen for a particular signal realization and Ti = t , then for the
same signal and Ti = t + 1 the agent would choose an investment of the same size or larger. The proof could be amended along the lines indicated in the
previous footnote.
17 This is of course unmodelled in our analysis. In our welfare analysis we studied whether partial or full observability gave the higher ex ante per capita

payoffs to the decision makers. Here we are considering a case in which, for instance because the doctors’ interests are not perfectly aligned with those of
patients’, the relevant welfare criterion is different.
18 In their seminal paper on information cascades, Bikhchandani et al. (1992) have argued that the adoption of medical procedures is often based on fairly

weak information and that in many cases doctors tend to imitate others. As an example they cite the widespread use of tonsillectomies in the sixties and
seventies and argue that it was essentially an information cascade. In the sixties and seventies, according to Bikhchandani et al. (1992), the sheer fact that
the majority of physicians employed the procedure overrode any private information individual doctors might have had against tonsillectomies. And this
was a “wrong cascade”—a cascade that generated the worst outcome, since it eventually turned out that tonsillectomies did more harm than good.
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the light of this result, the agency can then optimally withhold information on the number of doctors who decided to adopt
the treatment.

Appendix A

A.1. Proof of Lemma 4

The proposition is equivalent to saying that in equilibrium I(t, σi) � I(t + 1, σi) for any t = 0,1,2, . . . and both σi = 0
and σi = 1 (with strict inequality if 0 < I(t, σi) < 1). Because of expected payoff maximization, this inequality holds if,
whenever Pr(ω = 1 | Ti = t, σi) � 1

2 , we have Pr(ω = 1 | Ti = t + 1, σi) > 1
2 .

There are three relevant possibilities:

1. Pr(ω = 1 | Ti = t, σi = 0) > 1
2 and Pr(ω = 1 | Ti = t, σi = 1) > 1

2 ,
2. Pr(ω = 1 | Ti = t, σi = 0) < 1

2 and Pr(ω = 1 | Ti = t, σi = 1) > 1
2 ,

3. Pr(ω = 1 | Ti = t, σi = 0) = 1
2 and Pr(ω = 1 | Ti = t, σi = 1) > 1

2 .

Case 1 is the case of an informational cascade. In such a case, by our assumption,

I(t,σi) = I(t + 1,σi) = 1

for both σi , and therefore the proposition obviously holds.
Now let us consider Case 2. In this case we want to show that Pr(ω = 1 | Ti = t + 1, σi = 1) > 1

2 (while nothing must be
shown for the case of a bad signal). Suppose not, i.e., suppose Pr(ω = 1 | Ti = t + 1, σi = 1) � 1

2 . Let us consider, first, the
case of the strict inequality.

By Bayes’s rule,

Pr(ω = 1 | Ti = t + 1, σi = 1) = Pr(Ti = t + 1 | ω = 1, σi = 1)r

Pr(Ti = t + 1 | ω = 1, σi = 1)r + Pr(Ti = t + 1 | ω = 0, σi = 1)(1 − r)
.

As we suppose that this is strictly smaller than 1
2 it follows that

Pr(Ti = t + 1 | ω = 1, σi = 1)

Pr(Ti = t + 1 | ω = 0, σi = 1)
<

1 − r

r

which is equivalent to

Pr(Ti = t + 1 | ω = 1)

Pr(Ti = t + 1 | ω = 0)
<

1 − r

r
.

By the law of total probabilities,

Pr(Ti = t + 1 | ω = 1) = Pr(Ti = t + 1 | ω = 1, Ti−1 = t)Pr(Ti−1 = t | ω = 1)

+ Pr(Ti = t + 1 | ω = 1, Ti−1 = t + 1)Pr(Ti−1 = t + 1 | ω = 1)

= q Pr(Ti−1 = t | ω = 1) + Pr(Ti−1 = t + 1 | ω = 1).

Notice that the last equality comes from the fact that we are analyzing Case 2 and that we are assuming no investment
after observing t + 1.

Now the decision problem of agent i − 1 is identical to the one of agent i. So, by applying recursively the same law, we
obtain:

Pr(Ti = t + 1 | ω = 1) = q Pr(Ti−1 = t | ω = 1) + Pr(Ti−1 = t + 1 | ω = 1, σi = 1)

= q Pr(Ti−1 = t | ω = 1) + [
q Pr(Ti−2 = t | ω = 1) + Pr(Ti−2 = t + 1 | ω = 1)

]
+ q Pr(Ti−1 = t | ω = 1) + q Pr(Ti−2 = t | ω = 1) + [

q Pr(Ti−3 = t | ω = 1)

+ Pr(Ti−3 = t + 1 | ω = 1)
] + · · ·

= q Pr(Ti−1 = t | ω = 1) + q Pr(Ti−2 = t | ω = 1) + q Pr(Ti−3 = t | ω = 1)

+ · · · + q Pr(Ti−m = t | ω = 1)

for some m (note that m depends on the value of i: indeed, for any value of i there is an m such that Pr(Ti−m = t + 1 | ω =
1) = 0). Similarly, conditioning on ω = 0,
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Pr(Ti = t + 1 | ω = 0) = (1 − q)Pr(Ti−1 = t | ω = 0) + (1 − q)Pr(Ti−2 = t | ω = 0)

+ · · · + (1 − q)Pr(Ti−m = t | ω = 0).

Some algebraic computations show that for any pair of terms in the two expressions above, the following inequality
holds:

Pr(Ti− j = t | ω = 1)

Pr(Ti− j = t | ω = 0)
� Pr(Ti = t | ω = 1)

Pr(Ti = t | ω = 0)
.

Since we know that Pr(ω = 1 | Ti = t, σi = 1) > 1
2 and, therefore,

Pr(Ti = t | ω = 1)

Pr(Ti = t | ω = 0)
>

1 − r

r
,

simple algebra shows that

Pr(Ti = t + 1 | ω = 1)

Pr(Ti = t + 1 | ω = 0)
>

1 − r

r
,

a contradiction.
Note that the same proof holds true when, by contradiction, we assume that

Pr(ω = 1 | Ti = t + 1, σi = 1) = 1

2
.

The only difference is that in such a case

Pr(Ti = t + 1 | ω = 1) = q Pr(Ti−1 = t | ω = 1) + s Pr(Ti−1 = t + 1 | ω = 1),

where s represents the probability by which an agent receiving the good signal decides not to invest. This change does not
affect the above inequalities.

Finally, note that the proof for Case 3 (for both the good and the bad signal) is identical to Case 2 just described, with
the exception that

Pr(Ti = t + 1 | ω = 1, Ti−1 = t) = q + (1 − q)u,

and

Pr(Ti = t + 1 | ω = 0, Ti−1 = t) = qu + (1 − q),

where u is the probability of investment by an agent receiving a bad signal.

A.2. Proof of Proposition 1

We complete the proof in the text concerning the existence of the equilibrium. We have already proven in the text that
I(Ti,1) = 1 is optimal for any Ti . Therefore, for the existence of a pure-strategy (symmetric Perfect Bayesian) equilibrium
we must only prove that for an agent observing (t,0) it is optimal not to invest if all other agents observing (t,0) do not
invest, or it is optimal to invest if all other agents observing (t,0) invest, or both (in which case, there exists an equilibrium
with I(t,1) = 0 and one with I(t,1) = 1). With a slight abuse of notation, let us denote by Pr(ω = 1 | Ti = t, σi = 0, u)

the probability attached to ω = 1 by an agent observing (t,0) and knowing that all other agents invest with probability
u ∈ [0,1] when observing the same couple (t,0). Then, what we want to prove is that

Pr(ω = 1 | Ti = t, σi = 0, u = 0) < Pr(ω = 1 | Ti = t, σi = 0, u = 1).

Indeed, if this is verified, then, if

Pr(ω = 1 | Ti = t, σi = 0, u = 0) < Pr(ω = 1 | Ti = t, σi = 0, u = 1) <
1

2
there exists a pure-strategy equilibrium in which I(t,0) = 0; if, on the other hand,

1

2
< Pr(ω = 1 | Ti = t, σi = 0, u = 0) < Pr(ω = 1 | Ti = t, σi = 0, u = 1),

there exists a pure-strategy equilibrium in which I(t,0) = 1; finally, if

Pr(ω = 1 | Ti = t, σi = 0, u = 0) <
1

2
< Pr(ω = 1 | Ti = t, σi = 0, u = 1),

both equilibria with I(t,0) = 0 and I(t,0) = 1 exist.
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To prove the inequality, observe that

Pr(ω = 1 | Ti = t, σi = 0, u = 1)

Pr(ω = 0 | Ti = t, σi = 0, u = 1)
= Pr(Ti = t | ω = 1, σi = 0, u = 1)

Pr(Ti = t | ω = 0, σi = 0, u = 1)

r(1 − q)

q(1 − r)

= qt[1 + k1(1 − q) + k2(1 − q)2 + · · · + kn−1−t(1 − q)n−t−1]
(1 − q)t[1 + k1q + k2q2 + · · · + kn−1−tqn−t−1]

r(1 − q)

q(1 − r)
,

where k1,k2, . . . are binomial coefficients. Similarly, one can show that

Pr(ω = 1 | Ti = t, σi = 0, u = 0)

Pr(ω = 0 | Ti = t, σi = 0, u = 0)

= Pr(Ti = t | ω = 1, σi = 0, u = 0)

Pr(Ti = t | ω = 0, σi = 0, u = 0)

r(1 − q)

q(1 − r)

= qt[1 + (k1 + 1)(1 − q) + (k2 + k1 + 1)(1 − q)2 + · · · + (kn−1−t + kn−2−t + · · · + 1)(1 − q)n−t−1]
(1 − q)t[1 + (k1 + 1)q + (k2 + k1 + 1)q2 + · · · + (kn−1−t + kn−2−t + · · · + 1)qn−t−1]

r(1 − q)

q(1 − r)
.

The extra terms in this expression come from the fact that, if u = 0, the number of investments Ti = t can be observed
by agent i also after one or more predecessors have already observed it and, after having bad signals, did not invest. The
comparison between the two expressions immediately proves the inequality.

Similarly, one can show that if agents invest with a probability 0 < u < 1, then

Pr(ω = 1 | Ti = t, σi = 0, u)

Pr(ω = 0 | Ti = t, σi = 0, u)

= Pr(Ti = t | ω = 1, σi = 0, u)

Pr(Ti = t | ω = 0, σi = 0, u)

r(1 − q)

q(1 − r)

= qt [1 + (k1 + (1 − u))(1 − q) + (k2 + k1(1 − u) + (1 − u)2)(1 − q)2 + · · · + (kn−1−t + kn−2−t (1 − u) + · · · + (1 − u)n−2−t )(1 − q)n−t−1]
(1 − q)t [1 + (k1 + (1 − u))q + (k2 + k1(1 − u) + (1 − u)2)q2 + · · · + (kn−1−t + kn−2−t (1 − u) + · · · + (1 − u)n−2−t )qn−t−1]

r(1 − q)

q(1 − r)
.

It is easy to verify that this expression is lower than the first and higher than the second, which proves part (ii)
of the proposition given that, if for u ∈ (0,1), Pr(ω = 1 | Ti = T MIX, σi = 0, 0 < u < 1) = 1

2 , then Pr(ω = 1 | Ti =
T MIX, σi = 0, u = 0) < 1

2 and Pr(ω = 1 | Ti = T MIX, σi = 0, u = 1) > 1
2 .

A.3. Proof of Proposition 2

Let us prove the proposition for j = 1, that is, let us prove that

Pr
(
ω = 1

∣∣ Ti = T UP + 1,σi
)
> Pr

(
ω = 1

∣∣ Ti = T UP,σi
)
,

which is equivalent to proving that

Pr
(
ω = 1

∣∣ Ti = T UP + 1
)
> Pr

(
ω = 1

∣∣ Ti = T UP).
First, note that

Pr
(
ω = 1

∣∣ Ti = T UP + 1
)

=
n−T UP∑

k=2

Pr
(
ω = 1

∣∣ Ti = T UP + 1, i = T UP + k
)

Pr
(
i = T UP + k

∣∣ Ti = T UP + 1
)
.

To simplify the notation, let Pr(ω = 1 | Ti = T UP + 1, i = T UP + k) = ak and Pr(i = T UP + k | Ti = T UP + 1) = pk so that

Pr
(
ω = 1

∣∣ Ti = T UP + 1
) = a2 p2 + a3 p3 + · · · + an pn.

Similarly,

Pr
(
ω = 1

∣∣ Ti = T UP) =
n−T UP∑

k=1

Pr
(
ω = 1

∣∣ Ti = T UP, i = T UP + k
)

Pr
(
i = T UP + k

∣∣ Ti = T UP).
Again to simplify the notation, let Pr(ω = 1 | Ti = T UP, i = T UP + k) = bk , and Pr(i = k | Ti = T UP + 1) = qk , so that

Pr
(
ω = 1

∣∣ Ti = T UP) = b1q1 + b2q2 + b3q3 + · · · + bnqn.

Now, it is easy to verify that ak > ak+1, bk > bk+1, and ak+1 = bk .
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To conclude the proof, we now show that pk+1 > qk . To this aim, simply observe that

qk = Pr
(
i = T UP + k

∣∣ Ti = T UP)

= Pr(Ti = T UP | i = T UP + k)Pr(i = T UP + k)∑n−T UP

k=1 Pr(Ti = T UP | i = T UP + k)Pr(i = T UP + k)

= Pr(Ti = T UP | i = T UP + k)∑n−T UP

k=1 Pr(Ti = T UP | i = T UP + k)
,

pk+1 = Pr
(
i = T UP + k + 1

∣∣ Ti = T UP + k + 1
)

= Pr(Ti = T UP + 1 | i = T UP + k + 1)Pr(i = T UP + k + 1)∑n−T UP−1
k=1 Pr(Ti = T UP + 1 | i = T UP + k + 1)Pr(i = T UP + k + 1)

= Pr(Ti = T UP + 1 | i = T UP + k + 1)∑n−T UP−1
k=1 Pr(Ti = T UP + 1 | i = T UP + k + 1)

,

and

Pr
(
Ti = T UP

∣∣ i = T UP + k
) = Pr

(
Ti = T UP + 1

∣∣ i = T UP + k + 1
)
.

Since the numerators in the expressions for pk+1 and qk are identical and so are the terms in the sums at the denomi-
nators (but the denominator in pk+1 has one less term), clearly pk+1 > qk . This concludes the proof for j = 1. An identical
analysis proves that the inequality holds for j = 2, . . . ,n − T UP − 2.

A.4. Proof of Lemma 5

With a slight abuse of notation, let us denote by Pr(ω = 1 | Ti = t, σi = 0,n) the probability that the state of the world is
1 upon observing t investments and a bad signal in an economy with n agents.

Now, suppose t = T UP(r,q,n). We want to show that

Pr(ω = 1 | Ti = t − 1, σi = 0,n) > Pr(ω = 1 | Ti = t − 1, σi = 0,n + 1),

that is,

Pr(ω = 1 | Ti = t − 1,n) > Pr(ω = 1 | Ti = t − 1,n + 1).

By the law of total probabilities,

Pr(ω = 1 | Ti = t − 1,n) =
n−t∑
k=0

Pr(ω = 1 | Ti = t − 1, i = t + k,n)Pr(i = t + k | Ti = t − 1,n).

Similarly,

Pr(ω = 1 | Ti = t − 1,n + 1) =
n−t+1∑

k=0

Pr(ω = 1 | Ti = t − 1, i = t + k, n + 1)Pr(i = t + k | Ti = t − 1, n + 1).

Observation 1: Pr(ω = 1 | Ti = t − 1, i = t + k,n) = Pr(ω = 1 | Ti = t − 1, i = t + k,n + 1) for any k = 0,1, . . . ,n − t . This
observation means that in the two sums above the first part of each term is the same (but the second sum has one extra
term).

Observation 2: Pr(ω = 1 | Ti = t − 1, i = t + k,n) > Pr(ω = 1 | Ti = t − 1, i = t + k + 1,n) for any k = 0,1, . . . ,n − t − 1.
(And similarly for the case of n + 1 agents.)

Given these two observations, to complete the proof, we only have to show that

Pr(i = t + k | Ti = t − 1, n + 1) < Pr(i = t + k | Ti = t − 1,n)

for any k = 0,1, . . . ,n − t .
To this aim, note that

Pr(i = t + k | Ti = t − 1,n) = Pr(Ti = t − 1 | i = t + k,n)∑n−t Pr(Ti = t | i = t + l,n)
=

(
(t−1)+k−1

t−1

)
qt−1(1 − q)k

∑n−t (
(t−1)+l−1)qt−1(1 − q)l

,

l=0 l=0 t−1
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and, similarly,

Pr(i = t + k | Ti = t − 1, n + 1) =
(
(t−1)+k−1

t−1

)
qt−1(1 − q)k

∑n−t+1
l=0

(
(t−1)+l−1

t−1

)
qt−1(1 − q)l

.

While the numerator in these two expressions is the same, the denominator differs in that there is an extra term, which
proves our result.

A.5. Proof of Proposition 3

To prove the proposition, let us compute the probability Pr(ω = 1 | Ti � T UP). By Bayes’s rule,

Pr
(
ω = 1

∣∣ Ti � T UP) = Pr(Ti � T UP | ω = 1)r

Pr(Ti � T UP | ω = 1)r + Pr(Ti � T UP | ω = 0)(1 − r)
.

Consider, first, the case ω = 1. For large n, by the Strong Law of Large Numbers, the number of aggregate investments T UP

will be reached almost surely after a number M1 of agents have made a decision such that qM1 = T UP (since, in equilibrium,
agents follow their private signals when observing up to T UP investments). Hence M1 = T UP

q . Similarly, for ω = 0, T UP will

be reached almost surely after a number M0 of agents have made a decision such that (1 − q)M0 = T UP . Hence M0 = T UP

1−q .

Therefore, for large n, the probability of observing at least T UP investments when ω = 1 is equivalent to the probability

of acting after M1 agents and hence equal to Pr(Ti � T UP | ω = 1) = (n− T UP
q )

n . Similarly, Pr(Ti � T UP | ω = 0) = (n− T UP
1−q )

n . An
agent observing at least T UP investments and receiving a bad signal decides to invest (i.e., he is in an AUC) when

Pr
(
ω = 1

∣∣ Ti � T UP) � q,

that is, when

(n− T UP
q )

n r

(n− T UP
q )

n r + (n− T UP
1−q )

n (1 − r)

� q,

which can be rearranged as T UP � q(q−1)(q−r)
q2(2r−1)−r(2q−1)

n. Finally, note that we have found this inequality by noting that agents

who observe Ti < T UP follow the signal and agents who observe a higher Ti neglect the signal, which implies that

T UP = q(q − 1)(q − r)

q2(2r − 1) − r(2q − 1)
n.

For r = 0.5, T UP = q(1 − q)n.

A.6. Proof of Proposition 4

Let us first consider ω = 1. In this case, an agent makes a mistake only if he acts before the threshold is reached and, ad-
ditionally, receives the wrong signal. As we know from the previous analysis, the probability of acting before T UP is Pr(Ti <

T UP | ω = 1) = ( T UP
q )

n = (q−1)(q−r)
q2(2r−1)−r(2q−1)

. Therefore, the probability of a mistake is (q−1)(q−r)
q2(2r−1)−r(2q−1)

(1 − q) = (r−q)(q−1)2

r+2q2r−2qr−q2 . Let

us now consider ω = 0. In this case an agent makes a mistake if he acts before the threshold and receives the wrong sig-

nal, or if he acts after the threshold. Since, as we know, Pr(Ti < T UP | ω = 0) =
T UP
1−q
n = − q(q−r)

q2(2r−1)−r(2q−1)
, the probability of

making a mistake is now equal to

q(r − q)

q2(2r − 1) − r(2q − 1)
(1 − q) +

(
1 − q(r − q)

q2(2r − 1) − r(2q − 1)

)
= (q − 1)(q2 + rq − r)

r + 2q2r − 2qr − q2
.

Hence, the ex ante total probability of a mistake is equal to

(r − q)(q − 1)2

r + 2q2r − 2qr − q2
r + (q − 1)(q2 + rq − r)

r + 2q2r − 2qr − q2
(1 − r) = 1 − q.
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A.7. Proof of Proposition 5

Let us first prove part (a). For the sake of exposition, we will refer to the condition in which agent i’s information set is
{I1, I2, . . . , It−i, σi} as “perfect observability” and to the situation in which agent i’s information set is {Ti, σi} as “imperfect
observability”. Under both conditions, an agent can be in two situations: either he acts on the basis of his own signal or he
is in a cascade. Consider first the case of perfect observability. If the agent acts according to his signal, the ex ante probability
that he makes a mistake is 1 − q. If, instead, he is in a cascade, then his action is based on a majority of two (either good

or bad) signals and the ex ante probability of a mistake is (1−q)2

q2+(1−q)2 . Now consider the case of imperfect observability. If he

acts according to his signal, the ex ante probability that he makes a mistake is, again, 1 − q. If, instead, he is in a cascade,
then he makes a mistake with a probability α. Therefore, under perfect observability, the ex ante probability of a mistake

is (1 − q)(1 − p) + (1−q)2

q2+(1−q)2 p (where p is the probability that a cascade occurs), and under imperfect observability it is

(1 − q)(1 − s) + αs (where s is the probability that a cascade occurs). We prove our result in two steps. First, we show that
(1−q)2

q2+(1−q)2 � α. Second, we show that the probability of a cascade is higher under the perfect observability condition, that is,
p > s.

Step 1. (1−q)2

q2+(1−q)2 � α.

Let us prove the first inequality. By contradiction, suppose α <
(1−q)2

q2+(1−q)2 . This means that Pr(ω = 0 | Ti = T UP) <

(1−q)2

q2+(1−q)2 , that is, Pr(ω=1|Ti=T UP)

Pr(ω=0|Ti=T UP)
>

q2

(1−q)2 . Then, consider the situation of an agent observing T UP − 1 investments. Since,

by assumption he is not in a cascade, his decision to invest is based on a good signal. Then, the history with T UP − 1 invest-

ments that he observes is such that Pr(ω=1|Ti=T UP−1)

Pr(ω=0|Ti=T UP−1)
>

q
(1−q)

. (Indeed, if this were not the case, then Pr(ω=1|Ti=T UP)

Pr(ω=0|Ti=T UP)
could

not be greater than q2

(1−q)2 since even in the best scenario in which after T UP − 1 there were only one investment (and no

bad signals), the likelihood ratio could not increase by more than q
1−q .) In that case the agent should invest independently

of the signal, which contradicts the fact that he is not in a cascade.

Step 2. The probability of a cascade is higher when there is full observability.

We know that in our model an AUC starts not before there are at least two investments (from the example in Section 4.1
and from Lemma 5). This means that, unless signal realizations always alternate, that is, whenever σi = 1, then σi+1 = 0,
and vice versa, there cannot exist a sequence of signals such that a cascade occurs under imperfect observability without
occurring (at the same time or at an earlier time) under perfect observability. Moreover, note that whenever a cascade
occurs under imperfect observability for a sequence of alternating signals S1 ≡ {1,0,1,0,1, . . . ,0,1}, it occurs under perfect
observability for the sequence of signals S2 ≡ {1,1,1,0,1, . . . ,0,1} or for the sequence of signals S3 ≡ {0,0,1,0,1, . . . ,0,1}.
If ω = 1, then Pr(S2 | ω = 1) > Pr(S1 | ω = 1), and if ω = 0, then Pr(S3 | ω = 0) > Pr(S1 | ω = 0). Therefore, a cascade is more
likely under perfect than under imperfect observability in both states of the world.

For part (b), observe that, as shown above, the ex ante probability of a mistake under imperfect observability is (1 − q)×
(1 − s) + αs, and, as it is easy to verify, α < 1 − q for any finite n. For n tending to infinity, we know from Proposition 4
that α = 1 − q, which concludes the proof.
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