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Abstract We employ a Bayesian approach to analyze financial markets
experimental data. We estimate a structural model of sequential trading in which
trading decisions are classified in five types: private-information based, noise, herd,
contrarian and irresolute. Through Monte Carlo simulation, we estimate the posterior
distributions of the structural parameters. This technique allows us to compare several
non-nested models of trade arrival. We find that the model best fitting the data is that in
which a proportion of trades stems from subjects who do not rely only on their private
information once the difference between the number of previous buy and sell decisions
is at least two. In this model, the majority of trades stem from subjects following their
private information. There is also a large proportion of noise trading activity, which
is biased towards buying the asset. We observe little herding and contrarianism, as
theory suggests. Finally, we observe a significant proportion of (irresolute) subjects
who follow their own private information when it agrees with public information, but
abstain from trading when it does not.
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1 Introduction

In this paper we present a Bayesian approach to the analysis of experimental data.
We consider a dataset coming from an experimental study (Cipriani and Guarino
2005a) in which subjects trade an asset in sequence with a market maker. To explain
the order flow observed in the experiment, we build a structural model of sequen-
tial trading. Whereas in a Perfect Bayesian Equilibrium (PBE) all traders follow
their private information, in the experiment we observe deviations from equilib-
rium behavior. To explain them, in the structural model that we estimate we allow
trades to be the outcome of different trading strategies: (a) follow one’s own pri-
vate information; (b) act against one’s own private information and herd on the
predecessors’ actions when sufficient evidence has built in favor of either buying
or selling the asset; (c) act as a contrarian, going against one’s own private infor-
mation and the predecessors’ majority action; (d) abstain from trading when pri-
vate information contradicts the predecessors’ majority action; (e) choose randomly
between the available choices. Using a Bayesian approach, we estimate the posterior
distribution of the structural parameters governing the arrival process of trades in the
market.

While there is now a well established tradition of structural estimation in exper-
imental economics (in particular, the Quantal Response Equilibrium), to the best of
our knowledge, a Bayesian approach to statistical inference has never been used.
We believe that such approach has interesting features. In particular, it allows us
to compare in a natural way non-nested models, that is, models that are not a
restricted version of a more general one. In this way, we can determine which
specification fits the data best. In particular, our definitions of herding, contrari-
anism and “irresoluteness” depend on the choice of the price after which sub-
jects do not use their own information; different choices lead to different estimates
of the model’s parameters. Bayesian techniques offer a natural way of compar-
ing them. Moreover, Bayesian econometrics allows the experimenter to incorpo-
rate any prior information he may have on the parameters’ distribution, and to esti-
mate models through simulation when it would be difficult to do so with Maximum
Likelihood.

We find that the model best fitting the data is that in which a proportion of trades
comes from subjects who do not rely only on their private information, once the dif-
ference between the number of previous buy and sell decisions is at least two. In this
model, the majority of trades stems from subjects following their private information.
There is also a very large proportion of noise trading activity, which is biased towards
buying the asset. Finally we observe very little herding and contrarianism, as theory
suggests. We observe a significant proportion of subjects who follow their own private
information when it agrees with public information, but abstain from trading when it
does not.

The paper is organized as follows. Section 2 describes the experiment, Sect. 3
the empirical methodology, Sect. 4 the estimation strategy and Sect. 5 the results.
Section 6 concludes. The Appendix contains the graphs of the parameters’ posterior
distributions.
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2 The experiment

We use the data collected by Cipriani and Guarino (2005a) in an experimental study
with undergraduate students of all disciplines at New York University. In particular,
we use the data of the “Flexible Price” and “No History” treatments in Cipriani and
Guarino (2005a). For each treatment, the experiment was repeated for four sessions.
We, therefore, consider a total of eight sessions. In each session, there were 12 partic-
ipants acting as traders. The procedures of the experiment replicate a simple model of
sequential trading in a dealer’s market. Here we only summarize them and refer the
reader to Cipriani and Guarino (2005a) for a detailed illustration.

The experiment was paper and pencil. At the beginning of each session, the experi-
menters gave written instructions (available on request) to all subjects. The instructions
were read aloud in an attempt to make the structure of the game common knowledge.

Each session consisted of ten rounds, in which subjects traded an asset in sequence.
In each round, each subject was called to trade only once, with the sequence being
randomly determined by the experimenter. Before each round, an experimenter deter-
mined the value of the asset, which could be high (100) or low (0) with equal
probability.

An experimenter acted as market maker, setting the price at which subjects could
trade. Before trading, each subject received a binary signal (a bad signal 0 or a good
signal 1) with precision 0.7 on the value of the asset. After observing the signal,
the subject decided whether he wanted to buy, to sell or not to trade at the price set
by the market maker. In the “Flexible Price” Treatment, previous subjects’ decisions
were public information, along with the prices at which they had been taken. In the
“No History” Treatment, previous subjects’ decisions and prices were not public infor-
mation. Therefore, a subject knew only his signal and the price at which he could trade.1

At the end of each round, that is, after all 12 participants had traded, the realization of
the asset value was revealed.

In the experiment, the numeraire was a fictitious currency called lira. Payoffs were
computed as follows: if a subject bought, he earned (100 + Value − Price) liras. If he
sold, he earned (100 + Price − Value) liras. If he decided not to trade, he earned 100
liras. That is, subject were endowed with 100 liras at the beginning of each round in
order to avoid negative payoffs.

During the experiment, the market maker updated the price in a Bayesian way,
assuming that all subjects behaved rationally. Economic theory predicts that rational
subjects should always follow their signal, that is, they should buy after seeing a good
signal and sell after seeing a bad one. No one should decide not to trade, as private
information allows subjects to earn money in expected value. Therefore, when a sub-
ject bought the asset, the price was updated assuming that he had seen a good signal.
Similarly, when a subject sold the asset, the price was updated assuming that he had
observed a bad signal. Finally, in the case of a no trade, the price was kept constant.

1 Cipriani and Guarino (2005a) report that subjects’ behavior was not significantly different in the two
treatments.
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3 Empirical methodology

In the PBE of the financial economy implemented in the laboratory, agents always fol-
low their private information. Cipriani and Guarino (2005a) show that while the PBE
has some predictive power, there are deviations from equilibrium in the experimental
data. Our purpose is to explain the order flow observed in the laboratory by allowing
subjects to have different trading strategies. In particular, based on the discussion of
the experimental data by Cipriani and Guarino (2005a), we postulate that trades can
be the expression of five different strategies:

1. With probability p, a trade stems from a subject who simply relies on private
information, buying with a good signal and selling with a bad signal. We refer to
this type of trade as a “private-information based trade.”

2. With probability n, a trade stems from a subject acting as noise trader, whose
actions are altogether random. In particular, a noise trader buys, sells or does not
trade the asset with probabilities εb , εs and 1 − εb − εs .

3. With probability h, a trade stems from a subject acting as a “herder.” Specifically,
let us denote by pd

t the price faced by the subject playing at time t of round d.2

We consider two price thresholds, T L ≤ 50 ≤ T H . A herder follows his signal
(behaving like private-information based traders, described under point 1 above)
whenever T L ≤ pd

t ≤ T H ; he buys independently of his signal for pd
t > T H and

sells independently of his signal for pd
t < T L . Since the price is higher than the

threshold T H when there have been more buy than sell orders, and lower than the
threshold T L when there have been more sell than buy orders, this trading strategy
consists in following the majority trading action chosen by the predecessors.

4. With probability c a trade stems from a subject acting as a “contrarian.” Exactly
as herders, contrarians follow their signal whenever T L ≤ pd

t ≤ T H . In contrast
to herders, however, they go against the pattern of past trading activity whenever
the price is outside the interval defined by the two thresholds. In particular, they
sell for a high price pd

t > T H , and buy for a low price pd
t < T L .

5. Finally, with probability i , a decision stems from a subject acting as an “irresolute.”
Like herders and contrarians, irresolutes follow their signal when T L ≤ pd

t ≤ T H .
However, if pd

t > T H they only buy with a good signal; with a bad signal they
abstain from trading. Conversely, if pd

t < T L they only sell with a bad signal;
with a good signal they abstain from trading. In other words, when the consensus
that has built in the market goes against their private signal, these traders behave
in an “irresolute” manner and decide not to take a position.

A few considerations are in order. First, a no trade can only come from a noise
trader or from an irresolute trader. All the other strategies described above only entail
either selling or buying the asset.3

2 We counted rounds sequentially, by session and treatment. Round 1 was the first round of the first session
of the Flexible Price Treatment, round 11 was the first round of the second session of the Flexible Price
Treatment, round 41 was the first round of the first session of the No History Treatment, and so on.
3 Cipriani and Guarino (2005b) estimate the proportion of noise versus information based traders (i.e.,
traders of type 1 and 2 only), using a frequentist approach.
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Second, we will estimate our model for different levels of the thresholds and then
compare the fit. In particular, we will compare the fit of the model estimated with
three different sets of thresholds: {T L = 50, T H = 50}, {T L = 30, T H = 70} and
{T L = 15, T H = 85}. Note that, in our laboratory experiment, there is a one-to-one
relationship between prices and trade imbalance (i.e., the difference between the num-
ber of buy orders and sell orders from the beginning of the round until a subject trades).
As a result, the price thresholds correspond to different levels of the trade imbalance.
In particular, a threshold of 50 corresponds to a trade imbalance of zero (equal number
of buys and sells in the past history of trades). The 30–70 thresholds correspond to
a trade imbalance of −1 and 1 (that is, the number of sells exceeds the number of
buys by one, or vice versa). Finally, the 15–85 thresholds correspond to a trade imbal-
ance of −2 and 2 (that is, the number of sells exceeds the number of buys by two, or
vice versa). The thresholds (either directly defined in terms of the price or of the trade
imbalance) define what we mean by herding behavior or by contrarianism. This means
that, e.g., a trade stems from a subject acting as a herder if he follows the crowd when
the absolute value of the trade imbalance is at least 1 (for {T L = 50, T H = 50}), at
least 2 (for {T L = 30, T H = 70}), or at least 3 (for {T L = 15, T H = 85}).

Third, p+c+ i represents the probability that a trade stems from a trader following
a strategy which, although not in line with the PBE, is not random. In particular, it can
be rationalized in terms of following the crowd (herders), going against it (contrari-
ans), or being willing to trade only when all private and public information point to
the same direction (irresolute).

We want estimate the vector of parameters � = {p, n, h, c, i, εb, εs}, which defines
the arrival of different types of decisions in the laboratory. To this purpose, we con-
struct the likelihood function of the data. Let us denote the history of trades for round
d by hd = {xd

t : xd
t ∈ {Buy, Sell, NoT rade}, t = 1, 2, . . . , 12}. In the same fash-

ion, let us denote the history of signals and prices in round d as sd = {sd
t : sd

t ∈
{0, 1}, t = 1, 2, . . . , 12} and pd = {pd

t : pd
t ∈ [0, 100], t = 1, 2, . . . , 12}. The

likelihood function can then be written as

L
(
�; {hd}D

d=1, {sd}D
d=1, {pd}D

d=1

)
= Pr

(
{hd}D

d=1|�, {sd}D
d=1, {pd}D

d=1

)
,

where D = 80 is the total number of rounds in our dataset. Since rounds are inde-
pendent,4 the likelihood function can be expressed as the product of the likelihood of
trading decisions in each round d, that is,

L
(
�; {hd}D

d=1, {sd}D
d=1, {pd}D

d=1

)
=

D∏
d=1

Pr
[
hd |�, sd , pd

]
.

4 The independence across rounds stems from the maintained hypothesis in our structural estimation that
the behavioral model we presented above is the “true” data generating process; that is, that all heterogeneity
in subjects’ decisions (and all possible time-dependence within rounds) is captured by the parameters that
we estimate. Note that our assumption that the parameters governing subjects behavior are constant across
sessions is consistent with the fact that we do not observe much cross-session heterogeneity in subjects’
behavior.
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In the same fashion, conditional on the signal sd
t and the price pd

t , an action xd
t is

independent of the other actions, and, therefore, we can write

Pr
[
hd |�, sd , pd

]
=

12∏
t=1

Pr
[
xd

t |�, sd
t , pd

t

]
.

Therefore, the probability of observing a subject buying the asset at time t of round d
is

Pr
[
xd

t = Buy|�, sd
t , pd

t

]
= p1{sd

t =1} + h1{pd
t >T H }∪{sd

t =1,T L≤pd
t ≤T H }

+ c1{pd
t <T L }∪{sd

t =1,T L≤pd
t ≤T H }+i1{sd

t =1,T L≤pd
t } + nεb,

where 1{E}is the indicator function taking value 1 if the event E occurs and 0 if not.
Similarly, the probability of observing a subject selling the asset at time t of round

d is

Pr
[
xd

t = Sell|�, sd
t , pd

t

]
= p1{sd

t =0} + h1{pd
t <T L }∪{sd

t =0,T L≤pd
t ≤T H }

+ c1{pd
t >T H }∪{sd

t =0,T L≤pd
t ≤T H }+i1{sd

t =0,pd
t ≤T H } + nεs .

Finally the probability of observing a no trade is given by

Pr
[
xd

t = No T rade|�, sd
t , pd

t

]
=n(1 − εb−εs)+ i

[
1{sd

t =1,pd
t <T L }+1{sd

t =0,pd
t >T H }

]
.

4 Estimation strategy

We estimate the posterior distribution of the parameters governing the arrival process
of trades in the market through a Bayesian approach. We compute the parameters’
posteriors under two different assumptions on the priors: (1) that all parameters are
uniformly distributed in the [0, 1] interval; (2) that they are all distributed as a beta
distribution, B(0.5, 0.5). Both priors are usually used in Bayesian econometrics as
“uninformative priors.” Our results are largely unaffected by the choice of the prior,
therefore we only report those for the uniform distribution (those for the beta are
available upon request).

In order to compute any posterior moment or statistics, we draw a sample (a chain)
from the parameters’ posterior distribution, with a methodology called Markov Chain
Monte Carlo (MCMC). We start from an initial parameter vector �0, drawn from the
prior distribution. We then draw another proposed parameter vector �∗ drawn from a
proposal distribution J (�) (in our case, a uniform distribution). We set

�1 =
⎧⎨
⎩

�∗ with probability min

(
f (�∗|data)/J (�∗)
f (�0|data)/J (�0)

, 1

)
,

�0 otherwise,

⎫⎬
⎭
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where f (�∗|data) is the conditional density distribution of the parameter vector.
Once we compute �1, we draw another proposed parameter vector �∗∗, and set �2

equal to either �∗∗ or �1. We continue the procedure until we have drawn a chain of
the desired length.

Let us provide some intuition for the algorithm, and, to this purpose, let us
focus on the case in which the proposal distribution is also uniform, in which case
f (�∗|data)/J (�∗)
f (�0|data)/J (�0)

= f (�∗|data)

f (�0|data)
. At each stage t of the chain, the algorithm sets �t equal

to the proposed parameter vector �∗ if the posterior distribution for �∗ is higher than
that of �t−1; if instead the posterior distribution of �∗ is lower than that of �t−1, the
new element of the chain �t is set equal to �∗ with a probability that is higher the
higher the ratio between the two distributions f (�∗|data) and f (�0|data).

It is relatively straightforward to show that the algorithm (which is called a Metrop-
olis-Hasting algorithm with independent sampling) produces a sample of parameter
vectors �0,�1 . . . �n that converges to the parameters’ posterior distribution.5 For
each estimated model, we drew a chain of length 500, 000; moreover, in order to mit-
igate the effect of the starting distribution, we discarded the first 150, 000 elements of
the chain.6

The Bayesian approach allows us to test easily between models that are not nested.
In particular, as we mentioned in the previous section, herding, contrarianism and
irresoluteness can be defined with respect to different levels of price thresholds T L

and T H . For each two models H1 and H2 that we want to compare, we can compute
their Bayes Factor B12 = Pr(data|H1)

Pr(data|H2)
; the higher the ratio (that is, the higher the prob-

ability that the data is generated by model H1 rather than by model H2) the stronger
the evidence in favor of model H1 vis à vis model H2. Following Kass and Raftery
(1995) we interpret any value of 2logB12 above 6 as strong evidence against H2, and
any value between 2 and 6 as positive evidence against the H2.7 In order to compute
the Bayesian factor we use the harmonic mean identity method described in Raftery
et al. (2006).

5 Results

In Table 1, we report the modes, means and standard deviations of the parameters’ pos-
terior distributions for the three models we estimated: {T L = 50, T H = 50}, {T L =
30, T H = 70} and {T L = 15, T H = 85}. Table 2 reports the 0.05, 0.10, 0.90 and
0.95 quantiles for each parameter. In the rest of the section, we will comment on
the results in terms of posterior means, pointing out when the mode gives a slightly
different picture. Note that all the parameters are quite precisely estimated: the stan-

5 Note that we implemented the algorithm parameter by parameter sequentially (and not for the whole
parameter vector at the same time). For a rigorous explanation of the MCMC methodology see, for exam-
ple, Gelman et al. (2003), Koop (2003) and Bolstad (2010).
6 Acceptance rates across parameters (that is, the probability that a new proposed parameter vector �∗ is
accepted as part of the Markov chain) and model specifications were on average 24 % for the uniform prior,
and 17 % for the beta prior (low acceptance rates slow down convergence to the posterior distribution).
7 We report the thresholds in terms of twice the natural logarithm of the Bayes Factor as it is of the same
scale as the likelihood ratio test statistics.
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Table 1 Posterior mode, mean and standard deviation (uniform prior)

{T L = 50, T H = 50} {T L = 30, T H = 70} {T L = 15, T H = 85}
Mode Mean Std. Mode Mean Std. Mode Mean Std.

p 0.39 0.36 0.04 0.25 0.29 0.05 0.21 0.26 0.06

n 0.30 0.39 0.05 0.45 0.41 0.04 0.44 0.45 0.03

i 0.19 0.14 0.04 0.20 0.17 0.04 0.24 0.20 0.05

h 0.13 0.08 0.04 0.07 0.07 0.04 0.07 0.05 0.04

c 0.11 0.04 0.03 0.07 0.05 0.03 0.09 0.04 0.03

εB 0.31 0.28 0.05 0.30 0.30 0.04 0.31 0.31 0.04

εS 0.27 0.22 0.04 0.24 0.21 0.04 0.23 0.23 0.04

Table 2 Posterior percentiles (uniform prior)

{T L = 50, T H = 50} {T L = 30, T H = 70} {T L = 15, T H = 85}
<0.05 <0.1 <0.90 <0.95 <0.05 <0.1 <0.90 <0.95 <0.05 <0.1 <0.90 <0.95

p 0.29 0.31 0.41 0.42 0.21 0.23 0.36 0.37 0.16 0.18 0.33 0.35

n 0.30 0.32 0.45 0.47 0.35 0.36 0.46 0.48 0.40 0.41 0.49 0.51

i 0.08 0.09 0.19 0.20 0.10 0.11 0.22 0.24 0.11 0.13 0.27 0.29

h 0.01 0.03 0.12 0.14 0.01 0.02 0.12 0.14 0.00 0.01 0.10 0.11

c 0.00 0.01 0.07 0.09 0.01 0.01 0.08 0.09 0.00 0.01 0.08 0.10

εB 0.19 0.21 0.34 0.36 0.24 0.25 0.35 0.37 0.25 0.26 0.35 0.37

εS 0.14 0.16 0.27 0.29 0.15 0.16 0.26 0.28 0.18 0.19 0.28 0.29

dard deviations of all the posterior distributions (in the three models that we estimate)
range between 0.03 and 0.06. Moreover, although the priors were flat, the distribution
of most parameters were bell-shaped, and relatively symmetric around the mean (see
the Appendix).

Under all parametrizations for the thresholds, between one third and one fourth of
all trades can be classified as coming from traders who followed their own private
information (“private-information based traders”). The proportion of trades coming
from subjects following their private information decreases, however, as the thresh-
olds become more extreme (from 0.36 with a 50–50 threshold, to 0.26 with a 15–85
threshold).

In contrast, pure random trading (n) accounts for 40 % of all trading activity, and
it is biased toward buying (with εB ranging from 0.28 to 0.31), rather then selling (εS

between 0.21 and 0.23). The behavior of noise subjects shows little variation across
models.

What about herding and contrarianism? As predicted by sequential trading models
with asymmetric information (see, e.g., Avery and Zemsky 1998), there seems to be
very little of it. In particular, only between 5 and 8 % of trades can be attributed to
herding, whereas contrarianism ranges between 4 and 5 % (according to the chosen
level of the thresholds). Note that these numbers are somewhat higher if we look at the
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mode of the posterior distributions, with herding and contrarianism reaching 13 and
11 % under the 50–50 threshold specification. Moreover, under most specifications,
looking at the 0.1–0.9 percentiles, the level of herding ranges between 1 and 12 %,
whereas that of contrarianism between 0 and 8 %. That is, a relatively high mass of
probability is attached to levels of herding and contrarianism above 5 %. Indeed, in
contrast to all other parameters, the distribution for h and c are both quite strongly
skewed to the right, with posterior distributions having relatively high mass on the
right tail (see Appendix).

In contrast to what theory predicts, however, there is a significant number of trades,
on average between 15 and 20 % of the sample, stemming from subjects who act as
“irresolute” traders. That is, stemming from subjects who abstain from trading when
private (i.e., the signal) and public (i.e., the price) information do not agree with each
other, but follow both when they agree. The presence of this type of subjects in the
laboratory is an interesting departure from the theory, as abstention from trading is one
of the main departure from equilibrium behavior (see Cipriani and Guarino 2005a).

Finally, we want to test which specification, in terms of thresholds, explains our data
better. In order to do so, we compute the implied Bayes factors for the three models.
When we compare {T L = 50, T H = 50} with {T L = 30, T H = 70} the computed
Bayes factor 7.64 provides positive evidence in favor of the 30 − 70 thresholds. In the
same fashion, when {T L = 50, T H = 50} is compared to {T L = 15, T H = 85}, we
obtain positive evidence in favor of {T L = 50, T H = 50}, with a Bayes factor of 3.43.
It is not surprising then to find out (strong) evidence in favour of {T L = 30, T H = 70}
vis à vis {T L = 15, T H = 85}. Therefore, the data support the inference that the level
of prices that makes agents switch from rationality to herding, contrarianism and irres-
oluteness is 30–70, which corresponds to a trade imbalance of at least 2 in absolute
value.

6 Conclusions

We have studied the data of an experimental financial market through a Bayesian
approach. In our model of sequential trading, decisions are classified in five types:
private-information based, noise, herd, contrarian and irresolute. Through MCMC
simulation, we have estimated the posterior distributions of the structural parame-
ters. This technique has allowed us to evaluate how different, non-nested models fit
the data. While structural estimation is well established in experimental economics
(an example is the widespread use of parameter estimation for the Quantal Response
Equilibrium), the Bayesian approach to statistical inference has not been exploited so
far. We believe that the use of more complicated structural models and the need of
evaluating the fit of non-nested models will likely lead to a diffusion of this approach.

Acknowledgments Antonio Guarino gratefully acknowledges the financial support of the ERC and of
the INET foundation. The views expressed herein are those of the authors and should not be attributed to
the IMF, its Executive Board, or its management; the Federal Reserve Bank of New York, or the Federal
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Appendix Posterior distributions

See Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15.
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Fig. 1 Posterior distribution for the parameter p for the model with {T L = 15, T H = 85}
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Fig. 2 Posterior distribution for the parameter p for the model with {T L = 30, T H = 70}
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Fig. 3 Posterior distribution for the parameter p for the model with {T L = 50, T H = 50}
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Fig. 4 Posterior distribution for the parameter i for the model with {T L = 15, T H = 85}
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Fig. 5 Posterior distribution for the parameter i for the model with {T L = 30, T H = 70}
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Fig. 6 Posterior distribution for the parameter i for the model with {T L = 50, T H = 50}
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Fig. 7 Posterior distribution for the parameter n for the model with {T L = 15, T H = 85}
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Fig. 8 Posterior distribution for the parameter n for the model with {T L = 30, T H = 70}
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Fig. 9 Posterior distribution for the parameter n for the model with {T L = 50, T H = 50}
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Fig. 10 Posterior distribution for the parameter h for the model with {T L = 15, T H = 85}
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Fig. 11 Posterior distribution for the parameter h for the model with {T L = 30, T H = 70}
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Fig. 12 Posterior distribution for the parameter h for the model with {T L = 50, T H = 50}
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Fig. 13 Posterior distribution for the parameter c for the model with {T L = 15, T H = 85}
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Fig. 14 Posterior distribution for the parameter c for the model with {T L = 30, T H = 70}
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Fig. 15 Posterior distribution for the parameter c for the model with {T L = 50, T H = 50}
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