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Abstract: Various modifications of rational choice theory have sought to
accommodate reported deviations from Bayesian decision theory in experiments
on the Ellsberg paradox. The new theories usually postulate some ambiguity in
the probabilities assigned to uncertain events. How well do such theories work
when applied in game theory?

This question is explored from the viewpoint of Leonard Savage, who argued
that his newly created theory of subjective expected utility is only realistically
applicable in what he called a small world. The world of classical game theory is
small almost by definition, but we endorse the view that the classical definition
of a mixed strategy needs to be expanded to allow for devices from the theory
of algorithmic randomization that allow pure strategies to be muddled together
in a manner that defies a Bayesian description. However, we depart from the
developing orthodoxy on game theory in the presence of Knightian uncertainty
in also denying that an ambiguity description in terms of multiple priors is always
adequate. Even when such an ambiguity description is adequate, it is argued
that only an ambiguity neutral version of the Hurwicz criterion is viable, and so
the common use of the maximin criterion in evaluating the payoffs that result
when the players use Knightian strategies modeled in terms of multiple priors
is excluded.

The paper continues by offering an argument that favors replacing the
standard additive Hurwicz criterion by a multiplicative Hurwicz alternative in a
game theory context. An example shows that both the ambiguity-neutral addi-
tive Hurwicz criterion and its multiplicative counterpart can generate muddled
Nash equilibria that are Pareto-improvements on classical mixed Nash equilibria.
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Ambiguity in Game Theory?1

by Ken Binmore

1 Preview

Bayesianism is the ruling paradigm for rational choice behavior in risky or un-
certain situations. The theory was created in 1954 by Leonard Savage [67] in
his ground-breaking Foundations of Statistics, but sixty years later his warning
on page 16 that it would be “preposterous” and “utterly ridiculous” to use his
theory outside what he later calls a “small world” continues to be largely ignored.
Nevertheless, experiments on the Ellsberg paradox have fuelled a literature that
seeks to address the problems that had already been raised by Frank Knight [52]
in 1921 about the consequences of preceding as though one can always assign a
precise probability to any uncertain event.2

Rational game theory stands clear of this issue largely because a game as
classically conceived is a small world in Savage’s sense almost by definition. But
should we not be trying to go beyond this classical vision to create a game theory
that is adequate for applications in macroeconomics or finance? Is the current
orthodoxy even adequate for the purposes for which it was invented in the first
place? I share the view of a number of recent authors who take the radical line
on both questions.3 However, this paper differs from most of this literature in
holding that an ambiguity approach to the problem of Knightian uncertainty is
not always adequate. Sometimes the problem is not that there is an ambiguity
about what probability to attach to an event, but that it is not meaningful to
attach a probability to the event at all—a fact that can occasionally be exploited
for strategic purposes.

In applying ambiguity theories to game theory, it is usual to model the players
as being ambiguity averse. The standard approach is to follow Wald [79] or

1I am grateful for funding from the European Research Council under the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013)/ERC grant 295449.

2For example, Berger [7], Breese and Fertig [13], Chrisman [18], DeGroot [20], Dempster
[21] Earman[23], Fertig and Breese [28], Fine [29, 30], Fishburn [31, 32], Gardenfors and Sahlin
[33], Ghirardato and Marinacci [35], Gilboa [36], Giron and Rios [38], Good [39], Halpern and
Fagin [41], Huber [45], Kyburg [54], Levi [56, 57], Klibanoff at al [51], Pearl [64], Seidenfeld
[69], Shafer [70], Wakker [76], Walley and Fine [81], and Walley [80].

3For example, Azrieli and Teper [4], Bade [6], Eichberger and Kelsey [24], Marinacci [61],
Riedel and Sass [66].
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Gilboa and Schmeidler [33] in using the maximin criterion to resolve ambiguities.
Hurwicz [46], Chernoff [17], Milnor [62], Arrow and Hurwicz [2], and Ghirardato
et al [34] offer a variety of reasons for generalizing the maximin criterion to the
Hurwicz criterion when evaluating a simple gamble (in which the decision-maker
wins when an event E occurs and loses otherwise). When it is known that E
cannot have a probability less than a lower probability p(E) or more than an upper
probability p(E), Hurwicz proposed the maximization of a weighted arithmetic
mean of the upper and lower probabilities:

πA(E) = (1 − α) p(E) + α p(E) (1)

which reduces to the maximin criterion when α = 0. However, with the ambiguity
approach to Knightian uncertainty, we argue that the Hurwicz criterion is viable
only in the ambiguity-neutral case when α = 1

2 (Theorem 1).
The paper continues by offering an approach to independence in the presence

of Knightian uncertainty that suggests replacing the weighted arithmetic mean
πA(E) by the corresponding geometric mean

πG(E) = {p(E)}1−α {p(E)}α . (2)

Neither version of the Hurwicz criterion retains the additive property of the prob-
abilities of disjoint events, but the arithmetic version holds on to more of the
flavor of the additive property than the geometric version. However, the geomet-
ric version retains the multiplicative property of the probabilities of independent
events, which can be especially useful in game theory applications.

A simple 2× 2 game with a unique Nash equilibrium in the classical sense is
used to illustrate the relevance that these notions can sometimes have in game
theory. In this game, the players get no more than their security payoffs at the
equilibrium. Harsanyi [42, 43] and Aumann and Maschler [3] have independently
asked why the players do not deviate to their security strategies in such games
so as to get their equilibrium payoffs for sure. Enlarging the small world of mixed
strategies by introducing “muddled strategies” provides a possible solution to
this problem. In a muddled strategy, a player’s pure strategies are played with
differing upper and lower probabilities. If outcomes of the game that result from
the use of such muddled strategies are evaluated using either the arithmetic or
the geometric Hurwicz criterion with α = 1

2 , it is shown that non-classical Nash
equilibria exist that Pareto-dominate the classical equilibrium.

Such muddled strategies are not implementable using an Ellsberg experimen-
tal set-up because their properties are inconsistent with their being assigned any
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particular probability between their upper and lower probabilities. However, their
introduction raises troublesome issues in the theory of algorithmic randomization.

2 Savage’s Small Worlds

Why does Savage [67] restrict Bayesian decision theory to small worlds? The
reason is that his crucial axioms demand that decisions be made consistently with
each other. Nobody denies that a perfectly rational person would make decisions
consistently, but Savage’s theory is about subjective probabilities rather than
what philosophers call epistemic probabilities that measure rational degrees of
belief. If an adequate theory of this kind were available, consistency would come
as part of the package, but no such solution of the problem of scientific induction
is even remotely in sight.4

The Von Neumann and Morgenstern theory operates with objective proba-
bilities, which we identify with limiting frequencies. Savage extended the Von
Neumann and Morgenstern theory to cases when objective probabilities are un-
available. Their place is taken by his subjective probabilities that may differ from
person to person because they simply reflect what bets a consistent decision-
maker is willing to make.

Savage’s theory therefore merely describes a person’s choice behavior if that
person makes choices consistently. But why would a person behave consistently?
After all, physicists know that quantum theory and relativity are inconsistent
where they overlap, but they live with this inconsistency rather than abandon the
accurate predictions that each theory provides within its own domain. Physicists
strive to create a “theory of everything” from which such inconsistencies have
been removed, but everybody recognizes that this is a problem of enormous
difficulty. So why do naive Bayesians proceed as though rationality somehow
endows us with the talent to make consistent decisions without any effort at all?

Savage [67, p. 16] confined the field of application of his theory to small
worlds because he did not believe that consistency comes any easier to us than
it does to physicists. Calling Alice rational does not somehow endow her with a
consistent set of beliefs (which Savage’s theory then shows can be summarized
with a prior distribution). Achieving consistency is part of what rationality is
about—perhaps the most important part. We are entitled to appeal to Savage’s

4If a solution to the problem of scientific induction ever comes in sight, my guess is that
branches of mathematics much more complicated than probability theory will be required.
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axioms only when this part of a rational analysis is over.
Savage’s famous encounter with Maurice Allais in Paris illustrates how he

thought Bayesian decision theory should be used in practice. When it was pointed
out that his anwers to what is now called the Allais paradox were inconsistent, he
revised them until they were consistent. Luce and Raiffa [60, p. 302] summarize
Savage’s views as follows:

Once confronted with inconsistencies, one should, so the argument goes, modify
one’s initial decisions so as to be consistent. Let us assume that this jockeying—
making snap judgments, checking up on their consistency, modifying them, again
checking on consistency etc—leads ultimately to a bona fide, prior distribution.

Ironically, this story reverses the philosophical position of naive Bayesians. Sav-
age’s rational agents do not begin with a prior from which they deduce their
posteriors. They begin by guessing at posteriors and then massage their guesses
until consistency has been achieved. The prior is then derived from the system of
massaged posteriors. Rational agents are therefore not somehow endowed with a
prior. They have to work hard at constructing a prior (Binmore [8, pp. 128–134]).

Constructing a prior in this way would be impossible in large complicated
worlds because it requires being able to look ahead and figure out what one
would believe under all possible future contingencies. As Savage [67, p. 16] puts
it, you must always be able to look before you leap and never have to delay
considering bridges until they have to be crossed.

It is easy to understand why Bayesians who work in macroeconomics or fi-
nance find this exposition of Savage’s views unwelcome, but surely a game as
classically defined counts as a small world in Savage’s sense? My own view is
that the answer depends on whether or not the reasoning processes of the play-
ers are excluded from the formal model. If they are, then I see no conceptual
difficulty in applying Bayesian decision theory to a classical game to come up
with a (possibly refined) Nash equilibrium, provided that one does not need to
go beyond the classical notion of a mixed strategy.

3 Ambiguity or Uncertainty?

The distinction between subjective and epistemic probabilities mentioned in the
previous section is not recognized by those naive Bayesians who treat Savage’s
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theory as though it were a solution to the problem of scientific induction.5 All
one ever needs to do according to this position is to name a prior and then deal
with all new information by updating this prior using Bayes’ rule.

Where are such rational priors to be found?6 Laplace [55] advocated the prin-
ciple of insufficient reason (also called the indifference principle). The Harsanyi
doctrine is that different rational players independently placed in a situation of
complete ignorance will necessarily formulate the same common prior (Harsanyi
[44]). Others take this position further by arguing that the complete ignorance
assumption implies, for example, that the rational prior will maximize entropy
(Jaynes and Bretthorst [47]). We are then as far from Savage’s view on con-
structing priors as it is possible to be. Instead of using all potentially available
information in the small world to be studied in formulating a prior, one treats all
such information as irrelevant.

The ambiguity approach to the problem of Knightian uncertainty replaces the
single prior of the preceding discussion by a (usually convex) set of priors. Alice
doesn’t know enough to come up with a single prior and so she rests content
with eliminating those priors that she does know enough to exclude.

Such a formulation in terms of multiple priors seems an inevitable response to
the problem of Knightian uncertainty when probabilities are taken to be epistemic,
but there seems no particular reason always to model the problem in this way
when the probabilities are subjective. Moreover, if one follows Savage’s approach
to constructing priors but accepts that Alice may be too ignorant to bring the
massaging process to a determinate conclusion, then there is no particular reason
why one should be working with priors at all. To emphasize the importance of
not excluding this possibility, we shall speak of uncertainty rather than ambiguity
when we do not want to take for granted that it is only Alice’s ignorance that
prevents her being able to assign a probability to everything.

The need to widen our horizons from ambiguity to uncertainty is defended in
two ways. Section 6 expresses doubts about using the ambiguity approach when
seeking to enlarge the class of mixed strategies. Section 8 casts doubt on the

5Philosophers distinguish objective probabilities (or chances) from epistemic probabilities
(or credences). They link the two concepts using Lewis’s [58] “principal principle”, which says
that the credence for an event whose chance is known should equal that chance. No consensus
seems to exist on where subjective probabilities fit into this scheme. Do they count as chances
or credences, or something in between? Only the third option seems viable to me.

6Bayesian statisticians use priors that have been found to work well in similar applications,
but they usually do not claim that such priors are the one-and-only rational prior. Instead, they
very reasonably defend their methodology against classical statistics on empirical grounds.
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adequacy of the ambiguity approach in general.

4 Ellsberg Games?

The Ellsberg paradox lies at the heart of ambiguity research (Ellsberg [27, 26]).
We use the version in which an urn contains 10 red balls and 20 balls that are black
or white in an unknown proportion. The ambiguity approach fits this scenario
without difficulty because each ball then has a specific objective probability of
being drawn, and the problem is simply that we do not know what these objective
probabilities are in the case of the black and white balls. All we can say for sure
about these ambiguous probabilities is that they lie between a lower probability
of 0 and an upper probability of 2

3 .
Ellsberg suggested that decision-makers asked to express preferences between

various reward schedules that depend on which ball is drawn at random from the
urn would not honor the postulates of Bayesian decision theory. Many experi-
ments have confirmed this conjecture in a variety of settings. As a result, it is
now regarded as a stylized fact that people usually have an inbuilt aversion to
ambiguity. (See the annotated bibliography of Wakker [78]). One can argue that
this result is irrelevant to rational choice theory for the same reason that exper-
iments showing that people often assert that 7× 8 = 54 is irrelevant to the fact
that 7 × 8 = 56, but the consensus seems to be in favor of modifying Savage’s
theory so that ambiguity neutrality ceases to be a consequence of rationality.

In applying such work in game theory, the focus of attention has been on the
approach of Gilboa and Schmeidler [33] mentioned in Section 1. Mukerji and
Tallon [63] review the issues that arise and so it is enough to observe that one
can contemplate introducing uncertainty aversion into a game at three levels:

1. The level of chance moves;

2. The level of beliefs about other players’ strategy choices;

3. The level of strategies.

Much of the literature is devoted to the second level,7 which is inspired by the
observation that mixed equilibria need to be interpreted as equilibria in beliefs
about the strategies of the players’ opponents (because players have no more
reason to play a mixed strategy in equilibrium than they have to play any of the
pure strategies to which it assigns positive probability). However, the focus of
attention in this paper is the third level in which the strategies themselves are

7For example, Dow and Werlang [22], Eichberger et al [24, 25], Lo [59]. Marinacci [61].
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modeled as being ambiguous.

5 Ellsberg Strategies?

The literature stemming from the Ellsberg paradox does not usually distinguish
between large worlds and small worlds. In the kind of large-world settings in
which most everyday decisions are made, some degree of uncertainty aversion
certainly seems very intuitive. However, the laboratory evidence is not so solid as
is commonly assumed. For example, when the same Ellsberg problem is expressed
in losses rather than gains, experimenters often report ambiguity-seeking behavior
rather than ambiguity-averse behavior (Wakker [77, p. 354]).8

What of Ellsberg experiments framed with a view to applications in small-
world settings so that the possibility of ambiguous interpretations of the ex-
perimental context are minimized. Several recent experiments report very little
ambiguity aversion in such circumstances (Binmore et al [10], Charness et al [16],
Stahl [71], and Voorhoeve et al [75].) Savage would not have been surprised at
this conclusion because the Ellsberg paradox is set in a world that is about as
small as a world can be.

Where does this leave the “Ellsberg strategies” championed by Riedel and
Sass [66]? They argue that players in a game could enlarge the set of mixed
strategies by using the Ellsberg set-up. I see three problems:

1. I am one of many who think it reasonable to seek to supplement Bayesian
decision theory with a theory of rational choice better adapted to large-world
applications (Binmore [9]), but the proposed application of the Ellsberg paradox
to implementing ambiguous strategies in rational game theory would be a small-
world application to which Bayesian decision theory ought to apply.

2. The evidence that people exhibit a substantial level of ambiguity aversion
in Ellsberg experiments is not robust. The evidence that subjects will decide
among multiple priors using the maximin criterion is hardly there at all. It is not
even clear why behavioral data is relevant to a rational theory of games.

3. The fact that Ellsberg strategies are rooted in an ambiguity approach to

8The Ellsberg paradox isn’t the only situation in which a stylized behavioral fact is accepted
uncritically. The endowment effect is sometimes said to be the most robust result in exper-
imental economics, but half of all papers find no effect at all (Plott and Zeiler [65]). Even
the Allais paradox isn’t entirely solid (Blavatsky et al [11]). As Kahneman and Tversky [48]
emphasize, how an experiment is framed can make a big difference to the observed behavior.

7



uncertainty is too heavy a limitation.

The next section is therefore devoted to a brief review of how one could implement
what one might call “Knightian strategies”.

6 Knightian Strategies?

Von Neumann apparently said that anyone who attempts to generate random
numbers by deterministic means is living in a state of sin. However, the subject of
algorithmic randomness pioneered by Kolmogorov [53], Chaitin [15] and others is
now well established. This computational school requires that an algorithmically
generated random sequence fail all effective pattern-detecting tests (paraphrasing
Calude [14]). So randomness is identified with unpredictability.

This section reviews how randomizing devices based on such theories can be
used in a manner that cannot be duplicated by a mixed strategy. Binmore [8]
refers to such a randomizing device as a muddling box. If such a muddling box
is used in Matching Pennies and so chooses only between heads and tails, one
might idealize it as an infinite sequence of 0s and 1s that represents its putative
past history in selecting each alternative.

Such randomizing devices were originally introduced by Richard von Mises
[74] (Ludwig’s younger brother). He says that such a device chooses 0 with
probability p if the average number of 0s in the first n trials converges to p.9

Such a sequence is said to be random if all recursively defined subsequences
also have probability p, so that no algorithmic player can profit by picking and
choosing when to bet (Church [19]).

But what if the muddling box is designed not to have a probability? That
is to say, the average number of 0s does not converge to a probability p but
oscillates between an upper probability p and a lower probability p? The ambi-
guity approach does not easily accomodate such a device. One might propose
a (non-trivial) prior for its unknown probability and then employ Bayes’ rule to
udpdate the prior using the sequence of 0s and 1s that labels the device. But
the posteriors will not eventually cluster about some particular value. They will
oscillate just like the original sequence of 0s and 1s.

One might argue that such muddling boxes are only a theoretical possibility,
but the device proposed by Stecher et al [72] for generating “ambiguity” in the

9It is not important here, but I favor improving the theory by strengthening the limiting
requirement. This and other difficulties are discussed in Chapter 6 of Binmore [8]).
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laboratory would serve as an approximation adequate for most practical purposes.
One might also argue that rational players would never have a use for muddling
boxes but Binmore [8, p. 182] offers at least one possible application to the
following problem.

What should rational players do in the Battle of the Sexes when they have
no way to break the symmetry of the game? Only symmetric Nash equilibria
are then viable. The only symmetric classical Nash equilibrium of the Battle of
the Sexes is mixed. Since both players receive only their security payoff at this
equilibrium, why they don’t play their security strategies instead to make sure
of this expected payoff? But when muddled strategies are allowed, the Battle
of the Sexes can have a continuum of symmetric Nash equilibria, some of which
pay both players strictly more than their security payoff.

The result mentioned above on muddled equilibria in the Battle of the Sexes
and the clearer results described in Sections 8.2 and 9.5 differ from Bade’s [6]
finding that her “ambiguous act equilibria” are behaviorally equivalent to mixed-
strategy equilibria in two-player games, and “consequently that there is little hope
for new insights in applied contexts”. This paper comes to a different conclusion
because it does not shackle the players to the maximin criterion in evaluating the
use of muddled strategies. The rest of the paper examines alternatives to this
standard approach.

7 Upper and Lower Probabilities

A decision problem is a function D : A × B → C in which A is a set of feasible
actions, B is a set of states of the world, and C is a set of possible consequences.
We always assume that the state space is a probability space (B,M, p), in which
it does not matter whether M is taken to be an algebra or a sigma algebra
because the state space B is assumed to be finite. Similarly the probability
measure p defined on M may be finitely or countably additive.

We say that an event M in M is measured because it comes with a measure
p(M). A subset E of B that is not in M may or may not be measurable, in that
the measure p may possibly admit an extension to an algebra N larger than M.
If multiple extensions are possible, then the value of p(E) will be ambiguous.
However, we assume that no such extension has yet been identified, and so E
remains unmeasured.
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Inner and outer measure. The outer measure p(E) of a set E is the
infimum of the measures p(M) of all measured supersets M of E. Its inner
measure p(E) is the supremum of the measures p(M) of all measured subsets
M of E. One can follow Lebesgue by extending a measure p to sets E on which
p(E) = p(E) in the obvious way. We assume that this extension has already
been done, so that a set is measured if and only if its inner and outer measure
are equal.

It follows immediately from their definitions that p is subadditive and p is
superadditive. Also

p(E) + p(∼E) = 1 . (3)

Following Binmore [8], Good [39], Halpern and Fagin [41], Suppes [73], and
others, we identify p(E) with the upper probability of E and p(E) with its lower
probability. Such an identification is only new to the extent that inner and outer
measures are mentioned explicitly. For example, in the Ellsberg paradox, the
algebra of measured sets is {∅, R,∼R, B}, where R is the event that a red ball
is drawn. The largest measured subset of the event W that a white ball is drawn
is ∅, and so p(W ) = p(∅) = 0. The smallest measured superset of W is ∼R,
and so p(W ) = p(∼R) = 2

3 .

Independence. The literature contains at least four proposals on how to de-
fine independence when events are unmeasured: Bade [5, 6], Brandenburger et al
[12], Klibanoff [50]. This paper evades the issue by restricting attention to cases
where the question of how to define independence is hopefully uncontroversial.

Two measured events M and N are independent if and only if p (M ∩N) =
p(M) p(N). We shall only attempt to extend this notion to sets of the form
E × F . This notation is intended to imply that E is a subset of a state space
Y and F of a state space Z. The state space B is then understood to admit
the factorization B = Y × Z, and our probability measure p is understood to
be the product measure derived from probability measures defined on Y and Z.
To write p (E × F ) = p(E) p(F ) when E and F are measured is therefore the
same as writing p ({E × Z}) ∩ {Y × F}) = p(E) p(F ).

Attention is restricted to events of the form E × F to ensure that

p(E × F ) = p(E) p(F ) (4)

p(E × F ) = p(E) p(F ) . (5)
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Gambles. The set of gambles to be studied will be denoted by G. A gamble
G in this set is defined by

G =
P1 P2 P3 · · · Pm

E1 E2 E3 · · · Em

, (6)

where E = {E1, E2, . . . , Em} is a partition of the belief space B, and the prize
Pi is understood to result when the event Ei occurs. We assume the existence
of best and worst prizes, W and L. A simple gamble S can then be defined by

S =
L W

∼ E E
, (7)

where ∼E is the complement of the set E in the state space B.

Lotteries. A lottery is a gamble in which all the events Ei that determine
which prize will be received are measured. In this paper, the probabilities in the
lotteries used can always be taken to be objective. We always assume that each
new lottery is independent of everything else in the model.

8 Surrogate Probability

A popular approach to dealing with ambiguity problems is to propose an extension
π of the probability measure p to unmeasured sets. We refer to such an extension
as a surrogate probability. Schmeidler’s [68] non-additive probabilities are the
leading example.

Our aim in this section is to explore the implications of extending the proba-
bility measure p defined on an algebra M of measured subsets of the state space
B to a larger algebra N using the idea of a surrogate probability π. We begin
by following Anscombe and Aumann [1] in making the following postulate.

Postulate 1: Some version of the Von Neumann and Morgenstern
theory of rational decision under risk applies to lotteries with prizes in
the set G of gambles constructed from events in N .

Gilboa and Schmeidler [33] are widely followed in regarding ambiguity aversion as
the requirement that one can have (1− p)f + pg ≺ f even though f ∼ g, where
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f and g are gambles and (1 − p)f + pg is the lottery in which f occurs with
probability 1 − p and g with probability p. Postulate 1 excludes this possibility,
because it implies that (1 − p)f + pg ∼ f when f ∼ g. But we shall find that
one can sometimes retain the possibility of ambiguity aversion without the need
to deny the rationality of the Von Neumann and Morgenstern postulates when
applied to objective lotteries with gambles as prizes.

To assume Postulate 1 is not to deny that there are sometimes good be-
havioral reasons for adopting Gilboa and Schmeidler’s approach to ambiguity
aversion. Which of the various available theories one adopts would seem to de-
pend on the context in which it is to be applied. The theory outlined in this
paper is a strictly rational theory. Halevy’s [40] work suggests that only subjects
who understand how to compound objective lotteries are likely to be rational
enough for such a rational theory to apply to them in real life.

Definition. Postulate 1 ensures the existence of a Von Neumann and Mor-
genstern utility function u : G → IR. In particular, the simple gamble S of (7)
has a Von Neumann and Morgenstern utility u(S). We can therefore define a
surrogate probability (sometimes called a matching probability) by writing

π(E) = u(S) .

To avoid the kind of irrationalities made fun of in Aesop’s fables, one might
insist at this stage that π(E) should depend only on the properties of B as a
probability space, but a lot more than this will be assumed in Postulate 4.

8.1 Ambiguity aversion?

Discussions of imprecise probabilities are often framed as though the reason for
the imprecision necessarily lies in there being some ambiguity over the precise
probability to be attached to an event. If this framing were always appropriate,
there would be a case for insisting on the next postulate.10

Postulate 2: If a gamble has the same Von Neumann and Morgenstern utility
whatever probabilities are assigned to unmeasured events, then it should be
assigned this utility when probabilities have not been assigned to these events.

10The ambiguity interpretation fits examples like the Ellsberg paradox, but it cannot be
maintained in examples like the Banach-Tarski paradox (Binmore [9]).
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Theorem 1: Either all events are measured, or else Postulates 1 and 2 imply
that a surrogate probability π can satisfy the arithmetic Hurwicz criterion only
when α = 1

2 .

Proof.11 Consider a lottery in which two gambles are each available with prob-
ability 1

2 . In the first gamble, the decision-maker wins if the event E occurs and
loses otherwise. In the second gamble, the decision-maker loses if E occurs and
wins otherwise. If the utility of losing is zero and the utility of winning is 1, then
the expected utility of the lottery is 1

2 no matter what probability is attributed
to the event E. But when π is given by the arithmetic Hurwicz criterion, we can
use Postulate 1 and (3) to calculate the utility of the lottery as

1
2{(1 − α)p + αP} + 1

2{(1 − α)(1 − P ) + α(1 − p)} ,

where p = p(E) and P = p(E). It follows from Postulate 2 that

1
2 = 1

2 + (1 − 2α)(p − P ) ,

and therefore either p = P or α = 1
2 .

8.2 Game Theory Application

Section 6 mentions the existence of Nash equilibria in muddled strategies that
Pareto-dominate the mixed equilibrium of the Battle of the Sexes, but the pres-
ence in this case of two Pareto-efficient Nash equilibria in pure strategies is a
distraction. We therefore obtain a similar result for a 2 × 2 game with a unique
mixed Nash equilibrium in which the players’ equilibrium outcomes and their
security payoffs are the same. Such a game is necessarily asymmetric.

Without any correlate of Savage’s Sure-Thing Principle (like the Indepen-
dence Axiom), there is a problem about interpreting the payoffs in a game (Bin-
more [9]). We evade this difficulty here by interpreting the payoffs to be prob-
abilities that players will win in simple lotteries with the best and worst prizes
fixed. However, the payoffs in the strategic form of Figure 1 have been multiplied
by a suitable positive factor to eliminate unnecessary fractional quantities.

In the unique classical equilibrium of the game shown in Figure 1, Row plays
down with probability p = 3

5 and Column plays right with probability q = 2
5 . At

this equilibrium, Row gets only his security payoff of 14/5 = 2.8 and Column

11Theorem 3 of Binmore [9] derives a stronger conclusion from a stronger hypothesis.
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Figure 1: A game with interesting muddled equilibria. The row player’s payoffs
are in the SW of each cell and the column player’s in the NE. The payoffs
should be divided by D ≥ 4 to allow their being interpreted as the probability
of winning in a simple lottery. The payoff region shows all outcomes that
can be achieved if the players use independent mixed strategies. For both the
arithmetic and geometric Hurwicz criteria with α = 1

2 , there is a 2-D continuum
of muddled equilibria that Pareto-dominate the unique classical equilibrium.

only her security payoff of 11/5 = 2.2. To secure these expected payoffs, Row
must play down with probability 2

5 and Column must play right with probability
3
5 . There is no problem with such a conclusion in an evolutionary context, but in
a purely rational context one may reasonably ask what motive the players have
to play their equilibrium strategies rather than their security strategies.

Appendix 1 outlines a solution to this conundrum in the case when the out-
comes that result from the use of muddled strategies are evaluated using the
arithmetic Hurwicz criterion with α = 1

2 . Many muddled Nash equilibria then
exist, all of which (necessarily) pay the players at least their security level (which
remains unchanged when muddled strategies are allowed).

In particular, there is a muddled equilibrium in which the event that Row
plays down has lower probability p = 1

10 and upper probability p = 1, and the
event that Column plays right has lower probability q = 0 and upper probability
q = 3

5 . The equilibrium outcome is approximately (3.10, 2.35), and so improves
Row’s security payoff by about 11% and Column’s payoff by about 7%.
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Bade’s [6] work makes it unsurprising that similar results cannot be obtained
using the arithmetic Hurwicz criterion with α = 0. Appendix 2 explains why
not. However, it does not follow that the presence of ambiguity aversion is
incompatible with the existence of Pareto-improving equilibria, as we show in
Section 9.5 and Appendix 3.

9 Geometric Hurwicz Criterion

If ambiguity aversion is to be captured by using the arithmetic Hurwicz criterion
πA with α < 1

2 , Theorem 1 shows that it is necessary to give up Postulate 2.
However, some level of ambiguity aversion is built into the geometric Hurwicz
criterion in virtue of the inequality of the arithmetic and geometric means, which
implies that

πG(E) < πA(E) ,

provided that p(E) < p(E). This variety of ambiguity aversion survives even
when α = 1

2 . But the geometric Hurwicz criterion cannot satisfy Postulate 2 at
all. Its inbuilt ambiguity aversion must therefore be understood as an intrinsic
aversion to imprecision rather than an instrumental response to the potential
ill-effects of a lack of knowledge.

One can defend the arithmetic Hurwicz criterion as a minimal extension of
Bayesian decision theory (Binmore [9]). The rest of this section presents a sim-
ilar defense of the geometric Hurwicz criterion with a different interpretation of
minimal.

9.1 Multiplicative Property

The essence of the argument is that since the values of a surrogate probabil-
ity π substitute for probabilities—the probabilities of winning in certain simple
gambles—then π should satisfy the multiplicative rule for computing the prob-
ability that two independent events E and F will both occur. That is to say,
although the additive property of probabilities cannot be extended to π, we may
still hope to extend the multiplicative rule as proposed in the following postulate,
the plausibility of which is considered in Section 9.2.

Postulate 3 : π(E × F ) = π(E) × π(F ) . (8)
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It follows immediately from (4) and (5) that the geometric Hurwicz criterion
satisfies Postulate 3. For a converse result, we need to insist that the surrogate
probability π(E) depends only on the upper and lower probabilities of the event
E, an assumption that seems unavoidable unless information other than that
built into the probability measure p is available. This assumption is incorporated
in the next postulate, in which D = {(x, y) : 0 < x ≤ y ≤ 1 }.12

Postulate 4: There exists a continuously differentiable function
v : D → IR with v(p, p) = p such that for all events E in N ,

π(E) = v( p (E), p (E) ) . (9)

Theorem 2. Postulates 3 and 4 imply the geometric Hurwicz criterion:

v( p , p ) = p1−α p α.

for some α with 0 ≤ α ≤ 1.

Proof In view of (4) and (5), Postulates 3 and 4 imply that

v(pq, PQ) = v(p, P ) v(q, Q) , (10)

where P and p are the upper and lower probabilities of E, and Q and q are the
upper and lower probabilities of F . By Postulate 4, it follows that

qv1(pq, PQ) = v1(p, P )v(q, Q) .

Take p = P = 1 in this equation:

qv1(q, Q) = v1(1, 1)v(q, Q) .

Integrate this differential equation with respect to q:

v(q, Q) = B(Q)qβ ,

where β = v1(1, 1). Similarly,

v(q, Q) = A(q)Qα ,

where α = v2(1, 1). Comparing these two equations for v(q, Q), we find that

v(q, Q) = CqβQα ,

for some absolute constant C. But v(q, q) = q, and so C = 1 and α + β = 1.

12Postulate 4 with D replaced by D = {(x, y) : 0 ≤ x ≤ y ≤ 1 } leads to the arithmetic
Hurwicz criterion (Binmore [9]).
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9.2 Subjectively Independent Events

When is Postulate 3 a reasonable hypothesis? To address this question, we ask
what assumptions about a decision-maker’s preferences are needed to justify,
not only Postulate 3, but the standard formula for multiplying the probabilities
of independent measured events when the probabilities are subjective. For this
discussion, we assume Postulate 4, although a much weaker assumption would
be adequate.

Separating preferences. We begin by reviewing a result of Keeney and
Raiffa [49] that applies when the consequence space C can be factored so that
C = C1 ×C2. The prizes in C then take the form (P ,Q), where P is a prize in
C1 and Q is a prize in C2. A preference relation 	 on C evaluates C1 and C2

separately if and only if

(P ,Q) ≺ (P ,Q′) implies (P ′,Q) 	 (P ′,Q′) ;

(P ,Q) ≺ (P ′,Q) implies (P ,Q′) 	 (P ′,Q′) .

If the consequence spaces C, C1 and C2 are respectively replaced in this definition
by the sets of all independent lotteries over these outcome spaces, the separation
requirement is surprisingly strong (Binmore [8, p. 47]).

If 	 can be represented by a Von Neumann and Morgenstern utility function
u : C → IR, then

u = A u1u2 + B u1(1 − u2) + C u2(1 − u1) + D(1 − u1)(1 − u2) , (11)

where the functions u1 : C1 → IR and u2 : C2 → IR can be regarded as nor-
malized Von Neumann and Morgenstern utility functions on C1 and C2. The
constants in (11) are A = u(W1,W2), B = u(W1,L2), C = u(L1,W2) and
D = u(L1,L2).

Defining subjective independence. Instead of taking Kolmogorov’s defin-
tion of independence for granted, we begin by assuming that the state space B
can be factored so that B = B1 × B2, and ask what it might mean to say that
the decision-maker regards all events E1 in B1 as independent of all events E2

in B2.
To test for independence, we need to introduce a suitable consequence space

C that can be similarly factored so that C = C1 × C2. It is enough if Ci =
{Li,W i}. However, it is essential that

u(W1,L2) = u(L1,W2) = u(L1,L2) = 0 . (12)
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so that losing in either C1 or C2 is equivalent to losing in both.
Let Ji be the space of simple gambles Hi in which Wi is obtained if and only

if an event Ei in Bi occurs. We can then construct the space J = J1 × J2 of
pairs of simple gambles of the form H = (H1,H2). In view of (12), we identify
H with the simple gamble in which the decision-maker wins W = (W1,W2) if
and only the event E1 × E2 occurs (and gets L = (L1,L2) otherwise).

Definition. All events E1 in B1 are subjectively independent of all events E2

in B2 if and only if the preference relation 	 evaluates J1 and J2 separately.

Apply equation (11) to the case when C, C1 and C2 are respectively replaced
by J , J1 and J2. It then reduces to u = u1u2, which we can rewrite as

π(E1 × E2) = π(E1) × π(E2) ,

in which the use of the same function π when dealing with the spaces B1 and
B2 as with B is justified by Postulate 4.

9.3 Bayesian Updating

The defining formula p(E ∩ F ) = p(E |F ) p(E) for a conditional probability is
multiplicative, and hence treats the event F and the “conditional event” E|F as
independent. Extending the preceding reasoning to this new situation, we have

π(E ∩ F ) = π(E |F ) π(F ) ,

even for unmeasured events, and so Bayes’ rule continues to apply when updating
the surrogate probability π. In view of Theorem 2, this extended version of Bayes’
rule would seem to make sense only in the case of the geometric Hurwicz criterion,
in which case

π(E |F ) =
π(E ∩ F )

π(F )
=

{
p(E ∩ F )

p(F )

}1−α {
p(E ∩ F )

p(F )

}α

,

provided that π(F ) 
= 0. One therefore updates upper and lower probabilities
when using the geometric Hurwicz criterion exactly as if they were ordinary
probabilities.
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9.4 Arithmetic Approximation

Recall that a surrogate probability is defined in Section 8 as the utility of a certain
simple lottery (7). It therefore depends on the choice of L and W (which must
be kept fixed in any particular analysis). When working with a multiplicative rule
like the geometric Hurwicz criterion, the choice of L plays a special role because
it corresponds to events E with π(E) = 0. As a result, the classical assumption
that it is inconsequential to add a fixed amount b to a player’s payoffs in a game
ceases to be true. (The same is sometimes true in evolutionary applications of
game theory.)

In practice, one would normally identify L with some hellish event remote
from our experience, and then replace a payoff x in a game like that of Figure 1
by b + ε x, where ε > 0 is small compared with b. It would then be difficult to
distinguish the geometric Hurwicz criterion from the arithmetic Hurwicz criterion
in an experiment because

{b + ε p }1−α{b + ε p }α = (1 − α){b + ε p } + α{b + ε p } + O(ε2) .

9.5 Game Theory Application Again

Section 8.2 reports the existence of muddled equilibria for the game of Figure 1
that Pareto-dominate the unique classical equilibrium when muddled outcomes
are evaluated using the arithmetic Hurwicz criterion with α = 1

2 (but not with
α = 0). This conclusion is reached without attributing any ambiguity aversion
to the players, with the result that the best replies to the Pareto-improving equi-
librium strategies are necessarily pure. However, neither restriction is necessary.
Appendix 3 shows that Pareto-improving muddled equilibria also exist when the
arithmetic Hurwicz criterion is replaced by the corresponding geometric criterion.

In particular, there is a muddled equilibrium in which the event that Row
plays down has lower probability p = 0.09 and upper probability p = 0.85, and
the event that Column plays right has lower probability q = 0.15 and upper
probability q = 0.58. The equilibrium outcome is (3.05, 2.33), and so improves
Row’s security payoff by 9% and Column’s security payoff by 6%.

10 Conclusion

This paper explores the possibility of introducing Knightian uncertainty into the
rational analysis of games. It argues that the ambiguity approach to uncertainty
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is inadequate for all purposes. Where it is adequate, there are also grounds
for rejecting the maximin criterion for evaluating ambiguous events in favor of
the ambiguity-neutral Hurwicz criterion. However, uncertainty aversion can be
retained by replacing the orthodox Hurwicz criterion by a version in which the
weighted arithmetic mean of upper and lower probabilities is replaced by the
corresponding geometric mean. Foundational arguments are offered in support
of such an approach.

The paper continues by arguing that the Ellsberg experimental set-up is in-
adequate for implementing Knightian strategies, and proposes instead appealing
to the theory of algorithmic randomization to realize “muddled strategies” that
expand the set of mixed strategies in much the same way that mixed strategies
expand the set of pure strategies. An example is given of a simple game with a
unique classical equilibrium that admits Pareto-improving muddled equilibria.
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Appendix 1: Ambiguity Neutral Case

This appendix outlines the proof that the game of Figure 1 admits a muddled
equilibrium that is a Pareto-improvement on the unique classical equilibrium when
muddled outcomes are evaluated using the arithmetic Hurwicz criterion with
α = 1

2 .
If Row plays down with probability p and Column plays right with probability

q, then their respective expected payoffs are13

π1(p, q) = 14
5 − 5(p − 2

5)(q − 2
5) (13)

π2(p, q) = 11
5 + 5(p − 3

5)(q − 3
5) (14)

One can read off that there is a unique Nash equilibrium at (p, q) = (3
5 ,

2
5) that

pays Row 14
5 and Column 11

5 . Also that p = 2
5 secures 14

5 for Row and q = 3
5

secures 11
5 for Column.

13These payoffs are to be understood as proportional to probabilities of winning in simple
lotteries with fixed prizes.
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To ease the algebra, we take u = p − 3
5 and v = q − 2

5 . Writing π1(p, q) =
Π1(u, v) and π2(p, q) = Π2(u, v), we have

Π1(u, v) = 14
5 {1 − 25

14(u + 1
5)v} (15)

Π2(u, v) = 11
5 {1 + 25

11u(v − 1
5)} (16)

A muddled strategy for Row is a pair (p , p ) with 0 ≤ p ≤ p ≤ 1. A muddled
strategy for Column is a pair (q , q ) with 0 ≤ q ≤ q ≤ 1. We write x = p − 3

5 ,
X = p− 3

5 , y = q− 2
5 , and Y = q− 2

5 . The plan is to seek a muddled equilibrium
with x ≤ 0 ≤ X and y ≤ 0 ≤ Y (New equilibria do not otherwise exist.) We
then have the constraints

− 3
5 ≤ x ≤ 0 ≤ X ≤ 2

5 (17)

− 2
5 ≤ y ≤ 0 ≤ Y ≤ 3

5 (18)

In all the cases we consider, the best replies to a muddled strategy always
include a mixed strategy. In seeking a muddled equilibrium, we can sometimes
use such an optimal mixed strategy to determine the upper or lower probability
of a muddled strategy that is also optimal.

We use ξ to denote a mixed strategy for Row that is a best reply to the
muddled strategy (y, Y ) for Column. In seeking to make (x, X) a best reply
to (y, Y ), we can try x = ξ or X = ξ. When x = ξ, (x, X) will continue to
be a best reply to (y, Y ) if Π1(X, y) and Π1(X, Y ) lie between Π1(x, y) and
Π1(x, Y ), because Hurwicz criteria pay attention only to extreme values. Similar
considerations apply when X = ξ, leading to the following criteria for (x, X) to
be a best reply

ξ = x ⇒ x + 1
5

X + 1
5

≤ min

{
y

Y
,
Y

y

}
(≤ −1) (19)

ξ = X ⇒ x + 1
5

X + 1
5

≥ max

{
y

Y
,
Y

y

}
(≥ −1) (20)

Similarly, we use η to denote a mixed strategy for Column that is a best reply
to the muddled strategy (x, X) for Row. The corresponding criteria to (19) and
(20) are then

η = y ⇒ Y − 1
5

y − 1
5

≥ max
{

x

X
,
X

x

}
(≥ −1) (21)

η = Y ⇒ Y − 1
5

y − 1
5

≤ min
{

x

X
,
X

x

}
(≤ −1) (22)
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The preceding analysis is the same for all Hurwicz criteria. What follows is
special to the case of the arithmetic Hurwicz criterion with α = 1

2 . In locating
a mixed best reply to (y, Y ), Row then needs to find the value of u = ξ subject
to − 3

5 ≤ u ≤ 2
5 that maximizes 14

5 A1, where

A1 = 1 − 25
28(u + 1

5)(y + Y ) (23)

Similarly, Column needs to find the value of v = η subject to − 2
5 ≤ v ≤ 3

5 that
maximizes 11

5 A2, where

A2 = 1 − 25
22(v − 1

5)(x + X) (24)

We recover the classical mixed equilibrium of the game by taking x = X = 0
and y = Y = 0. There are muddled analogues with x+X = 0 and y +Y = 0 in
which both players get only their security payoffs. There is an isolated muddled
equilbrium in which Row plays (x, X) = (− 3

5 ,
1
5) and Column plays (y, Y ) =

(− 2
5 ,

2
5). Column then improves on her security payoff but Row does not.

The interesting muddled equilibria arise when ξ = X = 2
5 and η = y = − 2

5 .
For ξ = 2

5 , we need y + Y ≥ 0 in (23). For η = − 2
5 , we need x + X ≤ 0 in

(24). In addition to (17) and (18), we therefore have the additional constraints:
x ≤ −2

5 and Y ≤ 2
5 . Two further constraints are obtained from (20) and (21).

The requirements for an equilibrium of this type are therefore:

− 3
5 ≤ x ≤ − 2

5 (25)

0 ≤ Y ≤ 2
5 (26)

2x + 3Y ≥ − 2
5 (27)

3x + 2Y ≤ 2
5 (28)

The Pareto-efficient equilibria satisfy 2x + 3Y = − 2
5 . An example is given in

Section 8.2.

Appendix 2: Maximin Case

The analysis is the same as Appendix 1 until equations (23) and (24), which
need to be replaced by maximin criteria. Row needs to find the value of u = ξ
subject to − 3

5 ≤ u ≤ 2
5 that maximizes 14

5 M1, where

M1 =

{
1 − 25

14(u + 1
5)y , u ≤ −1

5

1 − 25
14(u + 1

5)Y, u ≥ − 1
5

(29)
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It follows that either y = Y or the maximizing u is ξ = − 1
5 (which is Row’s

security strategy). Similarly, Column needs to find the value of v = η subject to
− 2

5 ≤ v ≤ 3
5 that maximizes 11

5 M2, where

M2 =

{
1 + 25

11x(v − 1
5) , v ≥ 1

5

1 + 25
11X(v − 1

5), v ≤ 1
5

(30)

It follows that either x = X or the maximizing v is η = 1
5 (which is Column’s

security strategy).
Only the classical mixed equilibrium with x = X = 0 and y = Y = 0 is

therefore viable.

Appendix 3: Geometric Case

The analysis is the same as Appendix 1 until equations (23) and (24), which
need to be replaced by corresponding geometric criteria. Row needs to find the
value of u = ξ subject to − 3

5 ≤ u ≤ 2
5 that maximizes 14

5

√
G1, where

G1 = {1 − 25
14(u + 1

5)y}{1 − 25
14(u + 1

5)Y } (31)

In an appropriate range, the value of u that maximizes G1 is found by setting
its derivative to zero. The mixed strategy for Row that maximizes G1 therefore
corresponds to u = ξ, where

ξ = − 1
5 + 7

25{y−1 + Y −1} (32)

subject to the constraints

(y + 7
10)(Y + 7

10) ≤ 49
100 and (y − 7

15)(Y − 7
15) ≤ 49

225 (33)

Similarly, the mixed strategy corresponding to v that maximizes Column’s payoff
when Row uses the muddled strategy corresponding to (x, X) is v = η, where

η == 1
5 − 11

5 {x−1 + X−1} (34)

subject to the constraints

(x − 11
30)(X − 11

30) ≤ 121
900 and (x + 11

20)(X + 11
20) ≤ 121

400 (35)

As in Appendix 1, a muddled equilibrium might have ξ = x or x = X, and
η = y or η = Y . However, the possibilities with ξ = x or η = Y are ruled out
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because (19) implies x + X ≤ −2
5 which is incompatible with (35), and (21)

implies that y + Y ≥ 2
5 which is incompatible with (33).

We therefore seek a muddled equilbrium with ξ = X and η = y. Such an
equilibrium consists of a pair (x, X) for Row and a pair (y, Y ) for Column such
that (32) and (34) hold, subject to the constraints (17), (18), (20), (21), (33)
and (35). There is a continuum of such equilibria, including the example cited
in Section 9.5.
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