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Abstract

Sharp nonparametric bounds are derived for counterfactual demands and Hicksian
compensating and equivalent variations. These �i-bounds�re�ne and extend earlier
results of Blundell, Browning and Crawford (2008). We show that their bounds are
sharp under the Weak Axiom of Revealed Preference (WARP) since they do not
require transitivity. The new bounds are sharp under the Strong Axiom of Revealed
Preference (SARP). By requiring transitivity they can be used to bound welfare
measures. The new bounds on welfare measures are shown to be operationalized
through algorithms that are easy to implement.

1 Introduction
Demand analysis is a powerful tool for the measurement of the behaviour and distri-
butional e¤ects of counterfactual price and income changes. A policy maker may, for
example, be interested in the impact on the consumer�s well-being of an introduction of
a tax on the fat content of food or of a change in the indirect taxes on gasoline. The
common characteristic of such taxes is that they change the relative prices faced by
the consumer. How the consumer reacts to this, by choosing an alternative consump-
tion bundle, is subject of the analysis of demand behaviour. Typically the researcher
estimates the unknown parameters of a parametric demand system and uses these esti-
mates to calculate pre- and post-reform demands and associated indirect utilities (see,
for example, Banks, Blundell and Lewbel, 1997). Comparing these indirect utilities then
allows the econometrician to evaluate the impact of the policy reform on the consumer�s
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well-being. One particularly useful cardinalization of the indirect utility function is
Samuelson�s (1974) money metric indirect utility function, which allows one to express
the change in well-being in monetary units. Depending on the base price that is used in
the analysis, this approach leads to the well-known compensating variation (base price
equals the post-reform prices) and equivalent variation (base price equals pre-reform
prices) that were proposed by Hicks (1939).
A major disadvantage of standard demand and welfare analyses is that they rely

on the functional speci�cation of the indirect utility function that is used. An alterna-
tive way to analyze policy reforms is based on the revealed preference (RP) approach,
whose foundations were laid down by Samuelson (1938, 1948), Houthakker (1950), Afriat
(1967), Diewert (1973) and Varian (1982). The RP approach translates conditions for
rational consumption behaviour into testable implications. These do not depend on any
assumptions about the speci�cation of the consumer�s demand system or the particular
representation of her rational preferences. The major disadvantage of the RP approach,
however, is that the predictions of demand responses derived from its restrictions are
set-valued, i.e. it is only possible to recover bounds on predicted demands.
As a response Blundell, Browning and Crawford (2003, 2008) proposed blending

these two approaches by combining Engel curve estimation with RP conditions. This
has shown to be a productive technique. Firstly, it makes the RP conditions applicable
to the types of datasets which are widely available to researchers (such as the Family
Expenditure Survey from the UK or the Consumption Expenditure Survey from the US).
Secondly, the approach is easy to implement and therefore contributes to the practical
usefulness of RP conditions. Finally, and principally, it allows for empirical RP analysis
with substantial discriminatory and forecasting power.1

However, whilst Blundell, Browning and Crawford (2008) showed how to improve
bounds on the demand responses to price changes, they did so without fully exploiting
all of the empirical implications of rational preferences. We show that their bounds
are (only) sharp under the Weak Axiom of Revealed Preference (WARP). In contrast
to what is claimed, the bounds do not impose all the restrictions of transitivity. Fur-
ther improvements are in general possible if preferences can also be assumed to satisfy
transitivity.2 That is, if preferences satisfy the Strong Axiom of Revealed Preference
(SARP).
For welfare calculations transitivity is, in general, required. This is because non-

transitivity can lead to cycles and path-dependence if one attempts to integrate back
to utility constant welfare measures. In this paper, we re�ne and extend the results
of Blundell, Browning and Crawford (2003, 2008) by fully exploiting transitivity. This
derives sharp bounds on counterfactual demand responses and welfare calculations under
SARP and as such these bounds are �sharp for SARP�.3 For reasons which will become
clear we refer to these bounds as �iterated bounds�, or i-bounds.
Next, we show how our method can be used to provide sharp nonparametric bounds

on compensating and equivalent variations. For doing so, we provide easy-to-implement
algorithms that allow computing tightest (iterated) bounds on Marshallian demands.
This in turn obtains sharp bounds for compensating and equivalent variations.
As a �nal contribution, we illustrate our results on data also used by Blundell,

Browning and Crawford (2008). We show that even in a simple set-up our i-bounds
signi�cantly improve upon the bounds de�ned by Blundell, Browning and Crawford
(2008). We also demonstrate the easy application of our algorithms to compute sharp

1See Blundell (2005), Blundell, Browning and Crawford (2007) and Blundell, Kristensen and Matzkin
(2013) for recent contributions that build further on the basic insights of Blundell, Browning and
Crawford (2003, 2008). Blundell, Kristensen and Matzkin (2013) is notable since it applies this approach
to quantile demands and allows for unobserved heterogeneity in individual demands.

2Note that in situations in which there are only two goods transitivity adds no further restrictions
to WARP (see Rose, 1958).

3 In terms of RP restrictions, the recovery of demand responses under Walras�Law, homogeneity of
degree zero and negative semi-de�niteness of the Slutsky matrix is equivalent to imposition of WARP,
whereas the requirement that these demands are consistent with full rationality amounts to SARP (see
Kihlstrom, Mas-Colell and Sonnenschein, 1976).

2



bounds on compensating and equivalent variations. Evidently, bringing this method to
observational data in a more thorough way necessarily requires dealing with empirical
issues such as measurement error and (un)observed heterogeneity. For compactness, we
abstract from a detailed discussion in the current paper. Blundell, Browning and Craw-
ford (2003, 2008) and Blundell, Kristensen and Matzkin (2013) propose methodological
extensions for dealing with these issues that are directly applicable to the method we
introduce below.
The rest of the paper unfolds as follows. In Section 2, we introduce our iterated

bounds on the Marshallian demands for any number of goods, and we provide an easily
implementable method for computing these bounds. In Section 3, we introduce the cor-
responding method for identifying the tightest bounds on compensating and equivalent
variations. Section 4 contains our empirical illustration and Section 5 concludes.

2 Iterated bounds on Marshallian demands
To set the stage, we �rst brie�y recall the concept of e-bounds introduced by Blun-
dell, Browning and Crawford (2008, henceforth BBC (2008)). Subsequently, we take
the sequential maximum power path idea for constructing bounds on welfare measures
developed in Blundell, Browning and Crawford (2003, BBC (2003)) and use this to in-
troduce the notion of iterated bounds on Marshallian demands. We present an example
to demonstrate that these bounds can be used to improve upon the e-bounds if there
are more than two goods. Given this result, we next show that our iterated bounds
procedure leads to tightest bounds on Marshallian demands. We end this section by
presenting an algorithm to compute the iterated bounds. As we will indicate, this algo-
rithm essentially iterates a procedure originally proposed by BBC (2003), which explains
the name �iterated bounds�.

2.1 e-bounds
We assume J goods and consider a consumer with a (nonnegative) Marshallian demand
function q(p;x) for prices p 2 RJ++ and income x 2 R++. Following BBC (2008), we
assume uniqueness of demands.

Assumption 1 (uniqueness of demands) The demand function q(p;x) : RJ+1++ !
RJ+ satis�es adding up, i.e. p0q(p; x) = x for all prices p and incomes x.

Consider a set of T price vectors fptgt=1;:::;T ; we say there are T observations. For
a given price vector pt we denote the J-valued demand associated with income x as
qt (x), and we refer to the function qt as the expansion path that corresponds to the
prices pt. Again, we follow BBC (2008) by assuming weak normality of qt.

Assumption 2 (weak normality) If x > x, then qt(x) � qt(x) for all pt.

BBC (2008) address the following question: �Given a new budget fpN ; xNg and a
set of observed prices and expansion paths fpt;qt (x)gt=1;:::;T , what values of qN , which
exhaust the budget (i.e. p0NqN = xN ), are consistent with these observed demands and
utility maximization?�Let us denote the bundles that exhaust the new budget fpN ; xNg
by B(pN ; xN ) = fqN 2 RJ+jp0NqN = xNg.
To state BBC (2008)�s answer to their question, we �rst need to introduce some

revealed preferences (RP) concepts. We start by de�ning direct revealed preference
relations R0.

De�nition 1 (direct revealed preference) If at prices pt and income xt the con-
sumer chooses qt (xt) and p0tqt (xt) � p0tqs (xs), then qt (xt)R0qs (xs).

Transitivity of preferences then leads to the next concept of indirect revealed pref-
erence relations R.
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De�nition 2 (indirect revealed preference) If we have a sequence qt (xt) R0 qu (xu)
R0qv (xv) � � � R0 qw (xw) R0 qs (xs), then qt (xt) R qs (xs).

In our following exposition, we will consider two consistency conditions for utility
maximizing consumer behaviour: the Weak Axiom of Revealed Preference (WARP)
and the Strong Axiom of Revealed Preference (SARP). It is well-known that SARP
is a necessary and su¢ cient condition for utility maximization, while WARP is only a
necessary condition (see Varian, 1982 and 2006, for a detailed discussion).

De�nition 3 (WARP and SARP)
(i) The demands qt (xt), t = 1; :::; T , satisfy WARP if qt (xt)R0 qs (xs) and qt (xt) 6=
qs (xs) then not qs (xs)R0 qt (xt) for any s and t.
(ii) The demands qt (xt), t = 1; :::; T , satisfy SARP if qt (xt)R qs (xs) and qt (xt) 6=
qs (xs) then not qs (xs)R0 qt (xt) for any s and t.

Because WARP only uses direct revealed preference relations R0, while SARP focuses
on indirect revealed preference relations R (so exploiting transitivity of preferences),
we obtain that SARP is a stronger condition than WARP. As in BBC (2008), we will
assume that the expansion paths qt(x) generate demands that are consistent with utility
maximization. In RP terms, this implies the following assumption.

Assumption 3 (SARP) For all x 2 R++; the demands qt(x), t = 1; : : : ; T satisfy
SARP.

To formalize their notion of e-bounds, BBC (2008) use the concept of intersection
demands. To facilitate our following comparison of BBC (2008)�s e-bounds with our
iterated bounds, we here introduce these intersection demands in a slightly di¤erent
way, i.e. in terms of intersection incomes.

De�nition 4 (intersection income) The intersection income ~xt, for t 2 f1; : : : ; Tg,
is the maximal income for which

8qN 2 B(pN ; xN ) : qNR0qt(~xt):

The assumptions of uniqueness and normality ensure that each intersection income ~xt
is uniquely de�ned. More precisely, it is the income level such that p0Nqt(~xt)= xN . BBC
(2008) refer to the corresponding value of the expansion path, qt(~xt); as the intersection
demand for observation t.
Given all this, BBC (2008) de�ne the support set

SBBC (pN ; xN ) =

�
qN :

qN 2 B(pN ; xN )
fpN ;pt;qN ;qt(~xt)gt=1;:::;T satisfy SARP

�
;

and they label the bounds on demand responses that are based on SBBC (pN ; xN ) as
e-bounds.
To end this section, we present a speci�c characterization of the support set SBBC(pN ;

xN ). As we will explain, this characterization will directly motivate our following re-
search question, i.e. de�ne �iterated bounds�that improve upon the e-bounds. Essen-
tially, the next proposition distinguishes between two cases for qN 2 SBBC (pN ; xN ):
either qN is di¤erent from the intersection demand qt(~xt) for any observation t, or we
have qN = qs(~xs) for some observation s.4 Appendix A contains the proofs of all our
results.

4Note that we make the (implicit) assumption that every observation t corresponds to a di¤erent
intersection demand qt(~xt). Dropping this assumption is actually straightforward, but it would sub-
stantially complicate the statement of Proposition 1 without really adding new insights. A similar
quali�cation applies to Theorem 1.
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Proposition 1 (pro�table characterization of SBBC (pN ; xN )) For any qN in the
budget set B(pN ; xN ), we have that qN is in the support set SBBC (pN ; xN ) (i.e. meets
the e-bounds) if and only if
(i) 8t 2 f1; : : : ; Tg : p0tqt(~xt) < p0tqN ; or
(ii) 9s 2 f1; : : : ; Tg : qN = qs(~xs), and then p0tqt(~xt) < p0tqN for all t 2 f1; : : : Tgnfsg.

Inspection of Proposition 1 reveals that the de�nition of e-bounds nowhere exploits
transitivity of preferences, which is captured by the indirect revealed preference rela-
tions R. Speci�cally, any qN 2 SBBC (pN ; xN ) can be characterized in terms of direct
revealed preference relations R0, i.e. it satis�es

p0Nqt(~xt) = xN = p
0
NqN (i.e. qNR0qt(~xt)),

which follows from the de�nition of the intersection demands, and

p0tqt(~xt) < p
0
tqN (i.e. not qt(~xt)R0qN ),

which follows from Proposition 1. Putting it di¤erently, e-bounds only use the empir-
ical restrictions that are implied by WARP consistency. However, as indicated above,
utility maximizing behaviour requires SARP consistency, which generally involves fur-
ther restrictions than WARP consistency.5 Therefore, in what follows we will de�ne
iterated bounds that do fully exploit the restrictions implied by transitivity of prefer-
ences. Essentially, this will require generalizations of the concepts intersection income
and intersection demand that are based on the relations R (instead of R0).

2.2 i-bounds
We de�ne iterated bounds, or i-bounds, as bounds on demand responses based on a
support set S (pN ; xN ) that accounts for all possible incomes xt (rather than only ~xt),
i.e.

S (pN ; xN ) =

�
qN :

qN 2 B(pN ; xN )
fpN ;pt;qN ;qt(xt)gt=1;:::;T ; xt2R++ satisfy SARP

�
:

Because this set S (pN ; xN ) considers all demands on the expansion paths qt, it is the
tightest (i.e. smallest) SARP-based support set by construction. In turn, this implies
that i-bounds are tightest bounds on demand responses. However, as it is formulated
here, the set S (pN ; xN ) is not directly useful from a practical point of view: for each
t, it requires considering in�nitely many points on every expansion path. To derive an
operational characterization of S (pN ; xN ), we will make use of the following notion of
most informative income.

De�nition 5 (most informative income) The most informative income bxt, for t 2
f1; : : : ; Tg, is the maximal income for which

8qN 2 B(pN ; xN ) : qNRqt(bxt);
i.e. there exist xu; xv; : : : ; xw such that qN R0 qu(xu) R

0 qv(xv) . . . R0 qw(xw) R0

qt(bxt).
This concept of most informative income extends the earlier notion of intersection

income by using indirect revealed preference relations R instead of (only) direct revealed
preference relationsR0. Because the relationsR include the relationsR0 by construction,
we obtain bxt � ~xt. As before, the assumptions of uniqueness and weak normality

5 In this respect, one may also state that e-bounds are best WARP-based bounds but not best
SARP-based bounds.
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imply that most informative incomes bxt are uniquely de�ned. However, in contrast to
intersection incomes, there is no closed formula for computing most informative incomes.
Fortunately, as we will discuss in Section 2.3, we can de�ne an easy-to-implement (�nite
and e¢ cient) algorithm to compute bxt by iterating the procedure for computing the
intersection incomes. Analogous to before, we will refer to the associated value of the
expansion path, qt(bxt), as the most informative demand for observation t.
The next result provides a characterization of the set S (pN ; xN ) that parallels

the one of SBBC (pN ; xN ) in Proposition 1. It also provides a speci�c de�nition of
S (pN ; xN ) in terms of the most informative incomes bxt. In practical applications, this
allows for constructing the set S (pN ; xN ) once these most informative incomes have
been identi�ed.

Theorem 1 For any qN in the budget set B(pN ; xN ), we have that qN is in the support
set S (pN ; xN ) (i.e. meets the i-bounds) if and only if
(i) 8t 2 f1; : : : ; Tg : p0tqt(bxt) < p0tqN ; or
(ii) 9s 2 f1; : : : ; Tg : qN = qs(bxs) and then p0tqt(bxt) < p0tqN for all t 2 f1; : : : Tgnfsg.

We conclude this section by Example 1, which demonstrates that BBC (2008)�s
support set SBBC (pN ; xN ) (yielding e-bounds on demand responses) need not coincide
with the smallest SARP-based support set S (pN ; xN ) (yielding iterated or tightest
bounds on demand responses). The example also illustrates the central intuition behind
this result. Speci�cally, it presents expansion paths where, for some t (t = 1 in Example
1), the most informative income bxt is strictly above the intersection income ~xt, which
implies that there exists qN with qNRqt(bxt) but not qNR0qt(bxt). Because the set
S (pN ; xN ) must satisfy SARP, this yields the restriction p0tqt(bxt) < p0tqN ; which is
stronger than p0tqt(~xt) < p

0
tqN (because bxt > ~xt). In turn, this e¤ectively excludes from

the set S (pN ; xN ) some qN that belongs to the set SBBC(pN ; xN ). This demonstrates
that, in general, we can have S (pN ; xN ) ( SBBC (pN ; xN ).
As a �nal note, we emphasize that we need more than two goods for S (pN ; xN ) (

SBBC (pN ; xN ). Indeed, as indicated above, the support set SBBC (pN ; xN ) exploits the
empirical restrictions implied by WARP consistency. And it is well-known that WARP
and SARP have the same empirical content if there are only two goods (see Rose, 1958),
so that we always get S (pN ; xN ) = SBBC (pN ; xN ) in this case.

Example 1 We consider the support set SBBC(pN ; xN ) for pN = (3; 2; 4) and xN =
15. Suppose we observe two expansion paths q1 and q2, which are associated with the
prices p1 = (4; 3; 2) and p2 = (2; 4; 3).
Suppose we have the intersection incomes ~x1 = 13:5 and ~x2 = 15:8, with corresponding
intersection demands

q1(~x1) = (2; 0:5; 2) and q2(~x2) = (2:3; 2:05; 1):

Next, we assume the following most informative incomes. Let bx1 = 15 > ~x1, with
q1(bx1) = (2; 1; 2);

while bx2 = ex2 and, thus, q2(~x2) = q2(bx2). We remark that an expansion path q1(x1)
containing both q1(bx1) and q1(~x1) does not con�ict with our earlier assumptions.
We can then show that S (pN ; xN ) ( SBBC (pN ; xN ). To obtain the result, it su¢ ces
to show that there exists qN with

qN 2 SBBC(pN ; xN ) and qN =2 S(pN ; xN ):

For the current example, this applies to qN = (1; 2; 2) (which e¤ectively meets p0NqN =
xN ). First, we can verify that qN 2 SBBC(pN ; xN ): the demands qN ; q1(~x1), q2(~x2)
satisfy SARP (with qN R0 q2(~x2) R

0 q1(~x1)). On the other hand, we also obtain
q0 =2 S(pN ; xN ): the demands qN ; q1(bx1), q2(bx2) do not meet SARP, which a fortiori
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implies qN =2 S(pN ; xN ); in particular, we get qNR0q2(bx2)R0q1(bx1)R0qN .6
2.3 An algorithm for computing most informative incomes
The following algorithm uses the approach in BBC (2003) to de�ne the most informative
incomes x̂1; : : : ; x̂T and, thus, also the corresponding demands q1(x̂1); : : : ;qT (x̂T ).

Algorithm 1 (computing most informative incomes)
Input: fpN ; xNg and fp1; : : : ;pT ;q1 (x1) ; : : : ;qT (xT )g.
Output: x̂1; : : : ; x̂T .

Step 0: Set s = 0 and Fs = fx1; : : : ; xT jp0Nq1 (x1) = xN ; : : : ;p0NqT (xT ) = xNg.

Step 1: Set Fs+1 = fmaxxt2Fs (x : xt = p0tq1 (x)) ; : : : ;maxxt2Fs (x : xt = p0tqT (x))g.

Step 2: If Fs+1 � Fs then set fx̂1; : : : ; x̂T g = Fs+1 and stop. Else set s = s+1 and go
to Step 1.

Note that Step 0 of this algorithm delivers the intersection incomes ~xt, which BBC
(2008) originally considered to de�ne their e-bounds on Marshallian demands. To de�ne
our most informative incomes bxt (and so i-bounds on Marshallian demands), we iterate
this procedure in Steps 1 and 2. This iteration implies that most informative incomes
may e¤ectively exceed intersection incomes (i.e. bxt > ~xt). As explained in our discussion
of Example 1, such an instance e¤ectively obtains S (pN ; xN ) ( SBBC (pN ; xN ).
The following lemma states two important properties of Algorithm 1.

Lemma 1
(i) Algorithm 1 converges in a �nite number of steps.
(ii) For any xt we have qt(x̂t) � qt (xt), qNRqt (xt) for any qN 2 S(pN ; xN ):

Property (i) shows that the algorithm is feasible in �nite time, which is a minimal
requirement for practical applicability. Next, property (ii) states that each demand
qt(x̂t) represents the �highest point�on the expansion path qt that is revealed worse
than any bundle in the support set S(pN ; xN ).
Two further remarks are in order. First, our earlier assumptions ensure that any

income level computed in Step 1 of Algorithm 1 is uniquely de�ned. As such, computing
any set Fs+1 is straightforward. Moreover, one can show that the worst-case complexity
of this algorithm is T 3, which means that the algorithm is e¢ ciently implemented.7

Second, it is interesting to note that Algorithm 1 can also be used to extend the
�best�SARP-based test that was originally proposed by BBC (2003).8 Speci�cally, using
information on expansion paths qt (t = 1; :::; T ), these authors de�ne a best possible
test for SARP consistency of a particular quantity bundle qN (xN ) (with N 2 f1; :::;
Tg) that is conditional on some a priori de�ned (revealed preference) ordering of the
observations. Algorithm 1 provides the basis for an alternative �best�test: we can use
the algorithm to de�ne the set S(pN ; xN ), so that we can subsequently check whether
qN (xN ) 2 S(pN ; xN ) (i.e. qN (xN ) is SARP consistent) or qN (xN ) =2 S(pN ; xN ) (i.e.
qN (xN ) is SARP inconsistent). It can be veri�ed that this alternative test actually is
formally identical to the one of BBC (2003), except for the important di¤erence that it
does not require a prior ordering speci�cation - it simultaneously considers all possible
(T !) orderings of the T observations.

6For completeness, we add that the set S (pN ; xN ) is not empty, as is easily veri�ed.
7For the sake of brevity, we do not include a formal proof of this statement here, but it is available

upon request.
8BBC (2003) originally introduced a (best) test based on the Generalized Axiom of Revealed Pref-

erence (GARP) rather than SARP (which we consider here, following BBC (2008)). However, it is
straightforward to adapt their ideas to obtain a best SARP-based test. See, for example, Varian (1982
and 2006) for the subtle di¤erence between SARP and GARP.
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3 Equivalent and compensating variations
In this section, we use the results outlined above to de�ne tightest bounds on equivalent
and compensating variations. We �rst present formal de�nitions of compensating and
equivalent variations. Subsequently, we show how to compute tightest bounds on these
welfare measures by using our results of the previous sections.
Suppose the policy maker wants to compare two situations characterized by di¤erent

price regimes: pO 2 RJ++ represents original (observed; pre-reform) prices and pN 2
RJ++ represents new (unobserved; post-reform) prices. Income is the same in the two
situations, i.e. xO = xN . Let e (p; u) be the expenditure function that associates
minimal expenditure with prices p and utility u. By construction, rational consumer
behaviour implies e (pO; uO) = e (pN ; uN ) = xN (= xO) (where we assume that the
total budget is �xed). Then, we get the following de�nitions.

De�nition 6 (equivalent and compensating variations)
(i) Equivalent variation EV = e (pO; uN )� e (pO; uO) = e (pO; uN )� xN :
(ii) Compensating variation CV = e (pN ; uN )� e (pN ; uO) = xN � e (pN ; uO).

Tightest bounds for EV. To bound EV, we need tightest bounds on e (pO; uN ).
Let eL denote the tightest (= �highest�) lower bound and eU the tightest (= �lowest�)
upper bound, so that eL � e (pO; uN ) � eU . The next algorithm computes eL and eU .
(In the algorithm, we make use of the vectors Pj 2 RJ of which all components are zero
except for the j-th component, which equals one.)

Algorithm 2 (computing iterated bounds on EV )
Input: fpN ; xNg and fp1; : : : ;pT ;q1 (x1) ; : : : ;qT (xT )g.
Output: eL and eU .

Step 1: Use Algorithm 1 to compute the most informative incomes x̂1; : : : ; x̂T .

Step 2: Set W (pN ; xN ) = ?. For all k 2 f0; : : : ; J � 1g, consider every selection
of k mutually di¤erent j1; : : : ; jk 2 f1; : : : ; Tg and J � 1 � k mutually di¤er-
ent jk+1; : : : ; jJ�1 2 f1; : : : ; Jg. If the vectors pN ;pj1 ; : : : ;pjk , Pjk+1 ; : : : ;PjJ�1
are linearly independent, then de�ne the unique solution qN 2 RJ of the system
p0NqN = xN , p0j1qN = x̂j1 , . . . , p

0
jk
qN = x̂jk , P

0
jk+1

qN = 0; : : : ;P0jJ�1qN = 0,
and add qN to W (pN ; xN ).

Step 3: Set V (pN ; xN ) = ?. Compute V (pN ; xN ) =W (pN ; xN ) \ S (pN ; xN ).

Step 4: For every qN 2 V (pN ; xN ), use Algorithm A (resp. Algorithm B) of BBC
(2003) to compute eLqN (resp. eUqN ).

Step 5: Set eL = minqN2V (pN ;xN ) e
L
qN and eU = maxqN2V (pN ;xN ) e

U
qN .

Tightest bounds for CV. To bound CV , we need to de�ne bounds on e (pN ; uO).
Because q (pO; xN ) is assumed to be the observed (pre-reform) demand, we can use the
bounds for the cost function c (qO;pN ) (that gives the minimal cost for obtaining a
bundle on the same indi¤erence curve as qO at prices pN - this function is equivalent
to the expenditure function evaluated at the utility level uO generated by qO and prices
pN .9

9The algorithms A and B of BBC (2003) can be used to obtain tightest bounds.
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Implementation. The algorithms are very easy-to-implement and will e¢ ciently com-
pute eL and eU . More precisely, we can refer to our discussion on the e¢ ciency of Algo-
rithm 1 in the previous section, which carries over to BBC (2003)�s Algorithms A and B
(which are formally similar to Algorithm 1). Next, Theorem 1 implies that the closure
of S(pN ; xN ) is a convex set de�ned by linear constraints. Steps 2 and 3 of Algorithm
2 then compute the extreme points (or vertices) of this convex set. Essentially, de�ning
each such extreme point boils down to �nding the unique solution of a system with J
linear constraints that follow from the characterization of the convex set. That is, the
budget constraint (i.e. p0NqN = xN ), the constraints corresponding to a selection of k
observations (i.e. p0j1qN = x̂j1 , . . . , p

0
jk
qN = x̂jk) and J � 1 � k positivity constraints

(i.e. P0jk+1qN = 0; : : : ;P
0
jJ�1

qN = 0).10

Some of the solutions of Step 2 do not necessarily belong to the support set S (pN ; xN ),
which is why we need the additional Step 3 to obtain only the relevant points (i.e. the
extreme points). Finally, by construction the set V (pN ; xN ) is �nite and discrete, which
implies that Step 4 of Algorithm 2 is computable in �nite time.
Example 2 illustrates the di¤erent steps of Algorithm 2. The following lemma for-

mally states that the algorithm e¤ectively compute the tightest bounds on EV.

Lemma 2 (iterated bounds are tightest) The values eL and eU produced by Algo-
rithm 2 de�ne tightest bounds on EV.

Example 2 Figure 1 graphically illustrates the intuition behind Algorithm 2. For sim-
plicity, we focus on a setting with only two goods and three observed price vectors
(i.e. three expansion paths). The upper-left panel of the �gure shows the support set
S (pN ; xN ), which corresponds to the bold line segment.11 The set S (pN ; xN ) is charac-
terized by the most informative incomes x̂1; x̂2 and x̂3, which are obtained through Step 1
of Algorithm 2. The corresponding set of extreme points V (pN ; xN ) = fqN1; qN2g; this
set is constructed in Steps 2 and 3 of Algorithm 2. The upper-right and lower-left panels
of Figure 1 then show the inner and outer bounds for the indi¤erence curves associated
with, respectively, qN1 and qN2.12 In turn, this de�nes the lower bounds eLqN1

and eLqN2

and the upper bounds eUqN1
and eUqN2

, which are generated in Step 4 of Algorithm 2.
Finally, the lower-right panel of Figure 1 shows the resulting values of eL and eU , which
are obtained in Step 5 of Algorithm 2. Here, we have eL = minfeLqN1

; eLqN2
g = eLqN1

=

eLqN2
and eU = maxfeUqN1

; eUqN2
g= eUqN1

.

4 An illustration
To illustrate the application of these methods we performed the following simple exercise.
We took the data on prices, mean budget shares and expenditures from Table A.1 in
the Appendix in BBC (2008); see our Appendix B for more details. These data relate
to their analysis of three broad consumption groups: food, other nondurables, and

10Although Step 2 is directly implementable, we also note that it should not be the most e¢ cient
way to compute the extreme points of our convex set. Indeed, given that this set is characterized by
linear constraints, computing these extreme points is equivalent to �nding all basic feasible solutions
of a system of linear equations. Alternative algorithms for computing these basic feasible solutions are
available in the Operations Research literature.
11Since there are only two goods in this example, the support set S (pN ; xN ) actually coincides with

BBC�s support set SBBC (pN ; xN ), which are characterized by intersection demands (see Proposition
1). (Correspondingly, the most informative incomes x̂1; x̂2 and x̂3 equal the intersection incomes ex1;ex2 and ex3.) As explained above, the sets S (pN ; xN ) and SBBC (pN ; xN ) need not coincide in case
there are more than two goods. We choose to focus on a two-goods setting here as this allows us to
better illustrate the mechanics of Algorithm 2.
12These bounds for indi¤erence curves are (implicitly) constructed in Algorithms A and B of BBC

(2003). We refer to these authors for a detailed discussion on the construction method. See in particular
their Figure 7.
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Figure 1: Illustration of Algorithm 1

services.13 Rather than re-estimate their semi-parametric Engel curves in full we relied,
purely for simpli�cation, on the heuristic assumption that for small changes in income
budget shares are approximately �at. To validate this, we took the data from Table
B.1 and carried out a test of the Homothetic Axiom of Revealed Preference (HARP, see
Varian, 1983, Theorem 2). This was satis�ed. We emphasise that local homotheticity is
just an assumption-of-convenience, made for the sake of simplifying the illustration of
the methods described here. Whilst the data at mean budget shares and expenditures
does indeed survive a test of HARP, we do not wish to lean on this assumption too
much and therefore, in order to keep the income variation required as small as possible,
we selected a contiguous subset of periods from the data roughly in the middle of the
observed scatterplot of relative prices, which related to the years 1985 to 1988.14 This
ensured that it is not necessary to move too far along any of the Engel curves whilst
applying either Algorithm 1 or 2. Whilst dropping observations might widen the bounds
on predicted demand relative to what might be possible if we kept all of the data,
as we shall see below these other observations turn out to be rarely informative and
consequently the bounds on predicted demands are very tight even without them.
We then considered a new budget fp0; x0g where the price vector and the new total

expenditure were set equal to the mean of the data for our sub-period of interest, and
calculated both the i-bounds and the e-bounds on the predicted budget shares for the
three goods. The results are illustrated in Figure 2.
Figure 2 shows the budget unit simplex for the predicted budget shares (the three

corners refer to bundles in which the consumer exhausts her entire budget on a single
good). A little below the centre is a small area which illustrates the i-bounds and the
e-bounds on the predicted budget shares. The �rst thing to notice is that this set is

13They used 25 years of British Family Expenditure Surveys from 1975 to 1999. The Family Expen-
diture Survey (FES) is a repeated cross-section survey consisting of around 7,000 households in each
year. From these data they drew the sub-sample of couples with children who own a car. This gives us
between 1,421 and 1,906 observations per year and 40,731 observations over the entire period. They use
total spending on non-durables to de�ne the total expenditure variable. Table A1 in the Data Appendix
of BBC (2008) provides descriptive statistics for these data.
14See Figure 3 in BBC(2008) for more details.
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Figure 2: i-bounds and e-bounds on predicted budget shares

very small - we have provided a magni�ed view of it so that its shape can be seen more
clearly. The bounds on the budget shares for each commodity group are of the order of
1 to 2 percentage points across. This precisely mirrors the result in BBC (2008) - see
Figures 4 to 6 - which showed that when the new budget lies within the convex hull of
the observed budgets, it is possible to recover highly informative bounds on predicted
behaviour using just RP restrictions.
The second point to notice can be seen from the magni�ed view of the i-bound and

e-bound sets. The e-bounds are the entire trapezoidal area (both the white and shaded
areas). The i-bounds, which exploit transitivity, are shown by the white portion of this
area only. Points in the shaded area satisfy WARP in combination with the rest of
the data. Points in the white area additionally satisfy SARP. Note that using SARP
improves the bounds in all three dimensions. Comparing the white area with the shaded
area, shows that the iterative procedure brings an improvement of approximately 11%.
Finally, we also calculated bounds on the welfare e¤ects of the change in prices from

their observed level in 1986 to the new price vector (we chose 1986 as the base as prices
in this period were the furthest, by Euclidean distance, from the new prices). Overall
the change in the budget was such that both average prices and the budget rose but a
little under one percent so, whilst prices rose, the consumer�s nominal income rose too.
We found:

EV = e (p86; uN )� e (p86; u86) 2 [0:058163; 0:061531];
CV = e (pN ; uN )� e (pN ; u86) 2 [0:058647; 0:06035]:

For comparison we note that x86 = 38:41 and xN = 38:789. That the welfare e¤ects are
small in magnitude should therefore not be very surprising given that one would expect
a one percent change in prices to be roughly compensated by a one percent change
in income. We are however mainly concerned with the tightness of the bounds. As
expected the bounds on the EV are somewhat wider than those for the CV because it
is necessary to bound the indi¤erence curve through the predicted demand rather than
the observed (base) demand. However, the tightness of the EV bounds is gratifying and
re�ects the tightness of the bounds we are able to place on the uncompensated demand
response.
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5 Conclusion
In this paper we have re�ned and extended the results of Blundell, Browning and Craw-
ford (2003, 2008). We de�ned tightest �iterated�(nonparametric) bounds on counter-
factual Marshallian demands that apply to any number of goods. These bounds are
sharp under the Strong Axiom of Revealed Preference, SARP. We were thus able to
show they provide sharp bounds for counterfactual welfare measures.
We have established a complete toolkit for a powerful nonparametric welfare analysis

based on Hicksian compensating and equivalent variations. We further showed that our
iterated bounds method involves computational algorithms that are easily implemented.
Finally, we presented an empirical illustration of the practical usefulness of our results.

Appendix A. Proofs

Proof of Proposition 1
By construction we have qNR0qt(~xt) for any qN 2 B(pN ; xN ). If qN 2 SBBC(pN ; xN )
and qN 6= qt(~xt) for all t, then SARP consistency for qNR0qt(~xt) implies that p0tqt(~xt) <
p0tqN (i.e. not qt(~xt)R0qN ). Next, if qN = qs(~xs) 2 SBBC(pN ; xN ) for some s, then
SARP consistency requires the same for all observations t 6= s.
Conversely, take any qN 2 B(pN ; xN ), then p0tqt(~xt) < p0tqN for all t (i.e. condi-
tion (i) holds) excludes qt(~xt)RqN . So a rejection of SARP requires qNRqt(~xt) and
p0tqt(~xt) � p0tqN (i.e. qt(~xt)R0qN ). But this last inequality is excluded by assumption,
and thus qN 2 SBBC (pN ; xN ). A similar reasoning holds for qN = qs(~xs) (i.e. if
condition (ii) holds).

Proof of Theorem 1
Suppose qN 2 S(pN ; xN ) and qN 6= qt(bxt) for all t. By construction we have that
qNRqt(bxt) for any qN 2 B(pN ; xN ). So SARP consistency requires that p0tqt(bxt) <
p0tqN . Next, assume that qN = qs(bxs) 2 S(pN ; xN ) for some s. Then, SARP consis-
tency requires the same for all t 6= s.
Conversely, take any qN 2 B(pN ; xN ) and suppose that p0tqt(bxt) < p0tqN for all t (i.e.
condition (i) holds). Then, normality implies for all xt � bxt that p0tqt(xt) � p0tqt(bxt) <
p0tqN . Therefore, by De�nition 5 and the above, we cannot have qt(xt)RqN . As such,
there can be a rejection of SARP only if, for some income xt, we have qNRqt(xt) and
p0tqt(xt) � p0tqN . Suppose, then, that we do have such a rejection, i.e. there exists an
income xt for which qNRqt(xt) and p0tqt(xt) � p0tqN . Since p0tqt(bxt) < p0tqN , normal-
ity implies that xt > bxt. This gives us the wanted contradiction, since De�nition 5 and
the above then exclude qNRqt(xt).
A similar reasoning holds for qN = qs(bxs) (i.e. condition (ii) holds), which �nishes the
proof.

Proof of Lemma 1
Algorithm 1 is formally similar to Algorithm B of BBC (2003). In particular, Step 2 of
these authors�Algorithm B considers problems of the typemaxxt2Fs (qk (x) : xt = p

0
tqk (x)),

while Step 2 of our Algorithm 1 uses maxxt2Fs (x : xt = p
0
tqk (x)) : Because of weak nor-

mality (Assumption 2), we have that

max
xt2Fs

(x : xt = p
0
tqk (x)) = argmax

x

�
max
xt2Fs

(qk (x) : xt = p
0
tqk (x))

�
:

Given this, we can straightforwardly adapt the proof of BBC (2003)�s Propositions 3 to
obtain the result in Lemma 1.
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Proof of Lemma 2
To bound EV and thus e(pO; uN ), we need to �nd, for any qN 2 S(pN ; xN ); the non-
parametrically constructed �revealed-preferred�set RP (qN ), which contains all bundles
to which qN is preferred to, and the �not-revealed-worse�set NRW (qN ), which con-
tains all bundles that are not revealed worse to qN . (See Varian (1982) for an extensive
discussion of the sets RP (qN ) and NRW (qN ).)
Given our results in Section 2, we can de�ne tightest bounds on EV by computing

eLqN (resp. eUqN ) for any qN 2 S(pN ; xN ). Now, Proposition 1 implies that the closure
of S(pN ; xN ) is a convex set and, as discussed in the main text, V (pN ; xN ) contains all
the extreme points of this convex set. As such, we get that any qN 2 S(pN ; xN ) can be
written as a convex combination of elements of V (pN ; xN ), i.e. qN =

P
k �kqk (with

�k > 0 and
P

k �k = 1) for qk 2 V (pN ; xN ).
Given this, and using convexity of preferences (represented by the sets RP (qN ) and

NRW (qN )), we get RP (qN ) � RP (qk) for at least one qk 2 V (pN ; xN ) and also that
NRW (qN ) � NRW (qk) for at least one, possibly di¤erent, qk 2 V (pN ; xN ). As such,
in order to nonparametrically identify the lower bound eL (respectively, upper bound
eU ), we need to take the minimum (respectively, maximum) of the lower (respectively,
upper) bounds over all the elements of V (pN ; xN ), i.e. eL = minqN2V (pN ;xN ) e

L
qN and

eU = maxqN2V (pN ;xN ) e
U
qN .
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Appendix B. Descriptive statistics
Table B1. Descriptive Statistics

Budget Shares Total Exp. Prices Obs.
F ND S F S

1975 0.3587 0.3166 0.3247 33.7838 1.0000 1.0000 1873
1976 0.3577 0.3076 0.3347 32.5127 1.0881 1.0687 1642
1977 0.3564 0.3124 0.3312 32.3477 1.1574 1.0447 1770
1978 0.3556 0.3136 0.3308 32.5452 1.1067 1.0398 1681
1979 0.3458 0.3196 0.3346 36.4990 1.1457 1.0414 1689
1980 0.3384 0.3208 0.3408 36.6857 1.1145 1.1061 1781
1981 0.3363 0.3061 0.3576 35.7316 1.1056 1.1836 1906
1982 0.3218 0.3101 0.3681 35.8705 1.1262 1.2199 1876
1983 0.3214 0.3129 0.3657 35.6571 1.0775 1.2429 1743
1984 0.3162 0.3151 0.3688 37.5016 1.1081 1.2492 1671
1985 0.3081 0.3207 0.3712 37.8100 1.0759 1.2242 1622
1986 0.3088 0.3221 0.3692 38.4100 1.0556 1.2239 1587
1987 0.3043 0.3228 0.3730 39.0197 1.0819 1.2372 1632
1988 0.3042 0.3278 0.3680 41.5325 1.0807 1.2512 1648
1989 0.3054 0.3222 0.3724 41.5346 1.0786 1.2713 1652
1990 0.3017 0.3129 0.3854 44.2983 1.1084 1.3150 1538
1991 0.2972 0.3103 0.3925 42.6966 1.0839 1.3207 1510
1992 0.2882 0.3121 0.3997 41.5212 1.0616 1.3445 1578
1993 0.2866 0.3077 0.4057 41.3798 1.0332 1.3533 1511
1994 0.2825 0.3029 0.4146 40.9660 1.0305 1.3748 1489
1995 0.2912 0.2912 0.4176 39.6002 1.0439 1.3645 1502
1996 0.2889 0.2999 0.4112 41.8850 1.0671 1.3491 1476
1997 0.2741 0.3041 0.4218 45.2517 1.0655 1.4071 1421
1998 0.2788 0.2981 0.4230 44.0626 1.0551 1.4102 1432
1999 0.2722 0.3032 0.4245 47.1033 1.0918 1.4367 1501

N o t e s : F = Fo o d , N D = N o n -d u r a b le s , S = S e r v ic e s
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