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CHAPTER 8

Endogeneity in Nonparametric and
Semiparametric Regression Models
Richard Blundell and James L. Powell

1. INTRODUCTION

The analysis of data with endogenous regressors – that is, observable explana-
tory variables that are correlated with unobservable error terms – is arguably
the main contribution of econometrics to statistical science. Although “endo-
geneity” can arise from a number of different sources, including mismeasured
regressors, sample selection, heterogeneous treatment effects, and correlated
random effects in panel data, the term originally arose in the context of “simul-
taneity,” in which the explanatory variables were, with the dependent variable,
determined through a system of equations, so that their correlation with error
terms arose from feedback from the dependent to the explanatory variables.
Analysis of linear supply-and-demand systems (with normal errors) yielded the
familiar rank and order conditions for identification, two- and three-stage esti-
mation methods, and analysis of structural interventions. Although these multi-
step estimation procedures have been extended to nonlinear parametric models
with additive nonnormal errors (e.g., Amemiya, 1974 and Hansen 1982), ex-
tensions to nonparametric and semiparametric models have only recently been
considered.

The aim of this chapter is to examine the existing literature on estimation
of some “nonparametric” models with endogenous explanatory variables, and
to compare the different identifying assumptions and estimation approaches
for particular models and determine their applicability to others. To maintain
a manageable scope for the chapter, we restrict our attention to nonparamet-
ric and semiparametric extensions of the usual simultaneous equations models
(with endogenous regressors that are continuously distributed). We consider
the identification and estimation of the “average structural function” and argue
that this parameter is one parameter of central interest in the analysis of semi-
parametric and nonparametric models with endogenous regressors. The two
leading cases we consider are additive nonparametric specifications in which
the regression function is unknown, and nonadditive models in which there is
some known transformation function that is monotone but not invertible. An im-
portant example of the latter, and one that we use as an empirical illustration, is
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the binary response model with endogenous regressors. We do not explicitly
consider the closely related problems of selectivity, heterogeneous treatment
effects, correlated random effects, or measurement error (see Heckman et al.,
1998, Angrist, Imbens, and Rubin, 1996, and Arellano and Honoré, 1999 for
lucid treatments of these topics). Moreover, we consider only recent work
on nonparametric and semiparametric variants of the two-stage least-squares
(2SLS) estimation procedure; Matzkin (1994) gives a broader survey of iden-
tification and estimation of nonlinear models with endogenous variables. Also,
for convenience, we restrict attention to randomly sampled data, though most
of our discussion applies in non-iid contexts, provided the structural equations
and stochastic restrictions involve only a finite number of observable random
variables.

In the next subsections, a number of different generalizations of the linear
structural equation are presented, and the objects of estimation (the parame-
ters of interest) are defined and motivated. The sections that follow consider
how two common interpretations of the 2SLS estimator for linear equations –
the “instrumental variables” and “control function” approaches – may or may
not be applicable to nonparametric generalizations of the linear model and to
their semiparametric variants. The discussion then turns to a particular semi-
parametric model, the binary response model with linear index function and
nonparametric error distribution, and describes in detail how estimation of the
parameters of interest can be constructed by using the control function approach.
This estimator is applied to the empirical problem of the relation of labor force
participation to nonlabor income studied in Blundell and Powell (1999). The
results point to the importance of the semiparametric approach developed here
and the strong drawbacks of the linear probability model and other parametric
specifications.

1.1. Structural Equations

A natural starting point for investigation of endogeneity is the classical linear
structural equation

y = x′β − u, (1.1)

where (y, x′) represents a data point of dimension [1 × (k + 1)],β is a
conformable parameter vector, and u is an unobservable disturbance term.
The explanatory variables x are assumed to include a subset of continuous
endogenous variables, meaning that

E(xu) �= 0. (1.2)

This is the standard single linear equation treated in the literature on simultane-
ous equations, and it is considered here as a base case for comparison with other
nonlinear setups. To identify and estimate the coefficient vector β in this setup,
the model must be completed by imposing restrictions on the unobservable
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error terms u that are consistent with (1.2); the traditional approach assumes
that some observable vector z of instrumental variables is available, satisfying
the moment condition

E(zu) = 0, (1.3)

which leads to the well-known 2SLS estimator of β (Basmann, 1959 and Theil,
1953). The algebraic form of the 2SLS estimator can be derived from a number
of different estimation principles based on (1.3), or on stronger conditions that
imply it. As we will see, some of these estimation approaches, under suitably
strengthened stochastic restrictions, can be extended to the nonparametric and
semiparametric generalizations of the linear model that are considered here, but
in certain important cases this turns out not to be so.

At an opposite extreme from the standard linear model, the relation between
y and its observable and unobservable determinants x and u could be assumed
to be of a general form

y = H (x,u), (1.4)

which may represent a single equation of a nonlinear simultaneous equation
system, possibly with a limited or qualitative dependent variable. Of course,
without further restrictions on H, this function would be unidentified even
under strong conditions on the unobservables (like independence of x and u),
but it is useful to view the various nonparametric and semiparametric models
that follow as special cases of this setup.

One important class of structural functions, treated in more detail in the
paragraphs that follow, assumes H to be additively separable,

y = g(x) + u, (1.5)

which would be the nonparametric regression model if the expectation of u
given x could be assumed to be zero (i.e., if x were exogenous). Identification
and estimation of g when a subset of x is endogenous and instrumental variables
z are available is the subject of a number of recent studies, including those by
Newey and Powell (1989), Newey, Powell, and Vella (1999), Darolles, Florens,
and Renault (2000), and Ng and Pinkse (1995).

A nonseparable variant of (1.4) would be Matzkin’s (1991) nonparametric
version of Han’s (1987) generalized regression model,

y = t(g(x), u), (1.6)

in which h is a known function that is monotone, but not invertible, in its first
argument (a “single index” if g is one dimensional), and g is an unknown
function satisfying appropriate normalization and identification restrictions. A
leading special case of this specification is the nonparametric binary choice
model (Matzkin, 1992), in which H is an indicator function for positivity of
the sum of g(x) and u:

t(g(x), u) = 1(g(x) + u > 0).
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We group all of the models (1.4)–(1.6) in the nonparametric category, where
the term refers to the lack of parametric structure to the structural function H
or h or the “regression” function g. Semiparametric models restrict H (and pos-
sibly the distribution of u) to have finite-dimensional parametric components;
that is,

y = h(x,β, u). (1.7)

For example, another special case of (1.4) is Han’s (1987) original model, where
the single-index function g is assumed to be linear in x,

y = t(x′β, u); (1.8)

estimation of this model when x is endogenous is considered by, for example,
Lewbel (1998) and Blundell and Powell (1999), which focuses on the binary
response version of this linear index model. Yet another semiparametric special
case,

y = s(x,β,g(·)) + u, (1.9)

where β is a finite parameter vector and h is a known function, has been
considered in the recent work by Ai and Chen (2000). Although estimation
of the coefficient vector β is typically the main objective of a semiparametric
analysis of such models, estimation of the distribution of u, or at least certain
functionals of it, will also be needed to evaluate the response of the dependent
variable y to possible exogenous movements in the explanatory variables.

1.2. Parameters of Interest

For a nonparametric model, the parameters of interest are actually unknown
functions that summarize important characteristics of the structural function H
and the distribution of the errors u; these parameters will be identified if they can
be extracted from the distributions of the observable random variables. From a
random sample of observations on the dependent variable y, regressors x, and
instrumental variables z, the joint distribution of y, x, z, is by definition identi-
fied, and conditional distributions and moments can be consistently estimated
by using standard nonparametric methods. In particular, the conditional expec-
tation of functions of y, given either x or z or both, can be estimated without
imposing additional restrictions (besides, say, smoothness and finite moment
restrictions) on the joint distribution of the observable data, and these condi-
tional expectations clearly summarize key features of the structural function and
error distribution. However, as is clear from the well-worn supply and demand
examples, knowledge only of the conditional distributions of observables is
insufficient for analysis of the results of certain types of structural interventions
that affect the distribution of the regressors x but not the structural error terms
u. Thus, the expectation of y given the instruments z, called the reduced form
for y, may be of interest if the values of the instrumental variables are control
variables for the policymaker, but for interventions that alter the explanatory
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variables x directly, independently of the error terms u, knowledge only of
the joint distribution of the observables will be insufficient. Similarly, potential
results of interventions that directly affect some components of a vector-valued
structural function H – for example, a change in the supply function in a supply-
and-demand system caused by rationing – clearly could not be analyzed solely
from knowledge of the reduced form for y prior to the intervention, nor could
the results of policies intended to change the distribution of the unobservable
component u.

For an analysis of such policies, it would be most useful to know the form of
the structural function H (x, u) from (1.4), along with the joint distribution of the
errors u and x, z, but these may not be identifiable, at least for models without
additive errors. An alternative summary version of the structural function H that
can be more straightforward to estimate is the average structural function (ASF),
where the average is taken over the marginal distribution of the error terms u,

G(x) ≡
∫

H (x, u)d Fu, (1.10)

for Fu , the marginal cumulative distribution function of u. In models with
additively separable errors, that is,

H (x,u) = g(x) + u, (1.11)

as in (1.5), the ASF G(x) reduces to the usual regression function g(x), which
would correspond to E[y|x] if the error terms u had a conditional mean zero
given x. More generally, the ASF G would be the counterfactual conditional
expectation of y given x if the endogeneity of x were absent, that is, if the
regressors x could be manipulated independently of the errors, which would be
considered invariant to the structural change. For the heterogeneous treatment
effect model (see Heckman and Robb, 1985 and Imbens and Angrist, 1994),
the ASF is directly related to the average treatment effect recovered from an
experimental design – specifically, the average treatment effect for a binary
regressor would be G(1) − G(0).

In some structural interventions, where the regressors x can be manipulated
directly, knowledge of the function G, or its derivatives, would be sufficient to
assess the impact of the policy. For example, in the classical supply-and-demand
example, with y corresponding to quantity demanded and x representing price,
the ASF would suffice to determine expected demand if the market supply
function were replaced with a fixed price (by fiat or by the world market), and if
the distribution of u were assumed to be invariant to this structural change. And,
for the additively separable model (1.11), the ASF embodies the direct effect
of the regressors for a particular observation, holding the error terms fixed; in
this case the individual-specific, not just average, effects of changes in x can be
analyzed if G is known.

However, for interventions that do not directly determine the endogenous re-
gressors, knowledge of the ASF is not enough; additional structural information
about the structural function H and the distribution of x (and possibly z)
would be required to evaluate the policy effect. For example, for the effects
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of imposition of a sales tax to be analyzed, which would rescale x in the struc-
tural function by a fixed amount exceeding unity, the “inverse supply function”
relating price x to quantity supplied y and other observable and unobservable
covariates would have to be specified to account for the joint determination of
price and quantity following the structural intervention. More generally, poli-
cies that alter some components of the function H rather than manipulating the
argument x require specification, identification, and consistent estimation of all
components of H (including equations for all endogenous regressors) and the
distribution of u. As shown by Roehrig (1988) and Imbens and Newey (2000),
nonparametric identification of a fully specified system of simultaneous equa-
tions is possible under strong restrictions on the forms of the structural function –
for example, invertibility of H (x, u) in the unobservable component u – but such
restrictions may be untenable for limited dependent variable models such as the
binary response model analyzed in the paragraphs that follow. Thus, the average
structural function G may be the only feasible measure of the direct effect of x
on y for limited dependent variable models and for “limited information” set-
tings in which the structural relations for the endogenous regressors in a single
structural equation are incompletely specified.

Of course, the expected value of the dependent variable y need not be the only
summary measure of interest; a complete evaluation of policy could require the
entire distribution of y given an “exogenous” x. Because that distribution can
be equivalently characterized by the expectation of all measurable functions of
y, a more ambitious objective is calculation of the ASF for any transformation
τ (y) of y with finite first moment,

Gτ (x) ≡
∫

τ (H (x, u))d Fu .

For those sets of stochastic restrictions on u that require additively separable
form (1.11) for identification and estimation of the ASF, this collection of
expectations can be evaluated directly from the marginal distribution of u =
y − g(x); for those stochastic restrictions that do require additivity of errors
for identification of G, the collection of functions Gτ (and thus the structural
distribution of y) can be derived by redefinition of the dependent variable to
τ (y).

For semiparametric problems of the form (1.7), the finite-dimensional pa-
rameter vector β is typically of interest in its own right, because economic
hypotheses can impose testable restrictions on the signs or magnitudes of its
components. A primary goal of the statistical analysis of semiparametric mod-
els is to construct consistent estimators of β that converge at the parametric
rate (the inverse of the square root of the sample size), with asymptotically
normal distributions and consistently estimable asymptotic covariance matri-
ces. For some sets of restrictions on error distributions, this objective may be
feasible even when estimation of the ASF G(x) is not. For example, for the
semiparametric model (1.7), the form of the reduced form for y,

E[y|z] =E[h(x′β, u)|z],
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can, under appropriate restrictions, be exploited to obtain estimates of the single-
index coefficients β even if G is not identified, as noted as follows.

Even for a fully nonparametric model, some finite-dimensional summary
measures of G may be of interest. In particular, the “average derivative” of
G(x) with respect to x (Stoker, 1986) can be an important measure of marginal
effects of an exogenous shift in the regressors. Altonji and Ichimura (2000)
consider the estimation of the derivative y with respect to x for the case when
y is censored. They are able to derive a consistent estimator for the nonadditive
case. Unlike the estimation of single-index coefficients, which are generally
identified only up to a scale factor, estimation of the average derivatives of the
ASF G is problematic unless G itself is identifiable.

2. NONPARAMETRIC ESTIMATION UNDER
ALTERNATIVE STOCHASTIC RESTRICTIONS

As in the traditional treatment of linear simultaneous equations, we will assume
that there exists a 1 × m vector z of instrumental variables, typically with m ≥
k. The particular stochastic restrictions on z, x, and u will determine what
parameters are identified and what estimators are available in each of the model
specifications (1.4)–(1.9). Each of the stochastic restrictions is a stronger form
of the moment condition (1.3), and each can be used to motivate the familiar
2SLS estimator in the linear model with additive errors (1.1) under the usual
rank condition, but their applicability to the nonparametric and semiparametric
models varies according to the form of the structural function H.

2.1. Instrumental Variables Methods

2.1.1. The Linear Model

The instrumental variables (IV) version of the standard 2SLS estimator is the
sample analog to the solution of a weaker implication of (1.3), namely,

0 = E(P[x|z]u) ≡ E(�′zu) = E(�′z(y − x′β)), (2.1)

where P[x |z] is the population least-squares projection of x on z, with

� ≡ {E(zz′)}−1 E(z′x). (2.2)

Replacing population expectations with sample averages in (2.1) yields the
2SLS estimator

β̂2SLS= (X̂′X)−1X̂′y, (2.3)

with

X̂ = Z�̂ and �̂ = (Z′Z)−1Z′X, (2.4)

and where X,Z, and y are the N × k, N × m, and N × 1 data arrays correspond-
ing respectively to x, z, and y, for a sample of size N . When the linear form
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of the residual u = y− x′β is replaced with a nonlinear, parametric version
u = m(y, x,β), extension of this estimation approach yields the generalized
IV estimator (GIVE) of Sargan (1958), the nonlinear two-stage least-squares
(NLLS) estimator of Amemiya (1974), and the generalized method of moments
(GMM) estimator (Hansen, 1982).1

Another closely related formulation of 2SLS exploits a different implication
of (1.3), namely,

0 = P[u|z] = P[y|z] − P[x|z]′β, (2.5)

where the population linear projection coefficients of u and y on z are defined
analogously to (2.2). Replacing P[y|z] and P[x|z] with their sample counter-
parts and applying least squares yields Basmann’s (1959) version of 2SLS,

β̂2SLS = (X̂′X̂)−1X̂′̂y, (2.6)

where now

ŷ = Zπ̂ ≡ Z(Z′Z)−1Z′y.

Although logically distinct from the IV interpretation of 2SLS in (2.3), extension
of the estimation approaches in either (2.3) or (2.6) yields the same NLLS and
GMM estimators in the nonlinear parametric case, and we refer to generalization
of either approach to the nonparametric or semiparametric structural equations
as an IV method.

2.1.2. Extensions to Additive Nonparametric Models

To extend the IV methods to nonparametric settings, we find it natural to
strengthen the unconditional moment restriction E(zu) = 0 to a conditional
mean restriction

E(u|z) = 0, (2.7)

just as the assumption of E[xu] = 0 is strengthened to E[u|x] = 0 for a non-
parametric regression model. For the additive structural function (1.11), iden-
tification and estimation of g(x) was considered by Newey and Powell (1989)
and Darolles et al. (2000). Substitution of the error term u = y − g(x) into
condition (2.7) yields a relationship between the reduced form E[y|z] and the
structural function g:

E[y|z] = E[g(x)|z]

=
∫

g(x)d Fx|z, (2.8)

1 When β is overidentified, that is, the dimension m of the instruments x exceeds the dimension
k of β, asymptotically efficient estimation would be based on a different implication of (1.3),
in which � is replaced by a different (m × k) matrix, as noted by Hansen (1982).
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where Fx|z is the conditional cumulative distribution function (CDF) of x given
z. The reduced form for y, E[y|z], and the conditional distribution of x given
z are functionals of the joint distribution of the observable variables y, x, and z
are identified; identifiability of the structural function g therefore reduces to the
uniqueness of the solution of the integral equation (2.8). And, as noted in the
Newey–Powell and Darolles–Florens–Renault manuscripts, this in turn reduces
to the question of statistical completeness of the family of conditional distri-
butions Fx|z in the “parameter” z. (See, e.g., Ferguson, 1967, Section 3.6, for
a definition of completeness and its connection to minimum variance unbiased
estimation in parametric problems.) Although conditions for completeness of
Fx|z are known for certain parametric classes of distributions (e.g., exponen-
tial families), and generally the “order condition” dim(z) ≥ dim(x) must be
satisfied, in a nonparametric estimation setting, uniqueness of the solution of
(2.8) must be imposed as a primitive assumption. Darolles et al. (2000) give a
more thorough discussion of the conditions for existence and uniqueness of the
solution of (2.8) and its variants.

In the special case in which x and z have a joint distribution that is discrete
with finite support, conditions for identification and consistent estimation of
the ASF g(x) are straightforward to derive. Suppose {ξ j , j = 1, . . . , J } are
the set of possible values for x and {ζl , l = 1, . . . , L} are the support points
for z, and let

π ≡ vec(E[y|z = ζl]), (2.9)

P ≡ [Pjl] ≡ [Pr{x = ξ j |zl = ζ j }]
denote the vector of reduced-form values E[y|z] and the matrix of conditional
probabilities that x = ξ j given that z = ζl , respectively; these would clearly be
identified, and consistently estimable, from a random sample of observations
on y, x, and z. If g ≡ vec(g(ξ j )) denotes the vector of possible values of g(x),
the question of identifiability of g using (2.8) is the question of uniqueness of
the solution to the set of linear equations

π = Pg, (2.10)

so that g is identified if and only if rank{P} = J = dim{g}, which requires the
order condition L = dim{π} ≥ dim{g} = J. When g is identified, it may be
consistently estimated (at a parametric rate) by replacing π and P by estimators
using the empirical CDF of the observed vectors in (2.10), and solving for ĝ
in the just-identified case J = L , or using a minimum chi-square procedure
when g is overidentified (J < L).2 More details for this finite-support case are
given by Das (1999).

2 Note that when J = K = 2, this is the “treatment effect” in the homogeneous treatment effect
model case with additive errors. The heterogeneous treatment effect case is a specific form of
the general nonadditive model.
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2.1.3. The Ill-Posed Inverse Problem

Unfortunately, the simple structure of this finite-support example does not easily
translate to the general case, in which x and z may have continuously distributed
components. Unlike in typical nonparametric estimation problems, where iden-
tification results can be easily translated into consistent estimators of the iden-
tified functions under smoothness or monotonicity restrictions, identification
of g and consistent estimators of the components E[y|z] and Fx|z are not, by
themselves, sufficient for a solution of a sample analogue of (2.8) to be a con-
sistent estimator of g. First, it is clear that, unlike the standard nonparametric
regression problem, the function g(x) (and the reduced form and conditional
distribution function) must be estimated for all values of x in the support of the
conditional distribution, and not just at a particular value x0 of interest; thus,
consistency of g must be defined in terms of convergence of a suitable measure
of distance between the functions ĝ(·) and g(·) (e.g., the maximum absolute
difference over possible x or the integrated squared difference) to zero in prob-
ability. Moreover, the integral equation (2.8), a generalization of the Fredholm
integral equation of the first kind, is a notorious example of an ill-posed inverse
problem: The integral Tz(g) ≡ ∫

g(x)d Fx|z, although continuous in g for the
standard functional distance measures, has an inverse that is not continuous in
general, even if the inverse is well defined. That is, even if a unique solution ĝ
of the sample version

Ê[y|z] =
∫

g(x)d F̂x|z (2.11)

of (2.8) exists, that solution g̃ ≡ T̂ −1
z (Ê[y|z]) is not continuous in the argument

Ê[y|z], so consistency of the reduced-form estimator (and the estimator of
the conditional distribution of x given z) does not imply consistency of ĝ.
Heuristically, the reduced form E[y|z] can be substantially smoother than the
structural function g(x), so that very different structural functions can yield very
similar reduced forms; the ill-posed inverse problem is a functional analogue to
the problem of multicollinearity in a classical linear regression model, where
large differences in regression coefficients can correspond to small differences
in fitted values of the regression function. Such ill-posed inverse problems are
well known in applied mathematics and statistics, arising, for example, in the
problem of estimation of the density of an unobservable variable x that measured
with error; that is, observations are available only on y = x + u, where u is
an unobservable error term with known density function (the deconvolution
problem). O’Sullivan (1986) surveys the statistical literature on ill-posed inverse
problems and describes the general “regularization” approaches to construction
of consistent estimators for such problems. If the joint distribution of x and z is
approximated by a distribution with a finite support (as common for “binning”
approaches to nonparametric estimation of conditional distributions), then the
ill-posed inverse problem would manifest itself as an extreme sensitivity of the
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“transition” matrix P to choice of J and L , and its near-singularity as J and L
increase to infinity.

2.1.4. Consistent Estimation Methods

Newey and Powell (1989) impose further restrictions on the set of possible
structural functions g to obtain a consistent estimator, exploiting the fact that
the inverse of a bounded linear functional such as Tz(g) will be continuous if the
domain of the functional is compact. For this problem, compactness of the set
of possible g functions with respect to, say, the “sup norm” measure of distance
between functions, can be ensured by restricting the “Sobolev norm” of all
possible g functions to be bounded above by a known constant. This Sobolev
norm (denoted here as ‖g‖S) is a different but related distance measure on func-
tions that involves a sum of the integrated squared values of g(x) and a certain
number of its derivatives. In effect, the requirement that ‖g‖S is bounded, which
ensures that g is sufficiently smooth, counteracts the ill-posed inverse prob-
lem by substantially restricting the possible candidates for the inverse function
T̂ −1

z (Ê[y|z]).
To obtain a computationally feasible estimation procedure, Newey and

Powell assume that the structural function g can be well approximated by a
function that is linear in parameters,

g(x) ∼= gJ (x) ≡
J∑

j=1

α jρ j (x), (2.12)

where the {ρ j } are known, suitably chosen “basis functions” (like polynomi-
als or trigonometric functions) that yield an arbitrarily close approximation to
g as the number of terms J in the sum is increased. For this approximation, the
corresponding approximation to the reduced form E[y|z] = E[g(x)|z] is

E[gJ (x)|z] =
J∑

j=1

α j E[ρ j (x)|z], (2.13)

which is itself linear in the same parameters α = (α1, . . . , αJ )′, so that con-
strained least-squares regression of y on nonparametric estimates Ê[ρ j (x)|z] of
the conditional means of the basis functions ρ j (x) can be used to estimate the
coefficients of the approximate structural function gJ under the compactness
restriction. Furthermore, the square of the Sobolev norm ‖gJ ‖S of the linear
approximating function gJ can be written as a quadratic form,

‖gJ ‖2
S = 1

2α
′SJα, (2.14)

where the matrix SJ is a known matrix constructed by using integrals in-
volving the basis functions ρ j (x) and their derivatives. Minimization of the
sum of squared differences between observed values of y and the estimators
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{Ê[ρ j (x)|z]}, subject to the restriction that the quadratic form in (2.14) is
bounded above by a known constant B, yields an estimator of the coefficient
vector α that is of “penalized least squares” form:

α̂ = (R̂′R̂ + λ̂SJ )−1R̂′y, (2.15)

where R̂ is the matrix of the first-stage estimators {Ê[ρ j (x)|z]} for the sample,
and λ̂ is a Lagrange multiplier for the constraint α′SJα ≤ 2B. Imposition of
the compactness condition thus introduces an adjustment for multicollinearity
(through the term λ̂SJ ) to the otherwise-familiar 2SLS formula, to account for
the near-singularity of the fitted values in the first stage, which is at the heart of
the ill-posed inverse problem.

Newey and Powell (1989) give conditions under which the resulting estima-
tor of the structural function g,

ĝ(x) ≡
J∑

j=1

α̂ jρ j (x), (2.16)

is consistent; in addition to the compactness restrictions on the set of possible
structural functions, these conditions restrict the form of the basis functions ρ j

and require that the number of terms J in the approximating function increase
to infinity with the sample size. However, unlike some other nonparametric
regression methods based on series approximations, J can be arbitrarily large
for finite samples, and its value need not be related to the sample size to ensure
convergence of bias and variance to zero, but instead is governed by the trade-off
between numerical precision of the series approximation to g and computational
convenience. The Newey and Powell manuscript does not discuss the rate of
convergence or asymptotic distribution of ĝ, nor appropriate choice of the
constraint constant B or, equivalently, the Lagrange multiplier λ̂ = λ̂(B),which
acts as a smoothing parameter in the second-stage estimator.

A conceptually simple variant of this estimation strategy can be based on
a finite-support approximation to the joint distribution of x and z. Once the
data are binned into partitions with representative values {ξ j } and {ζl}, the
linear relation (2.10) between the vector g of structural function values and
the reduced-form vector π and transition matrix P will hold approximately
(with the approximation improving as the number of bins increases), and the
components π and P can be estimated using bin averages and frequencies.
Though the estimated transition matrix P̂ may be nearly singular even if the
approximating bins are chosen with L � J for J large, the structural function
vector g could be estimated by ridge regression, that is,

ĝ = (P̂
′
P̂ + λS)−1P̂′π̂, (2.17)

for some nonsingular matrix S and smoothing parameter λ that shrinks to zero
as the sample size increases. This can be viewed as a histogram version of
the series estimator proposed by Newey and Powell, which uses bin indicators
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as the basis functions and kernel regression (with uniform kernels) in the first
stage.

Darolles et al. (2000) take a different approach to the estimation of the
structural function g in (2.8). They embed the problem of the solution of (2.8) in
the mean-squared error minimization problem, defining the structural function
g as

g(·) ≡ argmin
φ(·)

E

[∥∥∥∥E[y|z] −
∫

φ(x)d Fx|z

∥∥∥∥2
]
, (2.18)

and note that the “normal equations” for this functional minimization problem
are of the form

E[E[y|z]|x] ≡ τ (x)

= E[E[g(x)|z]|x]

≡ T ∗(g)(x). (2.19)

That is, they transform (2.8) into another integral equation by taking condi-
tional expectations of the reduced form E[y|z] given the original explanatory
variables x; an advantage of this formulation is that the transformation
T ∗(g) = τ has the same argument (x) as the structural function g, as is
standard for the literature on the solution of Fredholm integral equations.
Although the ill-posed inverse problem persists, a standard solution method
for this formulation is Tikhonov regularization, which replaces the integral
equation (2.19) with the approximate problem

τ (x) = T ∗(gλ)(x) + λgλ(x), (2.20)

for λ being a small, nonnegative smoothing parameter. Although (2.20) reduces
to (2.19) as λ → 0, it is a Fredholm integral equation of the second kind, which
is free of the ill-posed inverse problem, whenλ is nonzero. Again approximating
the solution function gλ as a linear combination of basis functions,

gλ(x) ∼= gλ
J (x) ≡

J∑
j=1

αλ
j ρ j (x), (2.21)

as in (2.12), a further approximation to the equation (2.19) is

E[E[y|z]|x] ∼=
J∑

j=1

αλ
j {E[E[ρ j (x)|z]|x] + λρ j (x)}. (2.22)

This suggests a two-stage strategy for estimation of the αλ coefficients:
In the first stage, obtain nonparametric estimators of the components
τ (x) = E[E[y|z]|x] and the doubly averaged basis functions {T ∗(ρ j )(x) =
E[E[ρ j (x)|z]|x]} using standard nonparametric estimation methods; then,
in the second stage, regress the fitted τ̂ (x) on the constructed regressors
{T̂ ∗(ρ j )(x) − λρ j (x), j = 1, . . . , J }. The terms λρ j (x) serve to attenuate
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the severe multicollinearity of the doubly averaged basis functions in this
second-stage regression.

Darolles, Florens, and Renault take the basis functionsρ j to be the eigenfunc-
tions of the estimated double-averaging operator T̂ ∗, that is, the solutions to the
functional equations T̂ ∗(ρ j ) = ν jρ j for scalar eigenvalues ν j , which simplifies
both computation of the estimator and derivation of the asymptotic theory. For
this choice of basis function, they derive the rate of convergence and asymptotic
normal distribution of the estimator g̃λ(x) = ∑J

j=1 α̂
λ
j ρ j (x) under certain regu-

larity conditions. The rate of convergence is comparable to, but slower than, the
rate of convergence of standard nonparametric estimators of the reduced form
E[y|z], as a result of the bias introduced by approximating (2.19) by (2.20) for
nonzero λ. Their manuscript also proposes an alternative estimator of g based
on regression of τ̂ (x) on a subset of the doubly averaged basis functions with
eigenvalues bounded away from zero, that is, {T̂ ∗(ρ j )(x) : |ν j |̇ > bn} for some
bn → 0, and extends the identification analysis to permit the structural function
g to be additively separable in its endogenous and exogenous components.

2.1.5. Nonadditive Models

Both the Newey–Powell and Darolles–Florens–Renault approaches exploit the
additive separability of the error terms u in the structural function for y; for
models with nonadditive errors, that is, H (x, u) �= g(x) + u, the IV assump-
tion imposed in these papers apparently does not suffice to identify the ASF G
of (1.10). Of course, it is clear that, for a nonadditive model, the conditional
mean assumption (2.7) would not suffice to yield identification even for para-
metric structural functions, but imposition of the still-stronger assumption of
independence of u and z, denoted here as

u ⊥⊥ z (2.23)

[which implies (2.7), and thus (1.3), provided u has finite expectation which
can be normalized to zero], will still not suffice in general for identification of
the ASF G. This is evident from inspection of the reduced form E[y|z] in the
nonadditive case:

E[y|z] = E[H (x, u)|z]

=
∫

H (x, u)d Fu,x|z

=
∫ [∫

H (x, u)d Fu|x,z

]
d Fx|z

�=
∫ [∫

H (x, u)d Fu

]
d Fx|z

= E[G(x)|z]. (2.24)

That is, independence of u and z does not imply independence of u and x,
z, or even conditional independence of u and z given x. In the additive case
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H (x, u) = g(x) + u, conditional expectations of each component require only
the conditional distributions of u given z and of x given z, and not the joint
distribution of u, x given z, which is not identified under (2.23) without further
conditions on the relation of x to z. Furthermore, because (2.24) also holds in
general for any function of y, restriction (2.23) does not yield restrictions on
the conditional distribution of the observable y given z that might be used to
identify the ASF G for general nonseparable structural functions H.

Of course, failure of the reduced-form relation (2.24) to identify the ASF
G does not directly imply that it could not be identified by using some other
functionals of the joint distribution of the observables y, x, and z, and it is
difficult to provide a constructive proof of nonidentification of the ASF under
the independence restriction (2.23) at this level of generality (i.e., with structural
function H and the joint distribution of u, x, and z otherwise unspecified). Still,
the general nonidentification result can be illustrated by considering a simple
(slightly pathological) binary response example in which the ASF is unidentified
under (2.23). Suppose H is binary, with y generated as

y = 1(x + u ≥ 0), (2.25)

for a scalar regressor x generated by a multiplicative model

x = z · e, (2.26)

for some scalar instrumental variable z with Pr{z ≥ 0} = 1. For this example,
the ASF is

G(x) ≡ 1 − Fu(x), (2.27)

with Fu the marginal CDF of u. Now suppose the errors u and e are generated
as

u ≡ ε · sgn(η), (2.28)

e ≡ η · sgn(ε),

with ε, η, and z being mutually independently distributed, and

sgn(η) ≡ 1 − 2 · 1(η < 0).

This model is pathological because sgn(u) = sgn(x) by construction, and
thus y = 1(x ≥ 0), whenever z �= 0. Still, the independence condition (2.23)
is satisfied, the dependent variable y is nonconstant if the support of e in-
cludes positive and negative values, and the endogenous regressor x has a
conditional expectation that is a nontrivial function of the instrument z when
E[e] = E[η] · (1 − 2 · Pr{ε < 0}) �= 0. Nevertheless, the ASF G(x) is identi-
fied only at x = 0, when zero is in the support of z (with G(0) = E[y|z = 0])
and is not identified elsewhere.

This example demonstrates that, without further restrictions on the form
of the structural function H and/or the conditional distribution of u given x
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and z, the assumption of independence of the structural error u and the instru-
ments z is insufficient to identify the ASF in nonadditive models even when the
endogenous regressors x are not independent of the instruments z. The noniden-
tification of the ASF here is a consequence of the dependence of the support of
the endogenous variable x (either zero or the positive or negative half-line) on
the realized value of the error term e. In general, if the nature of the endogeneity
of x is restricted by assuming

x = h(z, e) (2.29)

for some function h that is invertible in the error terms e, that is,

e = k(z, x), (2.30)

and if the support of x given e is independent of e. Imbens (2000) has shown
how the ASF G is identified under the independence restriction (2.23) and
these additional restrictions on the nature of the endogeneity of x. Imbens’
identification argument is based on the control function approach described in
more detail later.

As an alternative to imposing such restrictions on the nature of the endo-
geneity of x, additional structure on the form of the structural function H –
such as invertibility of the structural function H (x, u) in the error term u – may
yield more scope for identification of the ASF when the stochastic restrictions
involve only the conditional distribution of u given z. For example, suppose
there is some invertible transformation t(y) of y for which the additive form
(1.11) holds:

t(y) = g(x) + u, (2.31)

where u satisfies the conditional mean restriction (2.7). If the transformation t
were known, then estimation of g could proceed by using the Newey–Powell
or Darolles–Florens–Renault approaches, and the ASF could be estimated by
averaging the estimator of H (x, u) = t−1(g(x) + u) over the marginal empiri-
cal distribution of u = t(y) − g(x). When t is unknown, the conditional mean
restriction (2.7) yields an integral equation

0 = E[u|z]

=
∫

t(y)d Fy|z −
∫

g(x)d Fx|z, (2.32)

which has multiple solutions, such as t(y) ≡ g(x) ≡ k for any constant k.
Still, with appropriate normalizations on the unknown functions t and g,
like E[t(y)] = 0 and E[(t(y))2] = 1, it may be possible to extend the esti-
mation approaches for the ill-posed inverse problem to joint estimation of
t and g, though this may require overidentification, that is, m = dim(z) >

dim(x) = k.
For the semiparametric problems (1.7), the parametric components β of

the structural function may well be identified and consistently estimable, at the
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parametric (root-N ) rate, even if the ASF G is not identified. Ai and Chen (2000)
propose sieve estimation of semiparametric models of the form (1.9) under
the assumption that the instrumental variables z are independent of the error
terms u; although the estimator of the infinite-dimensional nuisance function
h(·) is not generally consistent with respect to the usual distance measures
(such as integrated square differences), the corresponding estimator β̂ of the
parametric component β is root-N consistent and asymptotically normal under
the regularity conditions they impose.

Lewbel (1998, 2000) considers the single-index generalized regression
model (1.8), constructing consistent estimators of the index coefficientsβ under
the assumption that one of the components of the explanatory variables x, say
x1, is continuously distributed and independent of the structural error u – and
is thus a component of the set of instruments z satisfying (2.23) given earlier.
Provided there exists an exogenous variable x1 that satisfies these conditions,
Lewbel’s approach permits a weaker stochastic restriction than independence
of z (including the special regressor x1) and u – namely, that u need only be
independent of x1 conditionally on the other components of x and of the in-
strument vector z. The conditional mean restriction E[u|z] = 0 can also be
weakened to the moment restriction E[zu] = 0 in this setup. The conditional
independence restriction is similar to the restrictions imposed for the control
function methods described later. Nevertheless, even if the coefficient vector β
were known a priori, the endogeneity of the remaining components of x, and
thus of the index x′β, would yield the same difficulties in identification of the
ASF G as in (2.24).

2.1.6. Fitted-Value Methods

When the conditional mean (2.7) or independence (2.23) restrictions of the IV
approach does not suffice to identify the ASF G in a nonparametric model,
the researcher can either abandon the ASF concept and focus on alternative
summary measures that are identified, or impose stronger restrictions on the
structural function or error distributions to achieve identification of the ASF.
Though imposing additional restrictions on the structural function H (such as
additivity of the error terms u) can clearly help achieve identifiability of G,

such restrictions may be implausible when the range of y is restricted (e.g.,
when y is binary), and it is more customary to strengthen the restrictions on the
conditional error distribution u given the instruments z to identify the parameters
of interest.

One alternative set of restrictions and estimation procedures are suggested
by Theil’s (1953) version of the 2SLS estimator for simultaneous equations.
Defining the first-stage residuals v as the difference between the regressors x
and their linear projections onto z,

v ≡ x − P[x|z] ≡ x − �′z, (2.33)

where � is defined in (2.2), the condition (1.3), when combined with the
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definition of v and the linear structural function (1.1), yields the restriction

0 = E[P[x|z](u + v′β)]

= E[(�′z)(y − (z′�)β), (2.34)

so that the structural coefficients β are the least-squares regression coefficients
of the regression of the dependent variable y on the fitted values �′z of the
regressors x. The sample analogue of the population regression coefficients of
y on �′z is Theil’s version of 2SLS,

β̂2SLS = (X̂′X̂)−1X̂′y, (2.35)

where X̂ = Z�̂ is defined as in (2.4). The motivation for this form of 2SLS is
the replacement of the endogenous regressors x with that part of x (its linear
projection on z) that is uncorrelated with the error u in the linear structural
equation.

In a nonparametric setting, it is natural to define the first-stage residuals v
as deviations from conditional expectations, rather than linear projections:

v ≡ x − E[x|z]

≡ x − �(z). (2.36)

By construction, E[v|z] = 0, and, as for the IV approaches, the moment con-
dition (1.3) would be replaced by the stronger conditional mean restriction
(2.7), or the still-stronger assumption of independence of the errors and the
instruments,

(u, v) ⊥⊥ z. (2.37)

A nonparametric generalization of Theil’s version of 2SLS would estimate
E[x|z] = �(z) by a suitable nonparametric method in the first stage, and then
substitute the fitted values �̃(z) into the structural function in a second-stage
estimation procedure. As noted by Amemiya (1974), though, substitution of
fitted values into nonlinear structural functions generally yields inconsistent
estimates of the structural parameters, even in parametric problems; estima-
tion methods that use substitution of fitted values into the structural function
rely heavily on linearity of the regression function, so that the model can be
written in terms of a composite error u + v′β with similar stochastic proper-
ties to the structural error u. For the general (nonadditive) structural function
H of (1.4), substitution of the reduced form into the structural function yields
y = H (�(z) + v, u), and, analogously to (2.24), the reduced form for y bears
no obvious relation to the ASF G under condition (2.37). Even when the struc-
tural function H is additive, H (x, u) = g(x) + u, the reduced form for y can
be written as

E[y|z] =E[y|�(z)] =
∫

g(�(z) + v)d Fv,
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so insertion of the first-stage equation for x into the structural function yields an
ill-posed inverse relation between the reduced form for y and the ASF g. Thus
the fitted-value approach inherits similar limitations to the IV approach, though
it may simplify the resulting integral equation, which depends on �(z) rather
than z and involves the marginal distribution of v rather than the conditional
distribution of x given z.

Of course, for structural equations in which the conditional expectations
E[x|z] = �(z) are the “right” explanatory variables, the fitted-value estimation
method, using nonparametric estimates of �(z), is an obvious way to proceed.3

And, as was true for the IV approach, for semiparametric problems, consistent
estimation of the parametric component β may be feasible even when the
ASF G is not identified. For example, for the generalized regression model
y = h(x′β, u) of (1.8), the reduced form for y given z is of single-index form
when the errors u, v are independent of the instrument vector z: E[y|z] ≡
G∗(�(z)′β) for some function G∗, so that a nonparametric estimator of the
first-stage regression function �(z) can be combined with a standard estimation
method for single-index regression models.4

2.2. Control Function Methods

2.2.1. The Linear Model

Although insertion of the fitted values from the first-stage nonparametric re-
gression of x on z is not generally helpful in identification and estimation of
the ASF G, alternative assumptions and procedures involving the use of the
residuals v from this first-stage regression to control for endogeneity of the
regressors x do yield identification of the ASF even for the general, nonadditive
structural function (1.4). This control function approach has its antecedent in
another algebraically equivalent interpretation of the 2SLS estimator β̂2SLS as
the coefficients on x in a least-squares regression of y on x and the residuals v̂
from a linear regression of x on z:(

β̂2SLS
ρ̂2SLS

)
= (Ŵ′Ŵ)−1Ŵ′y, (2.38)

where

Ŵ = [X V̂] and V̂ = X − X̂ = X − Z�̂,

3 Some asymptotic results for such estimators were given by Ahn and Manski (1993) and by Ahn
(1995), which showed, for example, that the rate of convergence of the restricted reduced-form
estimator Ê[y|�̂(z)] is the smaller of the rate of convergence of �̂ to � and of Ê[y|�(z)] to
E[y|�(z)] where � is known.

4 See, for example, Ichimura (1993) and others described in Horowitz (1993) and Powell
(1994).
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and where ρ̂2SLS are the coefficients on the first-stage residuals V̂.5

This construction exploits another consequence of the moment condition
E(zu) = 0, that

P[u|x, z] = P[u|�′z + v, z]

= P[u|v, z]

= P[u|v]

≡ v′ρ (2.39)

for some coefficient vector ρ; the third equality follows from the orthogonality
of both error terms u and v with z. Thus, this particular linear combination
of the first-stage errors v is a function that controls for the endogeneity of the
regressors x. It also follows from this formulation that

P[u|x, z] = P[u|x, v], (2.40)

which can be used as the basis for a test of overidentification if dim(z) >

dim(v) = dim(x).
This approach treats endogeneity as an omitted variable problem, where

the inclusion of estimates of the first-stage errors v (the part of the regressors
x that is correlated with z) as a covariate corrects the inconsistency of least-
squares regression of y on x, in the same way that the Heckman (1979) two-step
estimator corrects for selectivity bias through introduction of an appropriately
estimated regressor derived from a parametric form for the error distribution.
The control function approach to correct for endogeneity has been extended to
nonlinear parametric models by Blundell and Smith (1986, 1989), who show
how introduction of first-stage residuals into single-equation Probit or Tobit
procedures yields consistent estimators of the underlying regression coefficients
when some of the regressors are endogenous.

2.2.2. Extensions to Additive Nonparametric Models

Application of the control function approach to nonparametric and semipara-
metric settings requires strengthening of the linear projection restrictions (2.39)
and (2.40) to conditional mean restrictions,

E(u|x, z) = E(u|x, v)

= E(u|v), (2.41)

5 It has been difficult to locate a definitive early reference to the control function version of 2SLS.
Dhrymes (1970, equation 4.3.57) shows that the 2SLS coefficients can be obtained by a least-
squares regression of y on X̂ and V̂, while Telser (1964) shows how the seemingly unrelated
regressions model can be estimated by using residuals from other equations as regressors in
a particular equation of interest. Heckman (1978) references this paper in his comprehensive
discussion of estimating simultaneous models with discrete endogenous variables.
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or, for nonadditive models, the stronger conditional independence assumptions

u|x, z ∼ u|x, v

∼ u|v. (2.42)

While the control variates6 v are typically taken to be deviations of x from its
conditional mean E[x|z], as in (2.36), this is not required; more generally, v
can be any function of the observable random vectors

v = ν(y, x, z) (2.43)

that is identified and consistently estimable, provided (2.41) or (2.42) holds
for this formulation (and v is not a nontrivial function of x). This permits the
control function approach to be applied to some systems of nonlinear simultane-
ous equations for which the appropriate reduced form is difficult or impossible
to derive, such as the coherent simultaneous binary response models consid-
ered in the paragraphs that follow. In comparison to the identifying assumptions
(2.7) or (2.23) for the IV approaches, the corresponding assumptions (2.41) or
(2.42) for the control function approach are no more nor less general. Both sets
of assumptions are implied by the independence restriction (2.37), which may
be plausible for certain applications, and which permits a choice between the
two estimation approaches.

Estimation of the ASF g in the additive model (1.11) under the conditional
mean exclusion restriction (2.41) was considered by Newey, Powell, and Vella
(1999) and by Ng and Pinkse (1995) and Pinkse (2000). Applications can be
found in Blundell, Browning, and Crawford (2000) and Blundell and Duncan
(1998), for example. When the errors are additive, substitution of u = y − g(x)
into (2.41) yields a generalized additive regression form for y:

E[y|x, v] = E[(g(x) + u)|x, v]

= g(x) + η(v), (2.44)

for some control function η. With a suitable normalization, say, E[η(v)] = 0,
the ASF g can be estimated using standard additive nonparametric regression
methods applied to the regression of y on x and the first-stage residuals v̂. Both
Newey et al. and Ng and Pinkse propose an estimation of (2.44) using a series
approximation for the functions g and η :

g(x) + η(v) ∼=
J∑

j=1

α jρ j (x) +
L∑

l=1

γlψl(v), (2.45)

where {ρ j } and {ψl} are appropriate basis functions, and where the number
of terms J and L for each approximating series increases to infinity as the
sample size increases. The second stage using this series approximation is a
least-squares regression of y on the basis functions {ρ j (x)} and {ψl(v̂)}, and

6 This use of the term “control variate” is logically distinct from, but similar in spirit to, its use in
the literature on Monte Carlo methods; see, for example, Hammersley and Handscomb (1964),
Section 5.5.
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the estimator of g is given by (2.16), assuming ρ1(x) ≡ 1− which enforces the
normalization E[η(v)] = 0. The cited manuscripts give regularity conditions
for consistency of the estimator ĝ, and derive its rate of convergence, which
is the same as the rate for a direct nonparametric regression of y on the re-
gressors x; Newey et al. also give conditions under which the estimator ĝ(x) is
asymptotically normal.

2.2.3. Nonadditive Models

Unlike the IV approach, a stronger independence condition (2.42) of the condi-
tional mean exclusion restrictions (2.41) for the control function approach does
lead to a consistent estimator of the ASF G when the structural function H is
nonadditive, as in (1.4). Blundell and Powell (1999) point out how averaging
the conditional mean of y given x and v over the marginal distribution of the
first-stage errors v gives the ASF G for the nonadditive model. Because

E[y|x, v] = E[H (x, u)|x, v]

=
∫

H (x, u)d Fu|x,v

=
∫

H (x, u)d Fu|v

≡ H∗(x, v), (2.46)

under the strong exclusion restriction (2.42), it follows that the generalized
control function H∗ can be integrated over the marginal distribution of the
(observable) reduced-form errors to obtain the ASF:∫

H∗(x, v)d Fv =
∫ [∫

H (x, u)d Fu|v

]
d Fv

=
∫

H (x, u)d Fu

≡ G(x). (2.47)

In a sense, the control function exclusion restriction (2.42) permits replacement
of the unidentified structural errors u with the identified control variable v
through iterated expectations, so that averaging the structural function H over
the marginal distribution of the structural errors u is equivalent to averaging the
(identified) intermediate regression function H ∗ over the marginal distribution
of v. The intermediate structural function H ∗ is a nonadditive generalization of
the previous control function η(v) = E[u|v] for additive models.

For the binary response example described in (2.25) through (2.28) herein,
the first-stage residuals are of the form

v = z · (e − E[e])

= z · [η · sgn(ε) − E[η] · (Pr{ε ≥ 0} − Pr{ε < 0})], (2.48)
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and the conditional exclusion restriction (2.42) holds only if the structural error
u is degenerate, that is, u = 0 with probability one. In this case, x is exogenous,
and the intermediate structural function reduces to

H ∗(x, v) = E[1(x ≥ 0)|x, v]

= 1(x ≥ 0), (2.49)

which trivially integrates to the true ASF G(x) = 1(x ≥ 0). Thus, imposition of
the additional restriction (2.42) serves to identify the ASF here. An alternative
control variate to the first-stage errors v would be

v∗ ≡ sgn(x) = sgn(u), (2.50)

which satisfies (2.42) when the structural error u is nondegenerate. Because v∗

is functionally related to x, the intermediate structural function H∗(x, v∗) =
E[y|x, v∗] is not identified with this control variate.

Translating the theoretical formulation (2.47) to a sampling context leads to a
“partial mean” (Newey, 1994b) or “marginal integration” (Linton and Nielson,
1995 and Tjostheim and Auestad, 1996) estimator for the ASF G under the
conditional independence restrictions (2.42) of the control function approach.
That is, after obtaining a first-stage estimator v̂ of the control variate v, which
would be the residual from a nonparametric regression of x on z when v is
defined by (2.36), one can obtain an estimator Ĥ ∗ of the function H∗ in (2.46)
by a nonparametric regression of y on x and v̂. A final estimation step would
average H ∗ over the observed values of v̂,

Ĝ(x) =
∫

Ê(y|x, v)d F̂v̂ ≡
∫

Ĥ∗(x, v)d F̂v̂ , (2.51)

where F̂v̂ is the empirical CDF of the residuals v̂. Alternatively, if v were
assumed to be continuously distributed with density fv, the ASF G could be
estimated by integrating Ĥ∗ over a nonparametric estimator f̂ v̂ of fv,

G̃(x) =
∫

Ê(y|x, v) f̂v̂dv. (2.52)

Either the partial mean (2.51) or marginal integration (2.52) is an alternative
to the series estimators based on (2.45) for the additive structural function
(1.11), but this latter approach is not applicable to general structural functions,
because the intermediate regression function H∗ need not be additive in its x
and v components.

2.2.4. Support Restrictions

The identification requirements for the ASF G are simpler to interpret for the
control function approach than the corresponding conditions for identification
using the IV approaches, because they are conditions for identification of the
nonparametric regression function H∗, which is based on observable random
vectors. For example, in order for the ASF G(x) to be identified from the



Cambridge Collections Online © Cambridge University Press, 2006

Nonparametric and Semiparametric Regression Models 335

partial-mean formulation (2.47) for a particular value x0 of x, the support of
the conditional distribution of v given x = x0 must be the same as the support
of the marginal distribution of v; otherwise, the regression function H ∗(x0, v)
will not be well defined for all v, nor will the integral of H∗ over the marginal
distribution of v. For those components of x that are exogenous, that is, those
components of x that are also components of the instrument vector z, the cor-
responding components of v are identically zero, both conditionally on x and
marginally, so this support requirement is automatically satisfied. However, for
the endogenous components of x, the fact that x and v are functionally related
through the first-stage relation v = x − �(z), or the more general form (2.43),
means that the support condition generally requires that v, and thus x, must
be continuously distributed, with unbounded support (conditionally on the in-
struments z) if its marginal distribution is nondegenerate. Similar reasoning,
imposing the requirement that H∗(x, v) be well defined on the support of x for
all possible v, and noting that

E[y|x, v] = E[y|�(z), v] (2.53)

implies that the first-stage regression function �(z) = E[x|z] must also be
continuously distributed, with full-dimensional support, for the nondegenerate
components of v = x−E[x|z].

The requirement that the endogenous components of x be continuously dis-
tributed is the most important limitation of the applicability of the control func-
tion approach to estimation of nonparametric and semiparametric models with
endogenous regressors. When the structural equations for the endogenous re-
gressors have limited or qualitative dependent variables, the lack of an invertible
representation (2.43) of the underlying error terms for such models generally
makes it impossible to construct a control variate v for which the conditional
independence restrictions (2.41) or (2.42) are plausible. The requirement of an
additive (or invertible) first-stage relation for the regressors x in the control
function approach is comparable with the requirement of an additive (or
invertible) structural function H for the identification of the ASF G using the
IV approach.

In contrast, when the errors are invertible and the support of x does not depend
on them, Imbens (2000) has shown how a particular control variate – the con-
ditional cumulative distribution of x given z, evaluated at the observed values
of those random variables – can be used to identify the ASF G under the in-
dependence restriction (2.23), because it satisfies the conditional independence
restriction (2.42). Also, when it is applicable, the control function approach
to estimation with endogenous regressors is compatible with other estimation
strategies that use control function methods to adjust for different sources of
specification bias, such as selection bias (e.g., Ahn and Powell, 1993, Das,
Newey, and Vella, 1998, Heckman, 1978, Heckman and Robb, 1985, Honoré
and Powell, 1997, and Vytlacil, 1999) or correlated random effects in panel
data models (Altonji and Matzkin, 1997).
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3. BINARY RESPONSE LINEAR INDEX MODELS

3.1. Model Specification and Estimation Approach

Although the control function approach adopted by Blundell and Powell (1999)
applies to fully nonparametric problems (as described herein), their discussion
focuses attention on estimation of the parametric and nonparametric compo-
nents of a particular semiparametric single-index model (1.8), the binary
response model with linear index,

y = 1{x′β + u > 0}, (3.1)

where the conditional independence assumption (2.42) is assumed to hold
for v ≡ x −E[x|z]. For this linear binary response model, the ASF G is the
marginal CDF of −u evaluated at the linear index x′β,

G(x) = F−u(x′β), (3.2)

which is interpreted as the counterfactual conditional probability that y = 1
given x, if x were exogenous, that is, if the conditional distribution of u given x
were assumed to be identical to its true marginal distribution. Under the condi-
tional independence restriction (2.42), the intermediate regression function H∗

is the conditional CDF of −u given v, again evaluated at x′β:

H∗(x, v) = F−u|v(x′β|v). (3.3)

Given a random sample of observations on y, x, and z from the model (3.1)
under the exclusion restriction (2.42), the estimation approach proposed by
Blundell and Powell for the parameters of interest in this model follows three
main steps. The first step uses nonparametric regression methods – specifically,
the Nadaraya–Watson kernel regression estimator – to estimate the error term
v in the reduced form, as well as the unrestricted conditional mean of y given
x and v,

E[y|x, v] ≡ H∗(w), (3.4)

where w is the 1 × (k + q) vector

w = (x′, v′)′. (3.5)

This step can be viewed as an intermediate structural estimation step, which
imposes the first exclusion restriction of (2.42) but not the second. The remain-
ing estimation steps use semiparametric “pairwise differencing” or “matching”
methods to obtain an estimator of the index coefficients β, followed by partial-
mean estimation of the ASF G.
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3.1.1. The Semiparametric Estimator of the Index Coefficients

After using kernel regression methods to obtain an estimator Ĥ∗(x, v̂) =
Ê[y|x, v̂] of the intermediate regression function H∗, Blundell and Powell
use a semiparametric estimation method to extract an estimator of β from the
relation

H∗(w) = E[y|x, v]

= E[y|x′β, v]

≡ �(x′β, v), (3.6)

which is a consequence of the single-index form of the binary response model
(3.1). Although a number of standard methods for estimation of the coefficients
of the single-index regression model E[y|x] = �(x′β) could be extended to
the multi-index model7 (3.6), the particular estimator of β adopted by Blundell
and Powell (1999) is an adaptation of a method proposed by Ahn, Ichimura,
and Powell (1996), which imposes additional regularity conditions of both con-
tinuity and monotonicity of H∗(λ, v) = E[y|x′β = λ, v] in its first argument.
These conditions follow from the assumption that u is continuously distributed,
with support on the entire real line, conditional on v, because of (3.3).

Because the structural index model is related to the conditional mean of y
given w′= (x′, v′) by the relation

H∗(w) = �(x′β0, v), (3.7)

invertibility of �(·) in its first argument implies

x′β0 − ψ(g(w), v) = 0, (w .p.1), (3.8)

where

ψ(·, v) ≡ �−1(·, v), (3.9)

that is, �(ψ(g, v), v) ≡ g. So, if two observations (with subscripts i and j) have
identical conditional means, that is, H∗(wi ) = H∗(w j ), and identical reduced-
form error terms (vi = v j ), it follows from the assumed invertibility of � that
their indices xiβ0 and x jβ0 are also identical:

(xi − x j )β0 = ψ(g(wi ), vi ) − ψ(g(w j ), v j ) = 0

if g(wi ) = g(w j ), vi = v j . (3.10)

For any nonnegative function ω(wi ,w j ) of the conditioning variables wi and
w j , it follows that

0 = E[ω(wi ,w j ) · ((xi − x j )β0)2 | g(wi ) = g(w j ), vi = v j ]

≡ β ′
0�wβ0, (3.11)

7 See Horowitz (1993) and Powell (1994).
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where

�w ≡ E[ω(wi ,w j ) · (xi − x j )
′(xi − x j ) | g(wi ) = g(w j ), vi = v j ].

(3.12)

That is, the nonnegative-definite matrix �w is singular, and, under the iden-
tifying assumption that �w has rank k − 1 = dim(w) – which requires that
any nontrivial linear combination (xi − x j )a of the difference in regressors has
nonzero variance when a �= 0, a �= β0, vi = v j , and (xi − x j )β0 = 0 – the
unknown parameter vector β0 is the eigenvector (with an appropriate normal-
ization) corresponding to the unique zero eigenvalue of �w .

Given the preliminary nonparametric estimators v̂i and ĝ(w̃i ) of vi and
g(wi ) defined herein, and assuming smoothness (continuity and differentiabil-
ity) of the inverse function ψ(·) in (3.9), one can obtain a consistent estimator of
�w for a particular weighting function ω(wi ,w j ) by a pairwise differencing
or matching approach, which takes a weighted average of outer products of
the differences (xi − x j ) in the

(n
2

)
distinct pairs of regressors, with weights

that tend to zero as the magnitudes of the differences |̂g(w̃i ) − ĝ(w̃ j )| and
|vi − v j | increase. The details of this semiparametric estimation procedure for
β are developed in Blundell and Powell (1999), who demonstrate consistency
of the resulting estimator β̂ and characterize the form of its asymptotic (normal)
distribution.

3.1.2. The Partial-Mean Estimator of the ASF

Once the consistent estimator β̂ of β is obtained, the remaining parameter of
interest for this model is G(x′β), the marginal probability that y1i = 1 given an
exogenous x. The conditional cumulative distribution function F−u|v(x′β| v) ≡
�(x′β, v) is first estimated by using a kernel regression estimator Ê[y|x′β̂, v̂];
the Blundell–Powell approach then estimates G(λ) from the sample average
of �̂(λ, v̂i ),

Ĝ(λ) =
n∑

i=1

�̂(λ, v̂i )τi , (3.13)

where τi is some “trimming” term that downweights observations for which
� is imprecisely estimated. Consistency of this approach requires adapting the
arguments in Newey (1994b) and Linton and Nielson (1995) for the case of the
averaging over the estimated residual v̂i .

4. COHERENCY AND ALTERNATIVE
SIMULTANEOUS REPRESENTATIONS

One interpretation of the linear index binary response model described in
Section 3 is as the “triangular form” of some underlying joint decision problem.
For simplicity, suppose the explanatory variables x can be partitioned as

x′ = (z′
1, y2), (4.1)
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where y2 is a single continuously distributed endogenous regressor; also, sup-
pose the instrument vector z is also partitioned into subvectors corresponding
to the “included” and “excluded” components of x,

z′ = (z′
1, z′

2). (4.2)

Then, for a random sample {yi , xi , zi }n
i=1 of observations on y ≡ y1, x, and z,

we can express the model (3.1) as

y1i = 1{y∗
1i > 0}, (4.3)

for a latent dependent variable y∗
1i of the form

y∗
1i = z′

1iβ1 + y2iβ2 + ui . (4.4)

If the simultaneity between y2i and y1i can be written in terms of a structural
equation for y2i in terms of the latent variable y∗

1i , that is,

y2i = z′
2iγ1 + y∗

1iγ2 + εi , (4.5)

for some error term εi , then substitution of (4.4) in (4.5) delivers the first-stage
regression model

y2i = z′
iΠ + vi (4.6)

for some coefficient matrix Π. This triangular structure has y2 first being de-
termined by z and the error terms v, while y1 is then determined by y2, z, and
the structural error u.

In some economic applications, however, joint decision making may be in
terms of the observed outcomes rather than latent outcomes implicit in (4.4) and
(4.5). For example, consider the joint determination of savings (or consumption)
and labor market participation. Let y1 denote the discrete work decision and let
y2 denote other income including savings. Suppose that work involves a fixed
costα1. In this case the structural relationship for other income (y2i ) will depend
on the discrete employment decision (y1i ), not the latent variable (y∗

1i ). It will
not be possible, therefore, to solve explicitly the reduced form for y2. Note that,
for theoretical consistency, the fixed cost α2 will also have to be subtracted from
the income (or consumption) variable in the participation equation for those in
work. As a result, for those who are employed, other income is defined net of
fixed costs,

ỹ2i ≡ y2i − α2 y1i . (4.7)

We may therefore wish to replace (4.5) with a model incorporating feedback
between the observed dependent variables y1 and y2,

y2i = z′
2iγ1 + y1iα2 + εi ; (4.8)

that is, the realization y1 = 1 results in a discrete shift y1iα2 in other income.
Because of the nonlinearity in the binary response rule (4.3), there is no explicit
reduced form for this system. Indeed, Heckman (1978), in his extensive analysis
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of simultaneous models with dummy endogenous variables, shows that (4.3),
(4.4), and (4.8) are only a statistically “coherent” system, that is, one that
processes a unique (if not explicit) reduced form, when γ2 = 0.8

To provide a fully simultaneous system in terms of observed outcomes, and
one that is also coherent, Heckman (1978) further shows that there must be a
structural jump in the equation for y∗

1i ,

y∗
1i = y1iα1 + z′

1iβ1 + y2iβ2 + ui , (4.9)

with the added restriction

α1 + α2β2 = 0. (4.10)

Heckman (1978) labels this the “principle assumption.” To derive this condition,
notice that from (4.3), (4.8), and (4.9), we can write

y∗
1i = 1{y∗

1i > 0}(α1 + α2β2) + z′
1iβ1 + z′

2iγ1β2 + ui + εiβ2, (4.11)

or

y∗
1i ≶ 0 ⇔ 1{y∗

1i > 0}(α1 + α2β2) + z′
1iβ1 + z′

2iγ1β2 + ui + εiβ2 ≶ 0.

(4.12)

Thus, for a consistent probability model with general distributions for the unob-
servables and exogenous covariates, we require the coherency condition (4.10).

Substituting for α1 from (4.10) into (4.9), we have

y∗
1i = (y2i − y1iα2)β2 + z′

1iβ1 + ui . (4.13)

Note that this adjustment to y2i , which guarantees statistical coherency, is iden-
tical to the condition for theoretical consistency in the fixed-cost model in which
fixed costα2 is removed from other income for those who participate, as in (4.7).

Blundell and Smith (1994) derive a control function like the estimator for
this setup under joint normality assumptions.9 However, the semiparametric
approach developed in the previous section naturally extends to this case. Noting
that ỹ2i ≡ y2i − α2 y1i , we find that the coherency condition implies that the
model can be rewritten as

y1i = 1{z′
1iβ1 + ỹ2iβ2 + ui > 0}, (4.14)

8 See Gourieroux, Laffont, and Monfort (1980) for further discussion of coherency conditions,
and see Lewbel (1999) for a recent statement of this result.

9 Blundell and Smith (1986) also develop an exogeneity test based on this estimator and consider
results for the equivalent Tobit model. Rivers and Vuong (1988) provide a comprehensive treat-
ment of limited information estimators for this class of parametric limited dependent variable
models. They label the Blundell–Smith estimator the “two-stage conditional maximum likeli-
hood” (2SCML) estimator and consider alternative limited information maximum likelihood
(LIML) estimators. The efficiency and small sample properties of the 2SCML estimator are
also considered. These are further refined in Blundell and Smith (1989). See also the important
earlier related work of Amemiya (1978) and Lee (1981, 1993), which builds on the Heckman
(1978) estimator.
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and

ỹ2i = z′
2iγ2 + εi . (4.15)

This specification could easily be generalized to allow for a more complex
relationship in more complicated models of nonseparable decision making.10

If α2 were known, then Equations (4.15) and (4.14) are analogous to (4.3),
(4.4), and (4.6). Consequently, a semiparametric estimator using the control
function approach would simply apply the estimation approach described in
this chapter to the conditional model. Following the previous discussion, as-
sumption (2.42) would be replaced by the modified conditional independence
restrictions

u|z1,y2, z2 ∼ u|z1 ,̃y2, ε

∼ u|ε. (4.16)

The conditional expectation of the binary variable y1 given the regressors z1,

ỹ2 and errors ε would then take the form

E[y1|z1 ,̃y2i , ε] = Pr[−u ≤ z′
1iβ1 + ỹ2iβ2|z1 ,̃y2i , ε]

= F−u|ε(z′
1iβ1 + ỹ2iβ2|ε)

≡ �(z′
1iβ1 + ỹ2iβ2, ε). (4.17)

Finally, note that although α2 is unknown, given sufficient exclusion re-
strictions on z2i , a root-n consistent estimator for α2 can be recovered from
(linear) 2SLS estimation of (4.8). More generally, if the linear form z′

2iγ1 of
the regression function for y2 is replaced by a nonparametric form γ (z2i ) for
some unknown (smooth) function γ, then a

√
n-consistent estimator of α2 in

the resulting partially linear specification for y2i could be based on the estima-
tion approach proposed by Robinson (1988), using nonparametric estimators
of instruments (z1i − E[z1i |z2i ]) in an IV regression of y2i on y1i .

5. AN APPLICATION

The empirical application presented here is taken from the Blundell and Powell
(1999) study. In that paper we considered the participation in work by men with-
out college education in a sample of British families with children. Employment
in this group in Britain is surprisingly low. More than 12 percent of these men
do not work, and this number approaches 20 percent for those men with lower
levels of education. Largely as a consequence of the low participation rate, this

10 Note that to test this alternative specification against the triangular specification (4.3), (4.4), and
(4.5), one may estimate

y2i = z2iγ1 + y1iα2 + ŷ2i δ2 + wi

by instrumental variables using zi as instruments, and then test the null hypothesis δ2 = 0, where
ŷ2i is the prediction of y2i under reduced-form specification (4.6).



Cambridge Collections Online © Cambridge University Press, 2006

342 Blundell and Powell

group is subject to much policy discussion. We model the participation decision
(y1) in terms of a simple structural binary response framework that controls for
market wage opportunities and the level of other income sources in the family.
Educational level (z1) is used as a proxy for market opportunities and is treated
as exogenous for participation. However, other income (y2), which includes the
earned income of the spouse, is allowed to be endogenous for the participation
decision.

As an instrument (z21) for other family income, we use a welfare benefit
entitlement variable. This instrument measures the transfer income the family
would receive if neither spouse was working and is computed by using a benefit
simulation routine designed for the evaluation of welfare benefits for households
in the British data used here. The value of this variable depends on the local
benefit rules, the demographic structure of the family, the geographic location,
and housing costs. As there are no earnings-related benefits in operation in
Britain over the period under study, we may be willing to assume it is exogenous
for the participation decision. Moreover, although it will be a determinant of
the reduced form for participation and other income, for the structural model
herein, it should not enter the participation decision conditional on the inclusion
of other income variables.

5.1. The Data

The sample consists of married couples drawn from the British Family Expen-
diture Survey (FES). The FES is a repeated continuous cross-sectional survey
of households that provides consistently defined micro data on family incomes,
employment status and education, consumption, and demographic structure.
We consider the period 1985–1990. The sample is further selected according to
the gender, educational attainment, and date of birth cohort of the head of house-
hold. We choose male heads of households, born between 1945 and 1954, who
did not receive college education. We also choose a sample from the Northwest
region of Britain. These selections are primarily to focus on the income and
education variables.

For the purposes of modeling, the participating group consists of employees;
the nonparticipating group includes individuals categorized as searching for
work as well as the unoccupied. The measure of education used in our study
is the age at which the individual left full-time education. Individuals in our
sample are classified in two groups: those who left full-time education at age
16 or lower (the lower education base group), and those who left at age 17 or
18. Those who left at age 19 or older are excluded from this sample.

Our measure of exogenous benefit income is constructed for each family as
follows: a tax and benefit simulation model11 is used to construct a simulated

11 The Institute for Fiscal Studies (IFS) tax and benefit simulation model is TAXBEN
(www.ifs.org.uk), designed for the British FES data used in this paper. For an extensive discus-
sion of the use of this data source in the study of male participation, see Blundell, Reed, and
Stoker (1999).
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Table 8.1. Descriptive statistics

Variable Mean Std. Dev.

Work (y1) 0.871 0.387
Education > 16 (z1) 0.196 0.396
ln (other inc.) (y2) 5.016 0.434
ln (benefit inc.) (z21) 3.314 0.289
Education (sp.) (z22) 0.204 0.403
Age 39.191 10.256

Note: The number of observations is 1,606.

budget constraint for each individual family given information about age, lo-
cation, benefit eligibility, and so on. The measure of out-of-work income is
largely composed of income from state benefits; only small amounts of invest-
ment income are recorded. State benefits include eligible unemployment ben-
efits,12 housing benefits, child benefits, and certain other allowances. Because
our measure of out-of-work income will serve to identify the structural partici-
pation equation, it is important that variation in the components of out-of-work
income over the sample is exogenous for the decision to work. In the UK, the
level of benefits that individuals receive out of work varies with age, time, and
household size, and (in the case of housing benefit) by region. The housing
benefit varies systematically with time, location, and cohort.

After making the sample selections described herein, our sample contains
1,606 observations. A brief summary of the data is provided in Table 8.1.13

The 87.1 percent employment figure for men in this sample is reduced to less
than 82 percent for the lower education group that makes up more than 75 per-
cent of our sample. As mentioned earlier, this lower education group refers to
those who left formal schooling at 16 years of age or younger and will be the
group on which we focus in much of this empirical application. The kernel
density estimate of log other income for the low education subsample is given
in Figure 8.1.

5.2. A Model of Participation in Work and Other Family Income

To motivate the specification, suppose that observed participation is described
by a simple threshold model of labor supply. In this model, the desired supply
of hours of work for individual i can be written as

h∗
i = δ0 + δ′

1z1i + δ2 ln wi + δ3 lnµi + ζi , (5.1)

where z1i includes various observable social demographic variables, ln wi is
the log hourly wage, lnµi is the log of “virtual” other income, and ζi is some

12 The unemployment benefit included an earnings-related supplement in 1979, but this was abol-
ished in 1980.

13 See Blundell and Powell (1999) for further details.
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Figure 8.1. Density of Log Other Income for the Low Education Subsample.

unobservable heterogeneity. As ln wi is unobserved for nonparticipants, we
replace it in (5.1) by the wage equation

ln wi = θ0 + θ ′
1z1i + ωi , (5.2)

where z1i now contains the education level for individual i as well as other
determinants of the market wage. Labor supply (5.1) becomes

h∗
i = φ0 + φ′

1z1i + φ2 lnµi + νi . (5.3)

Participation in work occurs according to the binary indicator

y1i = 1{h∗
i > h0

i }, (5.4)

where

h0
i = γ0 + γ ′

1z1i + ξi (5.5)

is some measure of reservation hours.
Combining these equations, we find that participation is now described by

y1i = 1{φ0 + φ′
1z1i + φ2 lnµi + νi > γ0 + γ ′

1z1i + ξi } (5.6)

= 1{β0 + β′
1z1i+β′

2 y2i + ui > 0}, (5.7)
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where y2i is the log other income variable (lnµi ). This other income variable
is assumed to be determined by the reduced form

y2i = E[y2i |zi ] + vi

= �(zi ) + vi , (5.8)

and z′
i = [z′

1i , z′
2i ].

In the empirical application, we have already selected households by cohort,
region, and demographic structure. Consequently, we are able to work with a
fairly parsimonious specification in which z1i simply contains the education
level indicator. The excluded variables z2i contain the log benefit income vari-
able (denoted z21i ) and the education level of the spouse (z22i ).

5.3. Empirical Results

In Table 8.2 we present the empirical results for the joint normal–simultaneous
Probit model. This consists of a linear reduced form for the log other income
variable and a conditional Probit specification for the participation decision.
Given the selection by region, cohort, demographic structure, and time period,
the reduced form simply contains the education variables and the log exogenous
benefit income variable. The results show a strong role for the benefit income
variable in the determination of other income.

The first column of Probit results refers to the model without adjustment
for the endogeneity of other income. These results show a positive and sig-
nificant coefficient estimate for the education dummy variable and a small but
significantly negative estimated coefficient on other income. The other income
coefficient in Table 8.2 is the coefficient normalized by the education coeffi-
cient for comparability with the results from the semiparametric specification
to be presented later. The impact of adjusting for endogeneity is quite dramatic.
The income coefficient is now considerably larger and quite significant. The
estimated education coefficient remains positive and significant.

Table 8.2. Results for the simultaneous Probit specification

Reduced Form Standard Probit Simult. Probit

Variable y2 Std. Pr [Work] Std. Pr [Work|v] Std.
Coeff. Error Coeff. Error Coeff. Error

Education (z1) 0.0603 0.0224 1.007 0.1474 1.4166 0.1677
ln (other inc.) (y2) — — −0.3364 0.1293 −2.8376 0.5124
ln (benefit inc.) (z21) 0.0867 0.0093 — — — —
Education (sp.) (z22) 0.0799 0.0219 — — — —
Exog. test 5.896 (t)
R2 0.0708 0.0550 0.0885
F 30.69(3) 67.84 (χ2

(2)) 109.29 (χ 2
(3))
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Table 8.3. Semiparametric results, parametric results, and
bootstrap distributions

Specification β̂2 σβ̂2
10% 25% 50% 75% 90%

Semi-P (with v̂) −2.2590 0.5621 −4.3299 −3.6879 −2.3275 −1.4643 −1.0101
Semi-P (without v̂) −0.1871 0.0812 −0.2768 −0.2291 −0.1728 −0.1027 −0.0675
Probit (with v̂) −2.8376 0.5124 −3.8124 −3.3304 −2.9167 −2.4451 −1.8487
Probit (without v̂) −0.3364 0.1293 −0.4989 −0.4045 −0.3354 −0.2672 −0.1991
Lin. prob. (with v̂) −3.1241 0.4679 −3.8451 −3.3811 −3.1422 −2.8998 −2.5425
Lin. prob. (without v̂) −0.4199 0.1486 −0.6898 −0.5643 −0.4012 −0.3132 −0.2412

Table 8.3 presents the semiparametric estimation results for the linear index
coefficients. Bandwidths were chosen according to the 1.06σzn−1/5 rule (see
Silverman, 1986).14 The education coefficient in the binary response specifi-
cation is normalized to unity and so the β1 estimates in Table 8.3 correspond
to the ratio of the other income to the education coefficients. We present the
standard Probit results in Table 8.2 for comparison (the mean of the bootstrap
estimates for the education coefficient was 0.989, and for the income coefficient
it was −0.327). The bootstrap figures relate to 500 bootstrap samples of size
n = 1,606; the standard errors for the semiparametric methods are computed
from a standardized interquartile range for the bootstrap distribution, and they
are calculated using the usual asymptotic formulas for the Probit and linear
probability estimators.

Figure 8.2 graphs the estimate of the ASF, G(x′β), derived from the semi-
parametric estimation with and without controls for the endogeneity of log other
income. These plots cover the 5 percent to 95 percent range of the log other
income distribution for the lower education group.

In Figure 8.3, we compare these semiparametric results with the results of
estimating G(x′β) using the Probit and linear probability models. This data set
is likely to be a particularly good source on which to carry out this evaluation.
First, we know that the correction for endogeneity induces a large change in
the β coefficients. Second, the proportion participating in the sample is around
85 percent, which suggests that the choice of probability model should matter
as the tail probabilities in the Probit and linear probability models will behave
quite differently. They show considerable sensitivity of the estimated G(x′β),
after allowing for endogeneity, across these alternative parametric models. Both
the linear probability model and the Probit model estimates result in estimated
probabilities that are very different from those implied by the semiparametric
approach. Figure 8.3 shows this most dramatically. For example, the linear
probability model estimates a probability that is more than ten percentage points
higher at the 20th percentile point of the log other income distribution.

14 Blundell and Powell (1999) provide results for a similar model specification and also present
sensitivity results for this bandwidth choice. In particular, sensitivity to the choice of a smaller
bandwidth is investigated and found not to change the overall results.
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Figure 8.2. Semiparametric Model with and without Controls for
Endogeneity.

This example points to the attractiveness of the semiparametric approach
developed in this chapter. For this data set, we have found relatively small
reductions in precision from adopting the semiparametric control function ap-
proach while finding quite different estimated responses in comparison with
those from the parametric counterparts.15 The results show a strong effect of
correcting for endogeneity and indicate that adjusting for endogeneity using
the standard parametric models, the Probit and linear probability models, can
give a highly misleading picture of the impact on participation of an exogenous
change in other income. This is highlighted in Figure 8.3, where it is shown
that the bias correction for endogeneity in the linear probability model was
sufficient to produce predicted probabilities larger than unity over a large range
of the income distribution. The Probit model did not fare much better. The
semiparametric approach showed a strong downward bias in the estimated in-
come responses when endogeneity of other income was ignored. The corrected
semiparametric estimates appear plausible, and, although there were no shape
restrictions imposed, the estimated ASF was monotonically declining in other
income over the large range of the income distribution.

15 In Blundell and Powell (1999), we present the analogous analysis using the low-education
subsample only. For this sample, the education dummy is equal to zero for all observations and
is therefore excluded. Because x is now simply the log other income variable, this analysis is
purely nonparametric. The results show a slightly shallower slope.
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Figure 8.3. Linear Probability and Probit Models with Controls for
Endogeneity.

5.4. The Coherency Model

In Blundell and Powell (1999), we also use this application to assess the al-
ternative “coherency” model of Section 4, in which participation itself directly
enters the equation determining other income. We interpret this as a fixed-cost
model in which other income is dependent on whether or not fixed costs are
paid, which in turn depends on participation. In this case, no explicit reduced
form for y2, other income, exists. The model for other income may be written as

y2i = γ0 + y1iα2 + z′
2iγ1 + εi , (5.9)

where we are assuming that y2 relates to the level of other income. Participation
is now described by

y1i = 1{β0 + y1iα1 + z′
1iβ1+y2iβ2 + ui > 0},

with the added coherency restriction

α1 + β2α2 = 0. (5.10)

Together these imply

y1i = 1{β0 + ỹ2iβ2 + z′
1iβ1 + ui > 0}, (5.11)
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Table 8.4. Results for the coherency specification

Probit Probit

Variable y2 Std. Pr[Work] Std. Pr[Work|ε] Std.
Coeff. Error Coeff. Error Coeff. Error

Work (y1) 58.034 8.732 — —
Education (z1) — 1.6357 0.2989 1.6553 0.3012
Adjusted income (̃y2) — — −0.7371 0.0643 −0.5568 0.1433
Benefit inc. (z21) 0.4692 0.1453 — — — —
Education (sp.) (z22) 0.1604 0.0421 — — — —
σuε = 0 (t test) — — 2.556

with

ỹ2i = (y2i − y1iα2),

where we note that this fixed-cost adjustment to other income y2i guarantees
statistical coherency.

From the discussion in Section 4, we note that the conditional expectation
of the binary response variable y1i , given the regressors z1, ỹ2i and errors ε,

may be expressed as

E[y1|z1 ,̃y2i , ε] = Pr[−u ≤ z′
1iβ1 + ỹ2iβ2|z1 ,̃y2i , ε]

= F(z′
1iβ1 + ỹ2iβ2, ε). (5.12)

Provided ỹ2i and εi can be measured, estimation follows the same procedure as
in the triangular case.

The first column of Table 8.4 presents the estimates of the parameters of
the structural equation for y2 (5.9) in this coherency specification. These are
recovered from IV estimation using the education of the husband as an excluded
variable. The estimated “fixed cost of work” parameter seems reasonable; recall
that the income variable has a mean of approximately £165 per week. The two
sets of Probit results differ according to whether or not they control for ε. Notice
that, having removed the direct simultaneity of y1 on y2 through the adjustment
ỹ2, we find much less evidence of endogeneity bias. Indeed, the coefficients on
the adjusted other income variable in the two columns are quite similar (these
are normalized relative to the education coefficient). If anything, after adjusting
for fixed costs, we find that controlling for ε leads to a downward correction to
the income coefficient.

The comparable results for the semiparametric specification are presented
in Table 8.5. In these, the linear structural model estimates for the y2 equation
are used exactly as in Table 8.4. They show a very similar pattern with only
a small difference in the other income coefficient between the specification
that controls for ε and the one that does not. Again, the ỹ2 adjustment
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Table 8.5. Semiparametric results for the coherency
specification

Semi-P Semi-P

Variable Pr[Work] Std. Pr[Work|ε] Std.
Coeff. Error Coeff. Error

Adjusted income (̃y2) −1.009 0.0689 −0.82256 0.2592

seems to capture much of the endogeneity between work and income in this
coherency specification.

6. SUMMARY AND CONCLUSIONS

This chapter has considered nonparametric and semiparametric methods for
estimating regression models of the form y = H (x, u), where the x contains
continuous endogenous regressors and where u represents unobserved hetero-
geneity. It has been assumed that there exists a set of instrumental variables z
with dim(z) ≥ dim(x). This general specification was shown to cover a number
of nonlinear models of interest in econometrics. The leading cases we consid-
ered were additive nonparametric specifications y = g(x) + u, in which g(x) is
unknown, and nonadditive models y = H (g(x), u), in which g(x) is unknown
but H is a known function that is monotone but not invertible. An important
example of the latter, and one that we used as an empirical illustration, is the
binary response model with endogenous regressors. We have focused on iden-
tification and estimation in these leading nonparametric regression models and
have defined the parameter of interest to be the ASF, G(x) ≡ ∫

H (x, u)d Fu,

where the average is taken over the marginal distribution of the error terms u
and where Fu denotes the marginal CDF of u.

In each of these leading cases, and their semiparametric variants, we have
considered how three common estimation approaches for linear equations –
the instrumental variables, fitted value, and control function approaches – may
or may not be applicable. In the case where H and g are linear, iid distributed
errors the covariance restriction E(zu) = 0 and the rank condition are sufficient
to guarantee identification and generate consistent and analytically identical
estimators from each of these approaches. In the nonlinear models considered
here, this is no longer the case.

In additive nonparametric specifications, we have considered restrictions on
the model specification that are sufficient to identify g(x), the ASF in this case.
The relationship between the reduced form E[y|z] and the structural function
g is given by E[y|z] = ∫

g(x)d Fx|z, where Fx|z is the conditional CDF of x
given z. Unlike in typical nonparametric estimation problems, identification of
g faces an ill-posed inverse problem and consistent estimators of the components
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E[y|z] and Fx|z are not, by themselves, sufficient for consistent IV estimation
of g. We have reviewed and assessed a number of approaches to IV estimation
that have been proposed in the literature to overcome this problem. For the
nonadditive case, IV estimation faces more severe difficulties. Without some
further specific structure on H , such as invertibility, estimation by IV does not
look promising. For our leading case in this nonadditive setting, the binary
response model, H is not invertible.

Apart from some very specific cases, we have argued that the fitted-value
approach is not well suited to estimation of parameters of interest in these
nonlinear models. However, the control function approach has been shown to
provide an attractive solution. This approach treats endogeneity as an omitted
variable problem, in which the inclusion of estimates of the first-stage errors v
as a covariate corrects the inconsistency in E(y|x). It has been shown to extend
naturally under the conditional independence assumption that the distribution
of u given x and z is the same as the conditional distribution of u given v.
This exclusion restriction permits replacement of the unidentified structural
errors u with the identified control function v through iterated expectations,
so that averaging the structural function H over the marginal distribution of
the structural errors u is equivalent to averaging the (identified) intermediate
regression function of y on x and v over the marginal distribution of v. We have
derived a general approach to identification and estimation of the ASF G(x) by
this control function approach and have highlighted the importance of support
restrictions on the distribution of the endogenous components of x and z.

We then considered the particular case of the linear index binary response
model. In this semiparametric model, we have described in detail how estima-
tion of the parameters of interest can be constructed using the control function
approach. We considered a specific semiparametric matching estimator of the
index coefficients that exploits both continuity and monotonicity implicit in the
binary response model formulation. We have also shown how the partial-mean
estimator from the nonparametric regression literature can be used to estimate
the ASF directly. The control function estimator, for this semiparametric model,
can easily be adapted to the case in which the model specification is not trian-
gular and certain coherency conditions are required to be satisfied.

Finally, we have studied the response of labor force participation to nonla-
bor income, viewed as an endogenous regressor, using these techniques. The
procedures we have developed appear to work well and suggest that the usual
distributional assumptions underlying Probit and linear probability specifica-
tions could be highly misleading in binary response models with endogenous
regressors. The application found relatively small reductions in precision from
adopting the semiparametric approach. The semiparametric approach showed
a strong downward bias in the estimated income responses when endogeneity
of other income was ignored. The corrected semiparametric estimates appeared
plausible, and, although there were no shape restrictions imposed, the estimated
ASF was monotonically declining in other income over the large range of the
income distribution.
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