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This paper develops and implements semiparametric methods for estimating binary response (binary
choice) models with continuous endogenous regressors. It extends existing results on semiparametric
estimation in single-index binary response models to the case of endogenous regressors. It develops a
control functionapproach to account for endogeneity in triangular and fully simultaneous binary response
models. The proposed estimation method is applied to estimate the income effect in a labour market
participation problem using a large micro data-set from the British Family Expenditure Survey. The
semiparametric estimator is found to perform well, detecting a significant attenuation bias. The proposed
estimator is contrasted to the corresponding probit and linear probability specifications.

1. INTRODUCTION

The aim of this paper is to develop and implement semiparametric methods for estimating binary
response models with endogenous regressors. The case of interest here is a single-index model
for a binary-dependent variable with continuous endogenous regressors. Other covariates and
the instrumental variables (IVs) may be discrete. This paper extends the extensive literature
dealing with semiparametric estimation in single-index binary response models to the continuous
endogenous regressor case. It highlights the attractiveness of thecontrol functionapproach,
which introduces residuals from the reduced form for the regressors as covariates in the binary
response model to account for endogeneity in this framework.

In binary parametric models of this kind the control function approach to the estimation of
simultaneous equations models can be linked directly to conditional likelihood and in that setting
it has been used extensively to model endogeneity in discrete and limited dependent variable
models (seeBlundell and Smith, 1986, 1989, for example). In semiparametric settings the control
function approach has been used to account for endogeneity in the triangular systems in which
the endogenous variables are fully observed (e.g.Newey, Powell and Vella(1999), Das, Newey
and Vella(2003)). This paper draws on these previous results and develops a semiparametric
estimator for the binary single-index model. Our focus here is on the control function approach
to non-parametric estimation with endogenous regressors. In non-linear models this differs from
the standard assumption of the IV approach—namely, that the IVs are independent of the error
term in the equation of interest. In the binary response model the parameters of interest in semi-
and non-parametric binary response models are not identified in general under the standard IV
assumption (seeBlundell and Powell, 2003); however, we show that many of these parameters,
including the index coefficients andaverage structural function(ASF), are identified through
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the control function assumptions we consider here. While our general approach is amenable to
implementation using any of a number of estimation methods for single-index models, this paper
focuses on a particular single-index estimator proposed byAhn, Ichimura and Powell(1996),
which is modified to accommodate endogenous regressors.

The proposed estimator is used to investigate the importance of correcting for the
endogeneity of other income in a labour market participation model for a sample of married
British men. The participation rate for this group is around 85% and the counterfactual effect we
wish to recover is the impact of an exogenous change in other family income. As this variable
may be endogenous for the participation decision, the standard parametric and semiparametric
estimators for binary response will not recover consistent estimates of this parameter of interest.
Instead we use the variation in exogenous benefit income as an IV to implement the control
function approach in this semiparametric setting. We argue that this example is well suited for
illustrating the usefulness of our approach for at least three reasons. First, the IV we have at
our disposal exploits the exogenous variation in welfare benefit rules. Second, the sample size is
large. Third, a participation rate of 85% suggests that parametric model results may be sensitive to
distributional assumptions which differ in their specification of tail probabilities. We find a strong
effect of correcting for endogeneity in this example and show that adjusting for endogeneity
using the standard parametric models, the probit and linear probability models, give a highly
misleading picture of the impact on participation of an exogenous change in other income.

As an alternative representation of the simultaneous binary response model, we also
consider a framework which corresponds to a “fixed costs of work” representation of the
participation decision. This is a fully simultaneous specification in which the binary outcome
enters directly in to the model for other income. It corresponds to an economic model in which
decision making is over observed outcomes. In this case there is no explicit reduced form for
other income since the fixed cost of work is subtracted from income when working. Consequently
this specification does not permit a triangular representation and turns out to be a special case of
the coherency model framework for dummy endogenous models developed for the simultaneous
probit model byHeckman(1978). Blundell and Smith(1994) considered the control function
approach for estimation in the joint normal model. We show that our semiparametric framework
is equally well suited to this fully simultaneous specification of the binary response model with
endogenous regressors.

The layout of the paper is as follows. InSection2 we present the model specification and
discuss our approach to identification of the binary response coefficients and the ASF.Section3
defines and motivates the proposed estimators and derives their statistical properties. InSection
4 we describe the data on participation and the empirical implementation of the approach to
the correction of endogeneity of other income in the participation decision. The correction for
endogeneity is found to be important and the estimated effect is shown to be strongly biased
when inappropriate parametric distributional assumptions are imposed.Section5 develops the
implementation of our approach to the fully simultaneous coherency model which allows for
fixed costs of participation.Section6 concludes.

2. MODEL SPECIFICATION

In this paper we consider the binary response model

y1i = 1{y∗

1i > 0}, (2.1)

where the latent variabley∗

1 is assumed to be generated from a linear model of the form

y∗

1i = xiβ0 + ui , (2.2)
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wherexi is a (row) vector of explanatory variables for observationsi = 1, . . . ,n, ui is an
unobservable scalar error term, and the conformable column vectorβ0 of unknown regression
(“index”) coefficients is defined up to some scalar normalization (possibly involving the
distribution of ui ). If ui were assumed to be independent ofxi , with (possibly unknown)
distribution function Pr{−ui ≤ λ} = G(λ), the binary variabley1i would satisfy a “single-index
regression” model of the form

E[y1i | xi ] = G(xiβ0), (2.3)

and the coefficientsβ0 could be estimated using standard single-index estimation procedures.
In some settings, though, the assumption of independence of the error termui and the

regressorsxi would be suspect, if some components ofxi (denotedy2i here) were determined
jointly with the latent variabley∗

1i , as in the usual simultaneous equations framework. That is,
endogeneity in some components ofx might be accommodated through the following recursive
structural form:

y1i = 1{xiβ0 + ui > 0}

= 1{z1iβ1 + y2iβ2 + ui > 0}, (2.4)

wherexi ≡ (z1i , y2i ) is of dimension(1× (p+q)), theq-vectory2i is assumed to be determined
by the reduced form

y2i = E[y2i | zi ] + vi

≡ π(zi )+ vi , (2.5)

and the vector of instruments

zi ≡ (z1i , z2i ) (2.6)

is of dimension 1×(p+m), with m ≥ q. (Herem − q describes the degree of overidentification.)
By construction, the reduced form error termsvi have

E(vi | zi ) = 0, (2.7)

though alternative centring assumptions (e.g.conditional median zero) would be compatible with
the approach taken here.

If the joint distribution of the structural error termui and reduced form error termsvi

were parametrically specified (as, say, Gaussian and independent ofzi ), and if the reduced form
regression functionπ(zi ) were also parametrized, then maximum likelihood estimation could
be applied to obtain consistent estimators ofβ0, π(·) and the unknown parameters of the joint
distribution function of the errors. To be specific, assuming a joint normal distribution for the
error terms and a particular normalization for Var(u), we have

E(y1i | xi , vi ) = Pr[ui > −xiβ | vi ]

= 8(xiβ + ρvi ), (2.8)

whereρ is the vector of population regression coefficients ofui on vi . The parametersβ and
ρ can be estimated directly from the conditional likelihood fory1i given xi and vi . Blundell
and Smith(1986) show that, unlike in the linear model case, this “control function” approach is
asymptotically more efficient in discrete and censored normal models than an alternative two-
stage estimation approach.

In a semiparametric setting, where the joint error distribution and reduced form regression
functions are not parametrically specified, one possible “two-stage” estimation approach would
insert the reduced form fory2i into the structural model (2.4), yielding

y1i = 1{z1iβ1 + π(zi )β2 + ui + viβ0 > 0}, (2.9)
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which would yield a single-index representation

E[y1i | zi ] = H(π(zi )β0), (2.10)

assuming the composite error termui + viβ0 is independent ofzi with c.d.f. H(−λ). While
a two-stage estimation approach (using a non-parametric estimator ofπ(zi ) in the first stage)
could be used to consistently estimate the parametersβ0, the assumption of independence of the
instrumentszi and the composite error termui +viβ0 might be difficult to maintain, particularly
if the reduced form error termsvi do not appear to be independent of the instruments (as might
be revealed by standard tests for heteroscedasticity, etc.). Moreover, this “fitted value” approach
does not easily yield an estimator of the marginal c.d.f.G(·) of the error terms−ui , which
would be needed to evaluate the effect on response probabilities of an exogenous shift in the
regressorsxi .

An alternative approach to estimation of the components of this model, adopted here, uses
estimates of the reduced form error termsvi as “control variables” for the endogeneity of the
regressors in the original structural equation. The key identifying assumptions for estimation of
the unknown coefficientsβ and the distribution function of the error termui is a distributional
exclusion restriction, which requires that the dependence of the structural error termui on the
vector of regressorsxi and IVszi is completely characterized by the reduced form error vector
vi : that is,

ui | xi , zi ∼ ui | xi , vi (2.11)

∼ ui | vi , (2.12)

where the tilde symbol denotes equality of conditional distributions. Under this last condition,
the conditional expectation of the binary variabley1i given the regressorsxi and reduced form
errorsvi takes the form

E[y1i | xi , vi ] = Pr[−ui ≤ xiβ0 | xi , vi ]

= F(xiβ0, vi ), (2.13)

where F(·, vi ) is the conditional c.d.f. of−ui given vi . Thus, y1i can be characterized by a
“multiple index regression” model, with conditional distribution, givenxi andvi , that depends
upon xi only through the single-indexxiβ0. As in the single-index regression model, it is
the dimensionality reduction in the conditional expectation ofy1i given xi andvi that can be
exploited to obtain a

√
n-consistent estimator of the index coefficientsβ0.

Our approach to identification and estimation of the unknown regression coefficientsβ0
uses an extension of theAhn et al. (1996) “matching” estimator ofβ0 for the single-index
model without endogeneity. This approach, adapted to the present context, assumes both the
monotonicity and continuity ofF(xiβ, vi ) in its first argument. Since the structural index model
is related to the conditional mean ofy1i givenwi = (xi , vi ) by the relation

E[y1i | xi , vi ] ≡ g(wi ) = F(xiβ0, vi ), (2.14)

invertibility of F(·) in its first argument implies

xiβ0 − ψ(g(wi ), vi ) = 0, (w.p.1), (2.15)

whereψ(·, v) ≡ F−1(·, v), i.e.

F(ψ(g, v), v) = g. (2.16)

If two observations (with subscriptsi and j ) have identical conditional means (i.e. g(wi ) =

g(w j )) and identical reduced form error terms (vi = v j ), it follows that their indicesxiβ0 and



BLUNDELL & POWELL BINARY RESPONSE MODELS 659

x jβ0 are also identical:

(xi − x j )β0 = ψ(g(wi ), vi )− ψ(g(w j ), v j )

= 0 if (2.17)

g(wi ) = g(w j ) and vi = v j . (2.18)

So, for any non-negative functionω(wi ,w j ) of the conditioning variableswi andw j , it follows
that

0 = E[ω(wi ,w j ) · ((xi − x j )β0)
2

| g(wi ) = g(w j ), vi = v j ]

≡ β ′

06wβ0, (2.19)

where

6w ≡ E[ω(wi ,w j ) · (xi − x j )
′(xi − x j ) | g(wi ) = g(w j ), vi = v j ]. (2.20)

That is, the non-negative definite matrix6w is singular, and the unknown parameter vectorβ0
is the eigenvector (with an appropriate normalization) corresponding to the zero eigenvalue of
6w. Under the identifying assumption that6w has rankp + q − 1 = dim(x) − 1—which
requires that any non-trivial linear combination(xi − x j )λ of the difference in regressors has
non-zero conditional variance whenλ 6= β0—the parameter vectorβ0 as the eigenvector
corresponding to the unique zero eigenvalue of6w. We construct an estimator ofβ0 as the
eigenvector corresponding to the smallest eigenvalue (in magnitude) of a sample analogue to the
6w matrix, for a convenient choice of the weighting functionω(·).

In addition to the vector of regression coefficientsβ0 (defined up to some scale
normalization), the other key parameter of interest is the marginal probability distribution
function of the structural errors−ui ,

G(λ) = Pr[−ui ≤ λ]; (2.21)

whenλ = xβ0, we define this functionG(xβ0) to be the ASF since it represents the response
probability for an exogenously determined setting of the regressorsx (analogous to the “structural
demand function” in a simultaneous equations model) and its derivative with respect tox is the
marginal response to an exogenous shift inx. The marginal distribution functionG(λ) of −ui can
be identified as the “partial mean” of this conditional distribution functionF(xβ0, vi ), holding
the indexxβ0 fixed and averaging over the marginal distribution of the reduced form errorsvi :

G(xβ0) =

∫
F(xβ0, v)d Fv. (2.22)

And, given a particular marginal distributionF∗
x for the regressorsx of interest (including

possibly the observed marginal distribution) the average response probability for exogenous
regressors with that distribution would be

γ ∗
≡

∫
G(xβ0)d F∗

x , (2.23)

which may be of interest for policy analysis (Stock, 1989).

3. ESTIMATION

3.1. The semiparametric estimation approach

The approach adopted here for estimation of the parameters of interest in this model follows three
main steps. The first step uses non-parametric regression methods to estimate the error termvi
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in the reduced form, as well as the unrestricted conditional mean ofy1i givenxi andvi ,

E[y1i | z1i , y2i , vi ] ≡ E[y1i | xi , vi ]

≡ E[y1i | wi ]

≡ g(wi ) (3.1)

wherewi is the 1× (p + 2q) vector

wi ≡ (xi , vi ). (3.2)

This step can be viewed as an intermediate “structural estimation” step, which imposes the first
exclusion restriction of (2.11) and (2.12) but not the second.

The second step imposes the linear index assumptions on the unrestricted conditional mean

E[y1i | z1i , y2i , vi ] ≡ E[y1i | xi , vi ]

= E[y1i | xiβ0, vi ]

≡ F(xiβ0, vi ) (3.3)

to obtain an estimator̂β of β0.
The final step recovers an estimator ofG(xβ0) ≡

∫
F(xβ0, v)d Fv. It is obtained by

computing a sample average ofF̂(λ, vi ) over the observations, holdingλ fixed and substituting
the estimateŝvi for vi , an application of “partial mean” estimation (Newey, 1994).

3.2. Implementation of the estimation approach

Let {(yi , zi )}
n
i =1 be a random sample of observations from the model described above. In

estimation of the conditional mean ofy1i , vi is replaced by the residual from the non-parametric
regression ofy2i onzi , so that in place of (3.2) we have

ŵi = (xi , y2i − π̂(zi )) (3.4)

≡ (xi , v̂i ),

whereπ̂(zi ) is the unrestricted Nadaraya–Watson kernel regression estimator for the mean ofxi

givenzi .
Estimation of the conditional mean function in Step 1 then replaces the population moments

g(wi ) =E[y1i | wi ] by the unrestricted Nadaraya–Watson kernel regression estimator

ĝ(ŵi ) ≡ f̂ (ŵi )
−1r̂ (ŵi ), (3.5)

with

r̂ (ŵi ) ≡
1

n

∑
j

Kw(ŵi − ŵ j )y1 j , (3.6)

f̂ (ŵi ) ≡
1

n

∑
j

Kw(ŵi − ŵ j ), (3.7)

whereKw(ζ ) = h−(p+2q)
w K (ζ/hw) for bandwidthhn satisfyinghw → 0 andnhp+2q

w → ∞

asn → ∞, and some kernel functionK : Rp+2q
→ R+ that satisfies standard conditions like∫

K (ζ )dζ = 1.
Given the preliminary non-parametric estimatorsv̂i and ĝ(ŵi ) of vi and g(wi ) defined

above, and assuming smoothness (continuity and differentiability) of the inverse functionψ(·)

in (2.16), a consistent estimator of6w for a particular weighting functionω(wi ,w j ) can be
obtained by a “pairwise differencing” or “matching” approach which takes a weighted average
of outer products of the differences(xi − x j ) in the

(n
2

)
distinct pairs of regressors, with weights
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that tend to zero as the magnitudes of the differences|ĝ(ŵi )− ĝ(ŵ j )| and|vi − v j | increase. As
in Ahn et al. (1996), the estimator of6w is defined as

Ŝw ≡

(
n

2

)−1 ∑
i< j

ω̂i j (xi − x j )
′(xi − x j ), (3.8)

for

ω̂i j ≡ h−q+1
n Kg

(
ĝ(ŵi )− ĝ(ŵ j )

hn

)
Kv

(
v̂i − v̂ j

hn

)
ti t j , (3.9)

whereKg andKv are kernel functions analogous to the kernel functionKw defined above, and
whereti andt j are “trimming” terms which equal zero when the conditioning variableszi and
ŵi lie outside a compact set. As the sample sizen increases, and the bandwidthhn shrinks to
zero, the weighting term̂ωi j tends to zero, except for pairs of observations withĝ(ŵi ) ∼= ĝ(ŵ j )

andv̂i ∼= v̂ j .
With this estimator of the matrix6w, a corresponding estimatorβ̂ of β0 can be defined

as the eigenvector corresponding to the eigenvalueη̂ of Ŝw that is closest to zero in magnitude.
(Because the kernel functionsKg andKv will be permitted to become negative for some values
of their arguments, we choose the eigenvalue closest to zero, rather than the minimum of the
eigenvalues.) A convenient normalization of this eigenvector sets the first component to unity;
that is, we normalize

β0 =

(
1

−θ0

)
, β̂ =

(
1

−θ̂

)
, (3.10)

and, partitioningŜconformably as

Ŝw =

[
Ŝ11 Ŝ12

Ŝ21 Ŝ22

]
, (3.11)

the estimator of the subvectorθ0 can be written as

θ̂ = [Ŝ22 − η̂I ]−1Ŝ21, (3.12)

where

η̂ ≡ arg minα:‖α‖=1 |α′Ŝwα|. (3.13)

Using the estimator̂β, we can estimate the index asλ̂ = xβ̂ for any value ofx, which
we can then use to estimate the ASFG(xβ0), the marginal probability thaty1i = 1 given
an exogenousx. The joint probability functionF(xβ0, v) can be directly estimated through a
non-parametric (kernel) regression ofy1i on xi β̂ and v̂i . The approach then estimates the ASF
G(xβ0), from a sample average of̂F(xβ̂, v̂i ) over v̂i ,

Ĝ(xβ̂) =

∑n

i =1
F̂(xβ̂, v̂i )τi , (3.14)

whereτi = τ(v̂i ,n) is some “trimming” term which downweights observations for whichF̂(·)
is imprecisely estimated.

3.3. Alternative assumptions and estimators

Given the assumptions imposed inSection2 above, several variations on the estimation strategy
outlined in the previous section might be adopted. For example, to obtain the first-stage estimates
of the conditional mean functiong(wi ) = E[y1i | wi ] and residualsvi = xi − E[xi | zi ], more
sophisticated non-parametric regression methods like local polynomial regression might be used
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instead of the simpler kernel estimators adopted here. And, given a
√

n-consistent estimator̂β of
β, an alternative to the “partial mean” estimator of the ASFĜ(λ) could be based upon “marginal
integration” of F̂(λ, v), weighting by the estimated joint density function̂fv(v) for vi ,

G̃(λ) =

∫
F̂(λ, v) f̂v(v)dv, (3.15)

as discussed byLinton and Nielson(1995) andTjosthiem and Auestad(1996).
For estimation ofβ0, the index coefficients, the multi-index restrictionE[y1i | xi , vi ] =

F(xiβ0, vi ) can be exploited with modification of most existing single-index estimation methods.
The “average derivative” (Härdle and Stoker, 1989) or “weighted average derivative” (Powell,
Stock and Stoker, 1989) estimation methods for single-index models could be adapted to
estimation ofβ0 here, using the fact that

E

[
w(xi , vi ) ·

∂E[y1i | xi , vi ]

∂x

]
= β0 · E

[
w(xi , vi ) ·

∂F(xiβ, vi )

∂(xβ)

]
∝ β0. (3.16)

With these estimators, as with the recent proposal byHristache, Juditsky and Spokoiny(2001)
(which combines average derivative and local linear regression estimation), the functionF(·)
need not be assumed to be monotonic inxiβ0, but all components ofxi must be continuously
distributed, which is uncommon in empirical applications, including the one presented herein.
Other possibilities include generalizations of the single-index regression estimator ofIchimura
(1993) or semiparametric binary response estimator ofKlein and Spady(1993); these would
fit the non-linear regression functionE[y1i | xi , vi ] = F(xiβ0, vi ) iteratively by either non-
linear least squares or binary response maximum likelihood, using non-parametric regression to
estimateF(xi b, vi ) as a function ofb. Like the average derivative estimators, these estimators
would not need the monotonicity requirement, can accommodate discontinuous regressors,
involves lower-dimensional non-parametric regression, and can be more statistically efficient.
However, while each non-parametric regression step involves a lower-dimensional regression (to
estimateE[y1i | xi b, vi ] rather thanE[y1i | xi , vi ]), iteration between estimation ofF and
minimization or maximization overb makes these estimators less computationally tractable than
the present estimator. Yet another candidate would be a “local probit” estimator which estimated
the reparametrized function

F(xβ0, v) ≡ 8(xβ(x, v)+ vρ(x, v)) (3.17)

in a neighbourhood of each value ofxi andv̂i (where8 is the standard normal cumulative) by
maximizing a local likelihood

L(β, ρ; w) ≡

∑n

i =1
Kw(w− ŵi )[y1i ln(8(xβ+vρ))+ (1− y1i ) ln(1−8(xβ+vρ))]; (3.18)

given local estimatorŝβ(ŵ) = β̂(x, v̂) of the slope coefficients, the index coefficientsβ0 could
be recovered by integration,

β̃ =

∫
β̂(x, v)dF̂(x, v), (3.19)

and the parametric might model could be tested as a special case by testing the constancy of the
estimatedρ(x, v) function.1

All of these alternative index coefficient estimators, like the ones proposed here, are based
upon the multi-index regression functionE[y1i | xi , vi ] = F(xiβ0, vi ), which in turn are
derived from the distributional exclusion restrictions (2.11) and (2.12), which are the basis for the
control function approach; thus, they all share in some restrictive aspects of those assumptions.

1. We are grateful to a referee for suggesting this possible extension.



BLUNDELL & POWELL BINARY RESPONSE MODELS 663

First, as for single-index estimators of binary response models without endogeneity, the form of
permissible heteroscedasticity in the structural errorui is limited to functions ofxiβ0 andvi ,
ruling out, e.g. regressors with random coefficients. Also, location of the error termui is not
identified, though this is only because no location restriction onui is imposed by the exclusion
restrictions, and location parameters forui could be recovered directly from the ASFG(λ).

More fundamentally, in contrast to the linear model, consistency of the control function
approach for the binary response and other non-linear models requires a correct, or at least
complete, specification of the vectorzi of instruments for the first-stage non-parametric
regression. In the linear model with endogenous regressors, least-squares regression of the
dependent variable on the endogenous variables and first-stage residuals yields the two-stage
least-squares estimators as the estimated regression coefficients, so any set of valid instruments
satisfying the relevant rank condition will yield consistent estimators; in general, though, the
conditional independence restrictions (2.11) and (2.12) will no longer hold in general ifzi is
replaced by a subvector, so “correct” specification of the first stage is essential. Also, as discussed
in more detail byBlundell and Powell(2003), estimation of the multi-index regression function
F(xiβ0, vi ) and its partial mean, the ASFG(xiβ0), requires the first-stage residualvi (and
thus the endogenous regressors) to be continuously distributed, which holds for our empirical
application but not more generally.

If the primary interest is in the index coefficientsβ0, rather than the ASFG(xβ0), it may be
identified and consistently estimated under weaker conditions than the conditional independence
restrictions (2.11) and (2.12). Consider, for example, replacing the distributional exclusion
restrictions with the corresponding median exclusion restrictions

med{ui | xi , zi } = med{ui | xi , vi }

= med{ui | vi }

≡ η(vi ), (3.20)

which restrict only the 50-th percentiles of the corresponding conditional distributions. Under
these restrictions,

med{y1i | xi , vi } = 1{xiβ0 + η(vi )}, (3.21)

and estimation ofβ0 might be based upon a generalization ofManski’s (1975, 1985) maximum
score estimation to semilinear regression models.2 Identification of the ASF, though, would
require strengthening of the median exclusion restrictions to independence restrictions.

When the regressor vectorxi includes a (scalar) exogenous variablez0i which is
continuously distributed with a large support, it is possible to derive

√
n-consistent estimators

of β under substantially weaker versions of the exclusion restrictions (2.11) and (2.12), using the
approach proposed byLewbel(2000) and its variants (Lewbel, 1998; Honoŕe and Lewbel, 2002).
Writing the vector of regressors asxi ≡ (z0i , z1i , y2i ), the distributional exclusion restrictions
can be relaxed to the form

ui | xi , zi ∼ ui | z1i , y2i , vi (3.22)

∼ u | z1i ,π(zi ), y2i (3.23)

which is supplemented by the unconditional moment restrictions

E[z1i ui ] = 0, (3.24)

E[π(zi )ui ] = 0, (3.25)

2. We thank a referee for pointing this out to us.
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where π(zi ) ≡ E[y2i | zi ]. Under this combination of conditional independence and
unconditional moment restrictions,Lewbel(2000) shows that a linear least-squares regression of
[y1i −1{z0i > 0}]/ f (z0i | z1i ,π(zi ), y2i ) onz1i andπ(zi ), where f (·) is the conditional density
of the “special regressor”z0i (which must be replaced by a consistent estimator in practice),
yields a consistent estimator of the “normalized” coefficientsθ0 from (3.10). Additional
restrictions onz0i (e.g.its independence fromπ(zi ), or fromui and the other regressors) permit
more general forms of heteroscedasticity and an incomplete specification of the set of instruments
in the first stage regression. And, while Lewbel’s approach requires a continuously distributed,
exogenous regressor in the binary response equation (which is not available in our empirical
example) it would accommodate discrete endogenous regressors, unlike the control function
approach. Hence, the two approaches to estimation ofβ0 may be viewed as complementary,
depending upon whether the endogenous or exogenous regressors are continuously distributed,3

and either might be combined with the “partial mean” approach to estimation of the ASFG(xβ0),
which represents the response probability for an exogenously specified regression vectorx. Our
choice of theAhn et al. (1996) generalization is motivated by its applicability to our empirical
problem and its computational simplicity compared to competing procedures.

3.4. Large-sample properties of the proposed estimators

The objectives of the asymptotic theory for the estimators proposed here are, first, demonstration
of consistency and asymptotic normality of the estimatorβ̂ of β0 and, second, demonstration of
(pointwise) consistency of the marginal distribution function estimatorĜ(λ). Derivation of the
asymptotic distribution of̂β will be similar to that for the “monotone single-index” estimator
proposed byAhn et al. (1996); the present derivation is more complex, both in analysis of
the first-stage estimator ofg(wi ) (since the estimated residualsv̂i are used as covariates in
a non-parametric regression step) and in the second-stage estimatorŜw of 6w, which must
condition on the reduced form residuals as well as the preliminary estimatorsĝi ∼= ĝ(w̃i ) and
v̂i ≡ y2i − π̂(zi ) ≡ y2i − π̂ i .

Demonstration of consistency of the estimatorβ0 follows from consistency of the matrix̃Sw
for 6w, plus an identification condition. Making a first-order Taylor’s series expansion around
the true valuesgi ≡ g(wi ) andvi , the matrixŜw can be decomposed as

Ŝw = S0 + S1, (3.26)

where

Sl ≡

(
n

2

)−1 ∑
i< j

ωl
i j (xi − x j )

′(xi − x j ), l = 0,1, (3.27)

ω0
i j ≡ h−(q+1)

n Kg

(
gi − g j

hn

)
Kv

(
vi − v j

hn

)
ti t j , (3.28)

and

ω1
i j ≡ h−(q+2)

n K (1)
g

(g∗

i j

hn

)
Kv

(v∗

i j

hn

)
(ĝi − ġi − ĝ j + g j )ti t j

− h−(q+2)
n Kg

(g∗

i j

hn

)
K (1)
v

(v∗

i j

hn

)
(π̂ i − π i − π̂ j − π j )

′ti t j . (3.29)

3. Identification of the ASF and index coefficients is problematic in non-linear models with endogenous
regressors without continuous components—seeBlundell and Powell(2003).
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In these expressions, the superscript “(1)” denotes the (row) vectors of first derivatives of the
respective kernel functions, whileg∗

i j andv∗

i j denote intermediate value terms.
The leading-order termS0 is the simplest to analyse, since it is in the form of a second-

order U-statistic (with kernel depending upon the sample sizen). It is straightforward to show
that the first two moments of the summand inS0 are of orderhq+1

n (for q the dimension of
y2i , the vector of endogenous regressors), provided the regressorsxi have four moments and the
trimming termsti and kernel functionsKg(·) and Kv(·) are bounded. Thus, by Lemma 3.1 of
Powellet al. (1989), if

hn = o(1), h−(q+1)
n = o(n), (3.30)

then

S0 − E[S0] = op(1). (3.31)

Furthermore, with continuity of the underlying conditional expectation and density functions, it
can be shown that, asn → ∞ (andhn → 0),

E[S0] → 6w ≡ E[2 f (gi , vi ) · (τi ν i − µ′

iµi ) | gi = g j , vi = v j ], (3.32)

where f (g, v) is the joint density function ofgi ≡ g(wi ) andvi , and where

τi ≡ E[ti | gi , vi ],

µi ≡ E[ti xi | gi , vi ], and

ν i ≡ E[ti x′

i xi | gi , vi ]. (3.33)

If the preliminary estimatorŝgi andπ̂i converge at a sufficiently fast rate, and if the levels and
derivatives of the kernel functionsKg(·) andKv(·) are uniformly bounded, the termS1 will be
asymptotically negligible. More precisely, assuming

maxi ti [|ĝi − gi | + ‖π̂ i − πi ‖] = op(h
q+2
n ) (3.34)

and the levels and derivatives of the kernels are bounded,

‖K (l )
g ‖ + ‖K (l )

v ‖ < C, j = 0,1, someC, (3.35)

then it is simple to show that

S1 = op(1). (3.36)

Primitive conditions for the uniform convergence rates given in (3.34) of the preliminary
non-parametric estimators can be found in,e.g. Ahn (1995); these conditions involve high-
order differentiability of the functions being estimated, “higher-order bias-reducing” kernel
functions, the dimensionality of the vectorsxi , vi andzi , and particular convergence rates for
the bandwidths of the first-stage non-parametric estimators.

Thus, if these conditions hold, it follows that

Ŝw = 6w + op(1). (3.37)

Moreover, by the identity (2.15), it follows that

(τi ν i − µ′

iµi )β0 = τi E[ti x′

i xiβ0 | gi , vi ] − µ′

i E[ti xiβ0 | gi , vi ]

= τi E[ti x′

i | gi , vi ]ψ(gi , vi )− µ′

i E[ti | gi , vi ]ψ(gi , vi )

= 0, (3.38)

so that the limit matrix6w is indeed singular with

6wβ0 = 0, (3.39)
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as required. The consistency argument is completed with an assumption thatβ0 is the unique
non-trivial solution to the system of homogeneous linear equations (3.39), i.e.

6wλ = 0, λ 6= β0 =⇒ λ = 0. (3.40)

This in turn implies a “full rank” condition for the conditional expectationsπi = E[y2i | zi ],
since (3.40)

Pr{(xi − x j )λ 6= 0 | vi = v j , (xi − x j )β0 = 0,λ 6= β0,λ 6= 0}

= Pr{(π i − π j )λ 6= 0 | vi = v j , (π i − π j )β0 = 0,λ 6= β0,λ 6= 0}

> 0, (3.41)

where the equality follows from the identityxi ≡ π i + vi .
Since eigenvalues and (normalized) eigenvectors are continuous functions of their matrix

arguments, the assumptions and calculations above yield weak consistency of the estimatorβ̂, i.e.

β̂ = β0 + op(1). (3.42)

Establishing the
√

n-consistency and asymptotic normality ofβ̂ would require a more refined
asymptotic argument, based upon a second-order Taylor’s series expansion of the matrixŜw,

Ŝw = S0 + S1 + S2, (3.43)

where, as before,

Sl ≡

(
n

2

)−1 ∑
i< j

ωl
i j (xi − x j )

′(xi − x j ), l = 0,1,2, (3.44)

with

ω0
i j ≡ h−(q+1)

n Kg

(
gi − g j

hn

)
Kv

(
vi − v j

hn

)
ti t j , (3.45)

as before, but now

ω1
i j ≡ h−(q+2)

n K (1)
g

(
gi − g j

hn

)
Kv

(
vi − v j

hn

)
(ĝi − ġi − ĝ j + g j )ti t j

− h−(q+2)
n Kg

(
gi − g j

hn

)
K (1)
v

(
vi − v j

hn

)
(π̂ i − π i − π̂ j + π j )

′ti t j , (3.46)

and

ω2
i j ≡

h−(q+3)
n

2
K (2)

g

(g∗

i j

hn

)
Kv

(v∗

i j

hn

)
(ĝi − ġi − ĝ j + g j )

2ti t j

− h−(q+3)
n (ĝi − gi − ĝ j + g j )K

(1)
g

(g∗

i j

hn

)
K (1)
v

(v∗

i j

hn

)
· (π̂ i − π i − π̂ j + π j )

′ti t j (3.47)

+
h−(q+3)

n

2
(π̂ i − π i − π̂ j + π j )Kg

(g∗

i j

hn

)
K (2)
v

(v∗

i j

hn

)
· (π̂ i − π i − π̂ j + π j )

′ti t j . (3.48)

Since demonstration of
√

n-consistency ofβ̂ involves normalization of each of these terms
by the factor

√
n, the regularity conditions would have to be strengthened substantially, with

considerably more smoothness of the unknown density and expectation functions, a higher rate
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of convergence of the preliminary non-parametric estimators, bias-reducing kernels of yet higher
order, and a more restricted rate of convergence of the second-step bandwidth to zero. Still, with
appropriate modification of the conditions and calculations inAhn et al. (1996), the termsS0 and
S2, when postmultiplied by the true parameter vectorβ0, and appropriately normalized, should
be asymptotically negligible,

√
nS0β0 = op(1) =

√
nS2β0, (3.49)

while the first-order component matrixS1 should satisfy an asymptotic linearity relation of the
form

√
nS1β0 =

√
nŜwβ0 + op(1) (3.50)

=
1

√
n

∑n

i =1
(ei 1 + ei 2)+ op(1), (3.51)

with

e1i ≡ 2τi f (gi , vi ) · (τi xi − µi )
′
·
∂ψ(g(wi ), vi )

∂g
· (y1i − g(wi )) (3.52)

being the component of the influence function forŜwβ0 due to the non-parametric estimation of
gi ≡ E[y1i | xi , vi ] and

e2i ≡ −E

[
2τi f (gi , vi ) · (τi xi − µi )

′
·
∂ψ(g(wi ), vi )

∂v′

∣∣∣∣ zi

]
· vi (3.53)

being the influence function component accounting for the first-stage non-parametric estimation
of vi ≡ y2i − E[y2i | zi ].

Given the validity of (3.51), the same argument as given for (3.38) would yield
√

nβ ′

0Ŝwβ0 = op(1), (3.54)

from which the
√

n-consistency and asymptotic normal distribution of the lower(p + q − 1)-
dimensional subvector̂θ of β̂,

√
n(θ̂ − θ0)

d
→ N (0,6−1

22 V226
−1
22 ), (3.55)

will follow from the same argument as inAhn et al. (1996), with

V ≡ E[(e1i + ei 2)(e1i + e2i )
′
] (3.56)

and with622 andV22 the lower(p + q − 1)× (p + q − 1) diagonal submatrices of6w andV,
as in (3.11).

Demonstration of consistency and asymptotic normality of the estimatorĜ(xβ̂) of the ASF
G(xβ) would require a substantial extension of the large-sample theory for “partial means” of
kernel regression estimators given byNewey(1994). First, while Newey’s results assumed the
trimming termτi in (3.14) to be independent of the sample size (so that a positive fraction of
observations is trimmed in the limit, to help bound the denominator of the kernel regression
away from zero) it would be important to extend the results to permitτi = τi (v̂i ,n) to tend to
unity asn → ∞ for all i . This would ensure that the probability limit ofĜ(xβ̂) is an expectation,
and not a truncated expectation, ofF(xβ, vi ) over the marginal distribution ofvi .4

Another important extension of Newey’s partial-mean results would account for the
use of estimated regressors in the non-parametric estimation of the non-linear regression

4. In our empirical application, we follow the common, if theoretically questionable, practice of setting the
trimming termτi equal to one for all observations.
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functionF(xiβ0, vi ). While these results would directly apply to kernel regressions ofy1i on the
true indexxiβ0 and control variablevi , they do not account for the added imprecision due to the
semiparametric estimator̂β of the index coefficients, nor of the non-parametric estimatorv̂i of
the first-stage residuals. While the “delta method” approach taken by Newey could, in principle,
be used to derive variance estimators in this case, it is difficult to obtain analytic formulae using
this approach.

Though a rigorous derivation of this extension is beyond the scope of the present paper, a
preliminary analysis suggests that the qualitative rate-of-convergence results for partial means
in Newey (1994) will carry over to the case where the regressors are estimated: that is, the
convergence rate of̂G(xβ̂) will be the same as that for a one-dimensional kernel regression
estimator under appropriate conditions on the bandwidth and trimming terms, and “full means”—
weighted integrals of̂G(xβ̂) over all components ofx, as in (2.23)—will be

√
n-consistent (and

asymptotically normal). Moreover, based upon formal calculations analogous to those inAhn
and Powell(1993) andAhn et al. (1996), we conjecture that the asymptotic distributions for the
partial means and full means using the non-parametric estimatorF̂(xβ̂, v̂i ) based upon a kernel
regression ofy1i onxi β̂ andv̂i will have the same asymptotic distribution as the analogous partial
and full means for the non-parametric estimatorF̃(xβ0, vi ) based on a regression ofy+

i onxiβ0
andvi , for

y+

i = y1i − 2
∂F(xiβ0, vi )

∂(xβ)
xi (β̂ − β0)+ 2

∂F(xiβ0, vi )

∂v
vi , (3.57)

where the second and third terms account for the preliminary estimatorsβ̂ andv̂i , respectively.
If this conjecture could be verified, then the asymptotic distributions of the ASF estimatorĜ
and weighted averages of it could be obtained directly from Theorems 4.1 and 4.2 ofNewey
(1994), assuming these can be shown to hold when the trimming termτi → 1 and inserting
the asymptotic linearity approximation for̂β implicit in (3.55). Consistent estimates of the
corresponding asymptotic covariance matrices would still need to be developed, though, to make
such results useful in practice.

An alternative approach to inference, used in the empirical application below, can be based
upon bootstrap estimates of the sampling distribution ofβ̂ andĜ. Like much of the asymptotic
theory outlined above, the theoretical validity of the bootstrap remains to be established in the
present context, but there is no prior reason to suspect it would yield misleading inferences when
applied to the present problem.

4. AN EMPIRICAL INVESTIGATION: THE INCOME EFFECT ON LABOUR MARKET
PARTICIPATION

4.1. The data

In this empirical application we consider the work participation decision by men without college
education in a sample of British families with children. Employment in this group in Britain is
surprisingly low. More than 12% do not work and this approaches 20% for those with lower
levels of education. Consequently this group is subject to much policy discussion. We model the
participation decision(y1), see (2.4), in terms of a binary response framework that controls for
market wage opportunities and the level of other income sources in the family. Educational level
(z1) is used as a proxy for market opportunities and is treated as exogenous for participation. But
other income(y2), which includes the earned income of the spouse, is allowed to be endogenous
for the participation decision.
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As an instrument(z21) for other family income we use a welfare benefit entitlement variable.
This instrument measures the transfer income the family would receive if neither spouse was
working and is computed using a benefit simulation routine designed for the evaluation of welfare
benefits for households in the British data used here. The value of this variable just depends on
the local welfare benefit rules, the demographic structure of the family, the geographic location
and housing costs.5 As there are no earnings-related benefits in operation in Britain over this
period under study, we may be willing to assume it is exogenous for the participation decision.
Moreover, although this benefit entitlement variable will be a determinant of the reduced form
for participation and other income, for the structural model below, it should not enter the
participation decision conditional on the inclusion of other income variables. Another IV will
be the education level of the spouse(z22).

The sample of married couples is drawn from the British Family Expenditure Survey
(FES). The FES is a repeated continuous cross-sectional survey of households which
provides consistently defined micro data on family incomes, employment status and education,
consumption and demographic structure. We consider the period 1985–1990. The sample is
further selected according to the gender, educational attainment and date of birth cohort of the
head of household. We choose male head of households, born between 1945 and 1954 and who
did not receive college education. We also choose a sample from the North West region of Britain.
These selections are primarily to focus on the income and education variables.

For the purposes of modelling, the participating group consists of employees; the non-
participating group includes individuals categorized as searching for work as well as the
unoccupied. The measure of education used in our study is the age at which the individual left
full-time education. Individuals in our sample are classified in two groups; those who left full-
time education at age 16 or lower (the lower education base group) and those who left aged 17
or 18. Those who left aged 19 or over are excluded from this sample.

Our measure of exogenous benefit income is constructed for each family as follows: a
tax and benefit simulation model6 is used to construct a simulated budget constraint for each
individual family given information about age, location, benefit eligibility, etc. The measure of
out-of-work income is largely comprised of income from state benefits; only small amounts
of investment income are recorded. State benefits include eligible unemployment benefits,7

housing benefits, child benefits and certain other allowances. Since our measure of out-of-work
income will serve to identify the structural participation equation, it is important that variation
in the components of out-of-work income over the sample are exogenous for the decision to
work. In the UK, the level of benefits which individuals receive out of work varies with age,
time, household size and (in the case of housing benefit) by region. Housing benefit varies
systematically with time, location and cohort.

After making the sample selections described above, our sample contains 1606
observations. A brief summary of the data is provided inTable 4.1. The 87·1% employment
figure for men in this sample is reduced to less than 82% for the lower education group that
makes up more than 75% of our sample. As mentioned above, this lower education group refers
to those who left formal schooling at 16 years of age or before and will be the group on which
we focus in much of this empirical application. The kernel density estimate of log other income
for the low education subsample is given inFigure1.

5. SeeBlundell, Reed and Stoker(2003) for more details on this instrument.
6. We use the IFS Tax and Benefit simulation model TAXBEN. This is designed for analysis of the FES data

used in this paper. More details can be found on the website:www.ifs.org.uk.
7. Unemployment benefit included an earnings-related supplement up to 1979, but this was abolished in 1980

and does not therefore impact on our benefit entitlement measure.

www.ifs.org.uk
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FIGURE 1

Density of log other income: low income subsample

TABLE 4.1

Descriptive statistics

Variable Mean Std dev.

Work (y1) 0·871 0·387
Education> 16 (z1) 0·196 0·396
ln (other income) (y2) 5·016 0·434
ln (benefit income) (z21) 3·314 0·289
Education (spouse) (z22) 0·204 0·403
Age 39·191 10·256

Notes:Number of observations, 1606. The income
and benefit income variables are measured in log
£’s per week. The education dummy (education>
16) is a binary indicator that takes the value unity if
the individual stayed on at school after the minimum
school leaving age of 16.

4.2. A model of participation in work

To motivate the model specification, suppose that observed participation is described by a simple
threshold model of labour supply. In this model the desired supply of hours of work for individual
i can be written

h∗

i = δ0 + z1i δ1 + lnwi δ2 + lnµi δ3 + ζi , (4.1)

wherez1i includes various observable social demographic variables, lnwi is the log hourly wage,
lnµi is the log of “virtual” other income, andζi is some unobservable heterogeneity. As lnwi is
unobserved for non-participants we replace it in (4.1) by the wage equation

lnwi = θ0 + z1i θ1 + ωi (4.2)
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TABLE 4.2

Results for the parametric specification

Variable Reduced form Probit Probit
y2 Std Pr[Work] Std Pr[Work| v] Std

coeff. err. coeff. err. coeff. err.

Education:z1 0·0603 0·0224 1·007 0·1474 1·4166 0·1677
ln(other inc):y2 — — −0·3267 0·1299 −4·1616 0·6624
ln(benefit inc):z21 0·0867 0·0093 — — — —
Education(sp):z22 0·0799 0·0219 — — — —

R2 0·0708 0·0550 0·0885
F 30·69(3) 67·84(χ2

(2)) 109·29(χ2
(3))

Exog test 5·896(t)

where z1i is now defined to include the education level for individuali as well as other
determinants of the market wage. Labour supply (4.1) becomes

h∗

i = φ0 + z1iφ1 + lnµiφ2 + νi . (4.3)

Participation in work occurs according to the binary indicator

y1i = 1{h∗

i > h0
i } (4.4)

where

h0
i = γ0 + z1i γ 1 + ξi (4.5)

is some measure of reservation or threshold hours of work.
Combining these equations, the binary response model for participation is now described

by

y1i = 1{φ0 + z1iφ1 + lnµiφ2 + νi > γ0 + z1i γ 1 + ξi } (4.6)

= 1{β0 + z1iβ1 + y2iβ2 + ui > 0} (4.7)

wherey2i is the log other income variable (lnµi ). This other income variable is assumed to be
determined by the reduced form

y2i = E[y2i | zi ] + vi

=5(zi )+ vi (4.8)

andzi = [z1i , z2i ].
In the empirical application we have already selected households by cohort, region

and demographic structure. Consequently we are able to work with a fairly parsimonious
specification in whichz1i simply contains the education level indicator. The excluded variables
z2i contain the log benefit income variable (denotedz21i ) described above and the education level
of the spouse (z22i ).

4.3. Empirical results

In Table4.2we present the empirical results for the joint normal (parametric) simultaneous pro-
bit model using the conditional likelihood approach, see (2.8). This consists of a linear reduced
form for the log other income variable and a conditional probit specification for the participation
decision. The first column ofTable4.2presents the parametric reduced form estimates. Given the
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TABLE 4.3

Semiparametric results and bootstrap distribution

Specification −θ̂2 σ
θ̂2

10% 25% 50% 75% 90%

Semi-P (withv̂) −2·2590 0·5621 −4·3299 −3·6879 −2·3275 −1·4643 −1·0101
Semi-P (without̂v) −0·1871 0·0812 −0·2768 −0·2291 −0·1728 −0·1027 −0·0675
Semi-P (withv̂): 1

2h −2·1324 0·6751 −4·8976 −3·8087 −2·2932 −1·1193 −0·06753

Probit (with v̂) −2·9377 0·5124 −3·8124 −3·3304 −2·9167 −2·4451 −1·8487
Probit (withoutv̂) −0·3244 0·1293 −0·4989 −0·4045 −0·3354 −0·2672 −0·1991

Lin. Prob. (withv̂) −3·1241 0·4679 −3·8451 −3·3811 −3·1422 −2·8998 −2·5425
Lin. Prob. (withoutv̂) −0·4199 0·1486 −0·6898 −0·5643 −0·4012 −0·3132 −0·2412

selection by region, cohort, demographic structure and time period, the reduced form simply con-
tains the education variables and the log exogenous benefit income variable. The reduced form
results show a strong role for the benefit income variable in the determination of other income.

The first of the probit results inTable4.2 refer to the model without adjustment for the
endogeneity of other income. These results show a positive and significant coefficient estimate
for the education dummy variable and a small but significantly negative estimated coefficient
on other income. The other income coefficient inTable4.2 is the coefficient normalized by the
education coefficient for comparability with the results from the semiparametric specification to
be presented below.

As is evident from the results in the last columns ofTable4.2, the impact of adjusting for
endogeneity is quite dramatic. The income coefficient is now considerably larger in magnitude
and quite significant. The estimated education coefficient remains positive and significant. The
asymptotict-test for the null of exogeneity (seeBlundell and Smith, 1986) strongly rejects the
exogeneity of the log other income variable in this parametric binary response formulation of the
labour market participation model.

We now turn to the estimation results for the semiparametric estimator.Table4.3 presents
the estimation results for theβ0 coefficients. The bootstrap distribution relates to 500 bootstrap
samples of sizen (= 1606); the standard errors for the semiparametric methods are computed
from a standardized interquartile range for the bootstrap distribution, and are calculated using
the usual asymptotic formulae for the probit and linear probability estimators.

The education coefficient in the binary response specification is normalized to unity and
so the−θ2 estimates inTable 4.3 correspond to the ratio of estimates of the other income
coefficient to the education coefficient. In this application, bandwidths were chosen according to

the 1·06σzn−
1
5 rule (seeSilverman, 1986). These may well be too smooth for the estimation of

β0 and in the the third row we present results which use half this bandwidth(1
2h). This suggests

the estimates are relatively robust for this sample over this range of this bandwidth.
For comparison,Table4.3 presents results for the ratio of coefficients estimated assuming

the errors are normally distributed (i.e. probit, as inTable4.2), as well as corresponding results
from classical least-squares and two-stage least-squares (i.e. linear probability) estimators. The
differing estimation methods yield qualitatively similar conclusions concerning the endogeneity
correction.

Figure2 graphs the estimate of the ASF,G(xβ0), derived from semiparametric estimation
including v̂ as described in (2.22). This controls for the endogeneity of log other income. The
ASF is plotted over the 5–95% range of the log other income distribution for the lower education
group. Bootstrap 95% confidence bands are presented at the 10, 25, 50, 75 and 90 percentile
points of the log income density for the lower education subsample. The regression line shows a



BLUNDELL & POWELL BINARY RESPONSE MODELS 673

Controls for Endogeneity 

No Controls 

0·82

0·84

0·86

0·88

0·9

0·92

0·94
Pr

ob
 (

w
or

k)

Log Other Income
4·4 4·6 4·8 5 5·2 5·4 5·6 5·8

FIGURE 2

Semiparametric regression with and without controls for endogeneity

strong monotonic decline with log other income. This contrasts with the much shallower slope for
the estimated ASF when the control for endogeneity is excluded. The latter is the semiparametric
binary response model assuming other income to be exogenous for the work decision. In this
case, although the ASF remains monotonic and negative, the marginal impact of an exogenous
change in other income is much smaller for almost all values of other income. Note that the
degree of bias from ignoring the endogeneity of other income is such that the curves cross, this
could never happen if thex andv were distributed independently.

In Figure3 we present corresponding results for the estimates ofG(xβ0) using the probit
and linear probability models. Bootstrap 95% confidence bands are again presented at the 10,
25, 50, 75 and 90 percentile points of the log income density for the lower education subsample.
This application is likely to be a particularly good source on which to carry out this comparison.
First, we know fromTable 4.3 that the correction for endogeneity induces a large change in
the estimatedβ0 coefficients. Second, the proportion participating in the sample is around 85%
which suggests that the choice of probability model should matter as the tail probabilities in the
probit and linear probability models will behave quite differently. The plots show considerable
sensitivity of the estimatedG(xβ0), after allowing for endogeneity, across these alternative
parametric models. Both the linear probability and probit model estimates result in estimated
probability curves that are very much steeper than those implied by the semiparametric approach.
For example, the linear probability model estimates a probability that is more than 10 percentage
points higher at the 20 percentile point of the log other income distribution.

Finally, in Figure4 we present the analogous analysis using the low education subsample
only, with bootstrap 95% confidence bands at the 10, 25, 50, 75 and 90 percentile points of the log
other income density for this lower education subsample. For this sample the education dummy
is equal to zero for all observations and is therefore excluded. Sincex is now simply the log
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Linear probability and probit results with endogeneity controls
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Non-parametric regression with controls for endogeneity
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other income variable this analysis is purely non-parametric. As can be seen by comparison with
Figure3 this shows a slightly shallower slope. Similar results toFigure3 can be found for the
linear probability and probit models for this case and are available from the authors on request.

These results point to the attractiveness of the approach developed in this paper. For this
data-set we have found relatively small reductions in precision from adopting the semiparametric
control function approach while finding quite different estimated responses from those estimated
using the parametric probit or linear probability models. In the next section we consider the
implementation of the proposed estimator to an alternative representation of the simultaneous
binary choice framework.

5. AN ALTERNATIVE SPECIFICATION: FIXED COSTS OF WORK AND THE
COHERENCY MODEL

One interpretation of the endogenous linear index binary response model described above is as
the “triangular form” of some underlying joint decision problem in terms of latent endogenous
variables. Partitioningz as before

z = (z1, z2), (5.1)

we can express the model as

y1i = 1{y∗

1i > 0}, (5.2)

y∗

1i = z1iβ1 + y2iβ2 + ui (5.3)

and

y2i = z2i41 + y∗

1i γ 2 + εi . (5.4)

Substitution of (5.3) in (5.4) delivers the first-stage regression model

y2i = zi5+ vi (5.5)

for some coefficient matrix5. This “triangular” structure hasy2 first being determined byz and
the error termsv, while y1 is then determined byy2, z, and the structural erroru.

In some economic applications, however, joint decision making may be in terms of the
observedoutcomes rather than latent outcomes implicit in (5.3) and (5.4). In this alternative
specification (5.4) is replaced with a model incorporating feedback between theobserved
dependent variabley1 andy2

y2i = z2i41 + y1iα2 + εi (5.6)

that is, the realizationy1 = 1 results in a discrete shifty1iα2. Due to the nonlinearity in the
binary response rule (5.2), there is no explicit reduced form for this system. Indeed,Heckman
(1978), in his analysis of simultaneous models with dummy endogenous variables, shows that
(5.2), (5.3) and (5.6) is only a statistically “coherent” system,i.e. one that possesses a unique (if
not explicit) reduced form, whenα2 = 0, removing the direct feedback.

To provide a fully simultaneous system in terms of observed outcomes, and one that is also
statistically coherent,Heckman(1978) suggests incorporating a structural jump in the equation
for y∗

1i ,

y∗

1i = y1iα1 + z1iβ1 + y2iβ2 + ui , (5.7)

with the added restriction

α1 + α′

2β2 = 0. (5.8)
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This Heckman(1978) labels the Principal Assumption.8 Thus for a consistent probability
model with general distributions for the unobservables and exogenous covariates we require the
coherency condition (5.8). In what follows we show that the semiparametric control function
approach developed in this paper extends naturally to this framework. First we relate this
coherency specification to a fixed costs model of participation.

Suppose that the fixed cost of work is given byα2. In determining participation, the fixed
costα2 will have to be subtracted from other income (or consumption) for those who choose
to work. In this case the model for other income(y2i ) will depend on the discrete employment
decision(y1i ), not the latent variable(y∗

1i ). So that for those employment other income is defined
net of fixed costs

ỹ2i ≡ y2i − y1iα2. (5.11)

The coherency restrictions (5.8) imply that (5.7) can be rewritten

y∗

1i = (y2i − y1iα2)β2 + z1iβ1 + ui . (5.12)

The adjustment toy2i which guarantees statistical coherency is thereforeidentical to the
correction to other income in the fixed cost model of labour market participation.

Defining ỹ2i ≡ y2i − y1iα2, the coherency condition implies that the model can be rewritten

y1i = 1{z1iβ1 + ỹ2iβ2 + ui > 0} (5.13)

and

ỹ2i = z2i γ 2 + εi . (5.14)

If α2 were known then the equations (5.14) and (5.13) are analogous to (5.2), (5.3) and (2.5). The
semiparametric estimator using the control function approach would simply apply the estimation
approach described in this paper to the conditional model.9 Following the previous discussion,
assumptions (2.11) and (2.12) would be replaced by the modified conditional independence
restrictions

u | z1, y2, z2 ∼ u | z1, ỹ2, ε (5.15)

∼ u | ε. (5.16)

The conditional expectation of the binary variabley1 given the regressorsz1, ỹ2 and errorsε
would then take the form

E[y1 | z1, ỹ2i , ε] = Pr[−u ≤ z1iβ1 + ỹ2iβ2 | z1, ỹ2i , ε]

≡ F(z1iβ1 + ỹ2iβ2, ε).

Finally, note that althoughα2 is unknown, given sufficient exclusion restrictions onz2i ,
a root-n consistent estimator forα2 can be recovered from (linear) 2SLS estimation of (5.6).
More generally, if the linear formz2i γ 1 of the regression function fory2 is replaced by a non-
parametric formγ (z2i ) for some unknown (smooth) functionγ , then a

√
n-consistent estimator

of α2 in the resulting partially linear specification fory2i could be based on the estimation

8. To derive the condition (5.8) notice that from (5.2), (5.6) and (5.7) we can write

y∗
1i = 1{y∗

1i > 0}(α1 + α2β2)+ z1i β1 + z2i γ1β2 + ui + εi β2, (5.9)

or
y∗
1i ≶ 0 ⇔ 1{y∗

1i > 0}(α1 + α2β2)+ z1i β1 + z2i γ1β2 + ui + εi β2 ≶ 0. (5.10)

9. Blundell and Smith(1994) develop this estimator for the simultaneous parametric normal probit and tobit
models.
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TABLE 5.1

Results for the coherency specification

Variable Probit Probit
y2 Std Pr[Work] Std Pr[Work| ε] Std

coeff. err. coeff. err. coeff. err.

Work: y1 58·034 8·732 — —
Education:z1 — 1·6357 0·2989 1·6553 0·3012
Adjusted income:̃y2 — — −0·7371 0·0643 −0·5568 0·1433
Benefit inc:z21 0·4692 0·1453 — — — —
Education(sp):z22 0·1604 0·0421 — — — —

σuε = 0 (t-test) — — 2·556

TABLE 5.2

Semiparametric results for the coherency specification

Variable Semi-P Semi-P
Pr[Work] Std Pr[Work| ε] Std

coeff. err. coeff. err.

Adjusted income:̃y2 −1·009 0·0689 −0·82256 0·2592

approach proposed byRobinson(1988), using non-parametric estimators of instruments(z1i −

E[z1i | z2i ]) in an IV regression ofy2i on y1i .

5.1. The estimates of the coherency model

The first column ofTable5.1presents the estimates of the parameters of the structural equation
for y2 (5.6). These are recovered from IVs estimation using the education of the husband as an
excluded variable. The “fixed cost of work” parameter seems reasonable for the income variable,
whose mean is around£165 per week. The two sets of probit results differ according to whether
or not they control forε. Notice that having removed the direct simultaneity ofy1 on y2 through
the adjustment̃y2 , there is much less evidence of endogeneity bias. Indeed the coefficients on
the adjusted other income variable in the two columns are quite similar (these are normalized
relative to the education coefficient). If anything, after adjusting for fixed costs, controlling for
endogeneity leads to a downward correction to the income coefficient.

The comparable results for the semiparametric specification are presented inTable 5.2.
In these we have used the linear structural model estimates for they2 equation exactly as in
Table5.1. These show a very similar pattern with only a small difference in the other income
coefficient between the specification that control forε and the one that does not. Again the
ỹ2 adjustment seems to capture much of the endogeneity between work and income in this
coherency specification.

In Figure5 we present the semiparametric estimate of the probability of work across the
whole low education sample. To evaluate this probability following the ASF formulation, used
in the triangular specification, we have calculatedỹ2 as if each individual pays the fixed cost.

6. SUMMARY AND CONCLUSIONS

This paper has proposed and implemented a new semiparametric method for estimating binary
response models with continuous endogenous regressors. The method introduces residuals from
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Semiparametric estimation of the coherency model

the reduced form as covariates in the binary response model to control for endogeneity. We
considered a specific semiparametric “matching” estimator of the index coefficients which
exploits both continuity and monotonicity implicit in the binary response model formulation.
We have also shown how the partial mean estimator from the non-parametric regression
literature can be used to directly estimate the ASF. The control function estimation approach,
for this semiparametric model, is also shown to be easily adapted to the case where the model
specification is not triangular and certain coherency conditions are required to be satisfied.

The proposed estimator was used to investigate the importance of correcting for the
endogeneity of other income in a labour market participation model for a sample of married
British men. The results show a strong effect of correcting for endogeneity in this example and
indicate that adjusting for endogeneity using the standard parametric models, the probit and
linear probability models, can give a highly misleading picture of the impact on participation of
an exogenous change in other income.
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