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Evaluation Methods

Constructing the counterfactual in a convincing way is a key requirement
of any serious evaluation method.

Six distinct, but related, approaches:
© social experiments methods (RCTs),
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Evaluation Methods

Constructing the counterfactual in a convincing way is a key requirement
of any serious evaluation method.
Six distinct, but related, approaches:

social experiments methods (RCTs),
natural experiments,

matching methods,

instrumental methods,

discontinuity design methods
control function methods.

All are an attempt to deal with endogenous selection (assignment).
Not directly dealing with ‘fully’ structural simultaneous models, which
are also used to address the evaluation problem in empirical
microeconometrics - see Blundell and MaCurdy (1999), for example.
@ Q: Under what conditions will the models (and methods) we consider
here recover parameters of interest that are consistent with structural
simultaneous models?
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@ The random experiment (R) is closest to the ‘theory’ free method
of a clinical trial, relying on the availability of a randomized
assignment rule.

o Natural experiments (DiD) mimic the randomized assignment of
the experimental setting but do so with non-experimental data and
some ‘natural’ randomisation.

@ Matching (M) attempts to reproduce the treatment group among
the non-treated, re-establishing the experimental conditions in a
non-experimental setting, but relies on observable variables to
account for selection bias.

@ Instrumental variables (IV) is a closer to the structural method,
relying on exclusion restrictions to achieve identification.

@ Discontinuity design (RD) methods are closest in spirit to the
natural experiment as they exploit discreteness in the rules used to
assign individuals to receive a treatment.

@ The control function (CF) approach is closest to the structural
econometric approach, directly modelling the assignment rule in order
to control for selection in observational data.
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Which Treatment Parameter?

@ In the homogeneous linear model, common in elementary
econometrics, there is only one impact of a programme and it is one
that would be common to participants and nonparticipants a like.

@ In the heterogeneous response model, the treated and non-treated
may benefit differently from programme participation.
o In this case, the treatment on the treated parameter will differ from the

treatment on the untreated parameter or the average treatment effect.
@ We can now define a whole distribution of the treatment effects.

@ A central issue in understanding evaluation methods relates to the
aspects of this distribution that can be recovered by the different
approaches.
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@ Suppose we wish to measure the impact of treatment on an outcome,
y. For the moment, we abstract from other covariates that may
impact on y.

@ Denote by d the treatment indicator: a dummy variable assuming the
value 1 if the individual has been treated and 0 otherwise.
@ The potential outcomes for individual / at any time t are denoted by
yi and y2.
@ These outcomes are specified as
yi(lg:ﬁ+uc;+uft if diy = 1 1)
)/,'t:,B"f—Uit if dir =0

where B is the intercept parameter, «; is the effect of treatment on
individual i and u is the unobservable component of y.
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The observable outcome is then
yie = dieyit + (1 — die) y§. (2)

so that
yie = B+ aidie + uje. (3)
Selection into treatment (assignment) determines the treatment status, d.

@ We assume this assignment occurs at a fixed moment in time, say k,
and depends on the information available at that time summarised by
the set of variables, Z,, and unobservables, vi.
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Assignment to treatment is then assumed to be made on the basis of an
index function, d*

*

= Ziky+ Vi (4)
= g(Zik, vi) (5)

where 7y is the vector of coefficients and vj is the unobservable term.
@ The treatment status is then defined as

dit:{l if d, > 0and t > k, (6)

0 otherwise.

@ As before the structural function for the outcome variable y and the
assignment equation for d are assumed to have a triangular structure.

@ General question: when is the triangular structure a reasonable
formulation of the endogeneity in microeconometrics?
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Estimation methods typically identify some average impact of treatment
over some sub-population.
The three most commonly used parameters are:

© the population average treatment effect (ATE), which would be the
outcome if individuals were assigned at random to treatment,

© the average effect on individuals that were assigned to treatment
(ATT), and

© the average effect on non-participants (ATNT).

Using the model specification above, we can express these three average
parameters at time t > k as follows

ATE = E(ar) (7)
AT = E(aj|di =1) = E(a;| g(Zik, vik) = 0) (8)
ATV = E(aj| di = 0) = E (ai] g(Zik, vi) < 0). (9)
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Historically an increasing interest on the distribution of treatment effects
led to the study of additional treatment effects in the literature (Bjorklund
and Moffitt, 1987, Imbens and Angrist, 1994, Heckman and Vytlacil,
1999).

@ Two particularly important parameters are the local average
treatment effect (LATE) and the marginal treatment effect (MTE).

@ To introduce them we need to assume that d* is a non-trivial
function of Z, meaning that it changes with Z.

@ Now suppose there exist two distinct values of Z, say Z’ and Z”, for
which only a subgroup of participants under Z” will also participate if
having experienced Z’.
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The average impact of treatment on individuals that move for
non-participants to participants when Z changes from Z’ to Z" is the
LATE parameter

aMTE(Z/,2") = E (widi(2") = 1,di(Z") = 0)

where d;(Z) is a dichotomous random variable representing the treatment
status for an individual i drawing observables Z.

The MTE measures the change in aggregate outcome due to an
infinitesimal change in the participation rate,

_9E(y|P)
DCMTE (P) = T

@ Under certain conditions, to be explored in the next lecture, the MTE
is a limit version of LATE.
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@ All these parameters will be identical under homogeneous treatment
effects.

@ Under heterogeneous treatment effects, however, a non-random

process of selection into treatment may lead to differences between
them.

@ However, whether the impact of treatment is homogeneous or
heterogeneous, selection bias may be present.
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Selection and Assignment.

Collecting all the unobserved heterogeneity terms together we can rewrite
the outcome equation (?7?) as

vi = B+a*Edy+ (Uit + dj (lxi - DCATE>) (10)
= B+aEd; + e

@ Non-random selection occurs if the unobservable term e in (?7?) is
correlated with d.

@ This implies that e is either correlated with the regressors determining
assignment, Z, or correlated with the unobservable component in the
selection or assignment equation, v.

@ Consequently there are two forms of non-random selection: selection
on the observables and selection on the unobservables.

@ Different estimators use different assumptions about assignment to
identify the impact of treatment.
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As a result of selection, the relationship between y and d is not directly
observable from the data since participants and non-participants are not
comparable.

@ Under homogeneous treatment effects, selection bias occurs only if d
is correlated with u since the outcome equation is reduced to

yit = B+ adi + ujr

where « is the impact of treatment on any individual since this is
constant across the population in this case.

@ The OLS estimator will then identify
E [&OLS} = o+ E [up]die = 1] — E [ug|die = 0]

which is in general different from « if d and u are dependent (prove
this as an exercise).
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The selection process is expected to be more severe in the presence of
heterogeneous treatment effects.

@ The correlation between e and d may now arise through v or through
the idiosyncratic gains from treatment, a; — a™E (selection on gains).

@ The parameter identified by the OLS estimator will now be
E [aoﬂ = @+ E [a; — &|dje = 1] + E [uze|die = 1] — E [uie] die = 0]

Note that the first term, a*TE + E [a,-t — aATE |y = 1], is the ATT.

@ Thus, even if d and u are independent, as long as
E [di¢ (xj — a”TE)] # 0, OLS will not recover the ATE.
E [d,-t ((x,- — aATE)] # 0 implies that the idiosyncratic gains to
treatment, «;, are correlated with the participation decision itself.

@ What does OLS identify when d and u are independent?
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An example: returns to education

@ Individuals differ with respect to educational attainment, which is
partly determined by a scholarship (tuition) subsidy policy and partly
determined by other factors.

@ The model, described in full detail in the Blundell and Costa-Dias
(2009), http://www.ucl.ac.uk/“uctp39a, is used to generate a
simulated dataset.

@ This model is then used as a common framework to analyse the
properties of each of the estimators.
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(i) The Social Experiment Approach (R)

@ Suppose it would be possible to run a social experiment - that is a
randomised control trial.

@ In this case, assignment to treatment would be random, and thus
independent from the outcome or the treatment effect. This ensures
that the treated and the non-treated groups are equal in all aspects
apart from the treatment status.

@ The following are the randomization assumptions:
RL: E[ui|d; = 1] = E [ui|d; = 0] = E [u]]
R2: E [aj|d; = 1] = E [aj|d; = 0] = E [w)]

@ These conditions are enough to identify the average returns in the
experimental population using OLS which is the ATE.
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(ii) Natural Experiment: difference-in-differences (DID)

@ The natural experiment method makes use of naturally occurring
phenomena that can be argued to induce some form of randomization
across individuals in the eligibility or the assignment to treatment.

@ Typically this method is implemented using a before and after
comparison across groups. It is formally equivalent to a
difference-in-differences approach which uses some naturally occurring
event to create a ‘policy’ shift for one group and not another.

@ The policy shift may refer to a change of law in one jurisdiction but
not another, to some natural disaster which changes a policy of
interest in one area but not another, or to a change in policy that
makes a certain group eligible to some treatment but keeps a similar
group ineligible.

@ The difference between the two groups before and after the policy
change is contrasted - thereby creating a difference-in-differences
(DID) estimator of the policy impact.
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The matching estimator (M)

@ The main purpose of matching is to reproduce the treatment group
among the non-treated, this way re-establishing the experimental
conditions in a non-experimental setting.

@ Under certain assumptions, the matching method constructs the
correct sample counterpart for the missing information on the treated
outcomes had they not been treated by pairing each participant with
members of non-treated group.

@ The matching assumptions ensure that the only remaining difference
between the two groups is programme participation.

@ Matching can be used with cross-sectional or longitudinal data. In its
standard formulation, however, the longitudinal dimension is not
explored. We therefore initially exclude the time subscript and will
focus first on the appropriate choice of the matching variables in what
follows.
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To start we need to include some observable regressors in the outcome
equation in a very general way.

@ The covariates X explain part of the ‘residual’ term wu and part of the
idiosyncratic gains from treatment:

= B+ u(X) & 06) + [0~ 0 O0) + (@i —a (X)) )
=B+ u(Xi)+ (u—u(X))

@ where u (X) is the predictable part of y°, (u; — u (X;)) is what is left
over of the error u after conditioning for X,

@ a (X) is some average treatment effect over individuals with
observable characteristics X and

@ «a; is an individual i specific ‘gain’, which differs from a (X;) by an
unobservable heterogeneity term (a; — a (Xj)).
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The choice of the appropriate matching variables, X, is a delicate issue.

@ To the extent that the goal of evaluation methods is to control for
selection, the correct information is that available to the individual at
the time of deciding about participation. What information was used
when assignment took place?

@ What remains unexplained is random with respect to treatment
status.
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The solution advanced by matching is based on the following assumption:

M1: (conditional independence assumption - CIA) Conditional on
the set of observables X, the non-treated outcomes are
independent of the participation status,

yo Lodi | X

which is equivalent to the unobservable in the non-treated

outcome equation being independent of the participation
status conditional on X,

(U,‘—U(X,')) 1 d,' | X,'.

@ This means that, conditional on X, treated and non-treated

individuals are comparable with respect to the outcome y in the
non-treatment case.

@ Thus, there is no remaining selection on the unobservable term u;.
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Assumption M1 implies a conditional version of the randomization
hypothesis (R1)
E [ui|d;, Xi] = E [ui| Xi]

which, under the usual hypothesis of exogeneity of X vyields E [u;].

@ Note, nothing like the randomization hypothesis (R2) is required to
identify the ATT. This implies that selection on the unobservable
gains can be accommodated by matching when identifying the ATT.

@ The implication of (M1) is that for each treated observation (y1), if
we can find a non-treated (set of) observation(s) (y°) with the same
X-realization, we can be certain that such y° constitutes the correct
counterfactual.
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Matching is explicitly a process of re-building an experimental data set.
The ability to do so, however, depends on the availability of the

counterfactual.
That is, we need to ensure that each treated observation can be

reproduced among the non-treated.
@ This is captured in the second matching assumption.

M2 All treated individuals have a counterpart on the non-treated
population and anyone constitutes a possible participant:

0 < P(d,':].|X,') <1
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Let S represent the common support of X, that is, the subspace of the
distribution of X that is both represented among the treated and the
control groups.

@ Under assumption (M2), S is the whole domain of X.

@ The matching estimator for the ATT is the empirical counterpart of

aTT(S) = E[y'—)y°ld=1,X€ S|
JsEG' =y 1 X, d =1) dFxe(X | d =1)
deFX|d(X|d:1)

o where Fx g is the cumulative distribution function of X conditional on

@ and ucATT(S) is the mean of impact on participants with observable
characteristics X in S.
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@ In general, the form of the matching estimator is given by

Z)ZM = Z Vi — Zc@uyj wij (12)

ieT jec

@ where T and C represent the treatment and comparison groups
respectively,

o @j; is the weight placed on comparison observation ; for individual i

@ and w; accounts for the re-weighting that reconstructs the outcome
distribution for the treated sample.

o Note, the parameter identified by matching, a™, may differ from the
actual ATT if the common support is not the whole domain of X
represented among the treated.
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Identification of ATE requires a strengthened version of (M1),

M1" (conditional independence assumption - CIA) Conditional on
the set of observables X, the two potential outcomes are
independent of the participation status,

Pvh) Ldi | X

@ That is, in addition to (M1), identification of ATE using matching
requires no selection on the unobservable idiosyncratic gain.

@ Under (M1), the matching estimator of ATE is the sample
counterpart of,
aM=E [yl —yOX € S]
_ JSEGH—y0 1 X) dF(X)
fS dF (X)

where, as before, S is the common support and the average is now
weighted with the distribution of X over the whole population.
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Propensity score matching

@ A serious limitation to the implementation of matching is the
dimension of the matching space as defined by X.

@ A more feasible alternative is to match on a function of X. Usually,

this is carried out on the propensity to participate given the set of
characteristics X:

P(X;) = P(di=1]X;)
the propensity score.

@ Its use is usually motivated by Rosenbaum and Rubin's result (1983,
1984), which shows that the CIA remains valid if controlling for
P(X;) instead of X;:

yP Lodi | P(X)

@ However, it is also shown that knowledge of P(X) may improve the
efficiency of the estimates of ATT, its value lying on the “dimension
reduction” feature.
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@ When using P(X), the comparison group for each treated individual
is chosen with a pre-defined criteria (established in terms of a
pre-defined metric) of proximity between the propensity scores for the
each treated and the controls.

@ Having defined the neighborhood for each treated observation, the
next issue is that of choosing the appropriate weights to associate the
selected set of non-treated observations for each participant one.

@ Several possibilities are commonly used, e.g.:

© Nearest Neighbor matching assigns a weight 1 to the closest
non-treated observation and 0 to all others. (But can we use the
bootstrap?).

© Kernel matching defines a neighborhood for each treated
observation and constructs the counterfactual using all control
observations within the neighborhood, not only the closest one. It
assigns a positive weight to all observations within the neighbour
while the weight is zero otherwise.
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Weaknesses of matching

@ The main weakness of matching is the ability to select the correct
matching information.

@ The common support assumption (M2) ensures that the missing
counterfactual can be constructed from the population of non-treated.

@ What (M2) does not ensure is that the same counterfactual exists in
the sample.

@ If some of the treated observations cannot be matched, the definition
of the estimated parameter becomes unclear.

@ It is the average impact over some subgroup of the treated, but such
subgroup may be difficult to define.

o For ATT or ATE we require that, in the limit,we can always find a
matching observation.
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Differences-in-Di

The DID estimator can make use of longitudinal data, where the same
individuals are followed over time, or repeated cross section data, where

samples are drawn from the same population before and after the
intervention being studied.

@ We start by considering the evaluation problem when longitudinal
data is available.

@ Assume a change in policy occurs at time t = k and each individual is
observed before and after the policy change, at times t = ty < k and
t = t; > k, respectively. For simplicity of notation, we denote by d;
(without the time subscript) the treatment group to which individual
i belongs to.

@ This is identified by the treatment status at t = ty:

d— 1 if di =1 for t > k (in particular, diy, = 1)
! 0 otherwise
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The DID estimator uses a common trend assumption

Yie = P+aidi+ up
where E (uj | dj, t) = E(nj|d;)+ m;.
or up = 1;+ m;+ e with E(eie|d;r) = 0.

(13)

(14)

@ In the above equation, 7 is an unobservable individual fixed effect, m
is an aggregate(common) macro shock and ¢ is a transitory shock.
Thus, DID is based on the assumption that the randomization
hypothesis (R1) holds in first differences

E [U,‘tl —_ uito‘dll = 1] = E [U,’t1 — uito‘dl' = 0] = E [uit1 — U,'to] .

@ This assumption does not rule out selection on the unobservables but
restricts its source by ruling out the possibility of selection based on
transitory individual-specific effects ¢j;.
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Note, DID does not impose any conditions about selection on idiosyncratic
gains from treatment that would mimic the randomization hypothesis
(R2). As a consequence, and as will be seen, it will only identify ATT in

general.
Under the DID assumption we can write,

E lyi|di, t] = B+ E[aild; =1+ E[nj|di =1+ my ifdi=1andt=
TS ST Bt Elnild] 4+ me othervise

@ It is now clear that we can eliminate both  and the error components
by sequential differences
aATT = E(oc;]d,- = 1) (15)
= [E (y,-t\d,- =1t= tl) — E (y,-t|d,- =1t= to)]
— [E (y,-t|d,- =0,t= tl) — E(y,-t|d,- =0,t= to)]

This is precisely the DID identification strategy.
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The sample analog of equation (??) is the DID estimator:

~DID —1 1 —0 _ -0

114 = [ytl_yto] - [ytl_yto] (16)
where y¢ is the average outcome over group d at time t.

@ DID measures the excess outcome change for the treated as
compared to the non-treated, this way identifying the ATT.

@ The large sample properties of each of the elements in (??) implies

b lim [aDID] — fATT

@ Prove this last statement.
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@ Notice that, the DID estimator is just the first differences estimator
commonly applied to panel data when the presence of fixed effects is
suspected.

@ This means that an alternative way of obtaining aP'P s to take the
first differences of (??) to obtain

Yity — Yitp = “idih + (mfl - mfo) + <€ft1 - Sito)

where the € terms represent transitory idiosyncratic shocks.

@ Under the DID assumptions, the above regression equation can be
consistently estimated using OLS. Notice also that the DID
assumption implies that the transitory shocks, €, are uncorrelated
with the treatment variable. This is an exogeneity assumption.

@ Therefore, the standard within groups panel data estimator is
analytically identical to the DID estimator of the ATT under these
assumptions (see, for example, Blundell and MaCurdy (1999)).
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o It follows that repeated cross-sectional data would be enough to
identify ATT, as long as treatment and control groups can be
separated before the policy change, in period t = tp.

@ Such information is sufficient for the average fixed effect per group to
cancel out in the before after differences.
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Weaknesses of DID

(a) Selection on idiosyncratic temporary shocks: Ashenfelter’s dip
The DID procedure does not control for unobserved temporary
individual-specific shocks that influence the participation decision.

If € is not unrelated to d, DID is inconsistent for the estimation of ATT

£ (&DID) = a7 + E(gffl — Eitg | dit1 = 1) - E(sitl — €ty | ditl = 0)

@ To illustrate the conditions such inconsistency might arise, suppose a
training programme is being evaluated in which enrolment is more
likely if a temporary dip in earnings occurs just before the programme
takes place - the so-called Ashenfelter's dip (see Heckman and Smith
(1994)).

@ A faster earnings growth is expected among the treated, even without
programme participation.

@ Thus, the DID estimator is likely to over-estimate the impact of
treatment.
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(b) Differential macro trends

The identification of ATT using DID relies on the assumption the
treatment and controls experience the same macro shocks.

If this is not the case, the DID approach will yield a biased and
inconsistent estimate of ATT. For example, differential trends might arise
in the evaluation of training programs if treated and controls operate in
different labour markets.

(c) Compositional changes over time

Although DID does not require longitudinal data to identify the true ATT
parameter, it does require that the same group treatment and control to
be followed over time.

In particular, the composition of the groups with respect to the fixed
effects term must remain unchanged to ensure before-after comparability.
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Combining matching and DID (MDID)

@ Decompose the unobservable term u into a fixed effect (#), macro
shock (m) and an idiosyncratic transitory shock (¢)

y,t Bt u(Xi) + & (X;) + (17 4 me +€ir — u (X)) + (a; (X;) =& (X;
Yie =B+ u(Xi)+ (n; + me + eie — u (X))

(17)
Under this specification, the following transformation of the CIA can
be used achieve identification of ATT:

MDID1: Conditional on the set of observables X, the before-after
difference in the unobservable u is independent of the
participation status,

0 1
(i, — uito) Lodey | X
which, under specification (??7) is the same as assuming
gie L diry, | Xi
where tg < k < ty.
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Assumption (MDID1) is not enough to ensure identifiability of ATT. Just
as in the matching case, we also need to impose a common support
hypothesis. This will be the same as (M2) when longitudinal data is
available.

If we only have repeated cross-section data, however, we will need to
strengthen it to ensure that the treated group can be reproduced in all
three control groups characterized by treatment status before and after the
program:

MDID2: All treated individuals have a counterpart on the non-treated
population before and after the treatment and anyone
constitutes a possible participant,

0 < P(diy =1 Xi,t) <1
where P(dj;, = 1] Xj, t) is the probability that an individual

observed at time t with characteristics X; had been treated
would the same observation correspond to time t;.
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@ The effect of the treatment on the treated can now be estimated over
the common support of X.

@ The following estimator is adequate to the use of propensity score
matching with longitudinal data

ML = N 8 ity — vin) — Y@ [Vies — Yio) ¢ Wi
icT jec

where the notation is similar to what has been used before.
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With repeated cross-section data, however, matching must be performed
over the three control groups: treated and non-treated at tp and
non-treated at tj.

@ In this case, the matching-DID estimator would be

~MDID,RCS __ T C C
[ = Z { [)/itl - Z ‘Dijtoyjto] - lZ @i, Yjt, — Ewijtoyjto

i€Ty Jj€To ey jeG

where Ty, T1, o and (7 stand for the treatment and comparison
groups before and after the programme, respectively, and cogt
represent the weights attributed to individual j in group G (where
G = C or T) and time t when comparing with treated individual i.

@ What are the likely issues with matching-DiD in the cross-section
case?

@ Randomisation, Matching, DID and MDiD are all different ways of
dealing with the endogenous selection (assignment) problem. How do
these compare to IV, RD, and control function methods?
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