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This paper presents a test for exogeneity of explanatory variables that minimizes the need for aux-
iliary assumptions that are not required by the definition of exogeneity. It concerns inference about a
non-parametric function g that is identified by a conditional moment restriction involving instrumental
variables (IV). A test of the hypothesis that g is the mean of a random variable Y conditional on a covari-
ate X is developed that is not subject to the ill-posed inverse problem of non-parametric IV estimation.
The test is consistent whenever g differs from E(Y | X) on a set of non-zero probability. The usefulness of
this new exogeneity test is displayed through Monte Carlo experiments and an application to estimation
of non-parametric consumer expansion paths.

1. INTRODUCTION

The problem of endogeneity arises frequently in economics. In empirical microeconomics, endo-
geneity usually occurs as a result of the joint determination of observed variables by individual
agents. For example, firms choose inputs and production levels, and households choose con-
sumption levels and labour supply. It has long been understood that the econometric estimation
methods needed when a model contains endogenous explanatory variables are different from
those that suffice when all variables are exogenous. For example, ordinary least squares (OLS)
does not provide consistent estimates of the coefficients of a linear model when one or more
explanatory variables are endogenous. Therefore, it is important to have ways of testing for exo-
geneity of a model’s explanatory variables.

This paper describes an exogeneity test that is applicable in a broad range of circumstances
and minimizes the need for auxiliary assumptions that are not required by the definition of
exogeneity. The specific case that motivates our research and provides the application in this
paper concerns the non-parametric analysis of consumer behaviour and, in particular, the pos-
sible endogeneity of total outlay in the non-parametric estimation of Engel curves (expansion
paths). Suppose we are interested in estimating the structural relationship between the quantity
of leisure services bought by a consumer in a particular month and his total consumption (or
wealth) in that month. Knowledge of the shape of this kind of Engel curve is an integral part
of any analysis of consumer welfare (Deaton, 1998) and is also a key input into micro-data-
based revealed-preference bounds (see Blundell, Browning and Crawford, 2003). It is important
to allow this relationship to vary flexibly, which can be done by using non-parametric regression
methods. However, it is likely that the unobservables in the relationship, which include individ-
ual tastes for leisure, are related to preferences for overall consumption or wealth. If this is the
case, then the total consumption (expenditure) variable will be endogenous for the Engel curve,
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and standard non-parametric regression estimators will not recover the structural relationship of
interest for welfare or revealed-preference analysis.1

The structural function can be estimated in the presence of endogenous explanatory vari-
ables if we have instruments for those variables that are mean independent of the unobservable
error term in the structural relationship. Indeed, instrumental variables (IV) estimators for lin-
ear models are well known and widely used in empirical economics. When the structural (or
regression) function is non-parametric, as in the case considered in this paper, and there is an
endogenous explanatory variable, the precision of any estimator is typically much lower than it is
when all explanatory variables are exogenous (Hall and Horowitz, 2005). Consequently, there is a
large loss of estimation efficiency from unnecessarily treating one or more explanatory variables
as endogenous. On the other hand, erroneously assuming exogeneity produces a specification
error that may cause the estimation results to be highly misleading. Therefore, it is important to
have ways to test for exogeneity in non-parametric regression analysis. This paper presents the
first such test.

The approach taken in this paper is to test the orthogonality condition that defines the null
hypothesis of exogeneity. In a linear regression model, there are several asymptotically equivalent
tests of this condition (Smith, 1994). In non-parametric regression, one possible approach is to
compare a non-parametric estimate of the regression function under exogeneity with an estimate
obtained by using non-parametric IV methods. Non-parametric IV estimators of the structural
function have been developed by Darolles, Florens and Renault (2006), Blundell, Chen and Kris-
tensen (2007), Newey and Powell (2003), and Hall and Horowitz (2005).2 However, the moment
condition that identifies the structural function in the presence of endogeneity is a Fredholm equa-
tion of the first kind, which leads to an ill-posed inverse problem (O’Sullivan, 1986; Kress, 1999).
A consequence of this is that in the presence of one or more endogenous explanatory variables,
the rate of convergence of a non-parametric estimator of the structural function is typically very
slow. Therefore, a test based on a direct comparison of non-parametric estimates obtained with
and without assuming exogeneity is likely to have very low power. Accordingly, it is desirable to
have a test of exogeneity that avoids non-parametric IV estimation of the structural relationship.
This paper presents such a test.

If the structural regression function is known up to a finite-dimensional parameter, then
exogeneity can be tested by using methods developed by Hausman (1978), Bierens (1990), and
Bierens and Ploberger (1997). However, these tests can give misleading results if the structural
function is misspecified. The non-parametric test we present avoids this problem. Another pos-
sibility is to test for the exclusion of the instruments from the structural regression. However,
we will show that an omitted variables test imposes stronger restrictions than are implied by the
hypothesis of exogeneity. It is desirable to avoid these restrictions if exogeneity is the hypothe-
sis of interest. Our test accomplishes this and is no more difficult to implement than an omitted
variables test.

Computation of the test statistic and its critical value require only finite-dimensional matrix
manipulations, kernel non-parametric regression, and kernel non-parametric density estimation.
A GAUSS program for computing the statistic is available at the Review’s website.

Section 2 of this paper presents the test. This section also explains the difference between
testing for exogeneity and testing for omitted IV in a mean regression. Section 3 describes the
asymptotic properties of the test. In Section 4, we present the results of a Monte Carlo investiga-
tion of the finite-sample performance of the test. Section 5 presents an application that consists

1. See Blundell and Powell (2003) for a discussion of structural functions of interest in non-parametric regression.
2. Newey, Powell and Vella (1999) developed a non-parametric IV estimator based on “control functions”. This

estimator avoids the problems described in the remainder of this paragraph, but its assumptions are considerably stronger
than ours or those of the authors just cited.
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of testing the hypothesis that the income variable in an Engel curve is exogenous. Section 6
concludes. The proofs of theorems are in the appendix.

2. THE MODELLING FRAMEWORK AND THE TEST STATISTIC

This section begins by presenting a detailed description of the model setting that we deal with
and the test statistic. Section 2.3 explains why our test is not a test for omitted variables.

2.1. The model setting

To be more precise about the setting for our analysis, let Y be a scalar random variable, X and
W be continuously distributed random scalars or vectors, and g be a structural function that is
identified by the relation

E[Y − g(X) | W ] = 0. (2.1)

In (2.1), Y is the dependent variable, X is the explanatory variable, and W is an instrument
for X . The function g is non-parametric; it is assumed to satisfy mild regularity conditions but is
otherwise unknown.

Define the conditional mean function G(x) = E(Y | X = x). We say that X is exogenous
if g(x) = G(x) except, possibly, if x is contained in a set of zero probability. Otherwise, we say
that X is endogenous. This paper presents a test of the null hypothesis, H0, that X is exogenous
against the alternative hypothesis, H1, that X is endogenous. It follows from (2.1) that this is
equivalent to testing the hypothesis E[Y −G(X) | W ] = 0. Under mild conditions, the test rejects
H0 with probability approaching 1 as the sample size increases whenever g(x) �= G(x) on a set
of non-zero probability.

To understand the issues involved in estimating g(x) when X is endogenous, write (2.1) in
the form

E(Y | W ) =
∫

g(x)d FX |W , (2.2)

where FX |W is the cumulative distribution function of X conditional on the instrument W .
Equation (2.2) is an integral equation for the structural function g. Identifiability of g is equivalent
to uniqueness of the solution of this integral equation. Assuming that that g is identified, estimat-
ing it amounts to solving (2.2) after replacing E(Y | W ) and FX |W with consistent estimators.
Doing this is complicated, however, because (2.2) is a version of a Fredholm integral equation
of the first kind (O’Sullivan, 1986; Kress, 1999), and it produces a so-called ill-posed inverse
problem. Specifically, the solution to (2.2) is not a continuous functional of E(Y | W ), even if
the solution is unique, and E(Y | W ) and FX |W are smooth functions. Therefore, very different
structural functions g can yield very similar reduced forms E(Y | W ). A similar problem arises
in linear regression with multicollinearity, where large differences in regression coefficients can
correspond to small differences in the fitted values of the regression function. As a consequence
of the ill-posed inverse problem, the rate of convergence in probability of a non-parametric IV
estimator of g is typically very slow. Depending on the details of the distribution of (Y, X,W ),
the rate may be slower than Op(n−ε) for any ε > 0 (Hall and Horowitz, 2005).

The test developed here does not require non-parametric estimation of g and is not affected
by the ill-posed inverse problem of non-parametric IV estimation. Consequently, the “precision”
of the test is greater than that of any non-parametric estimator of g. Let n denote the sample
size used for testing. Under mild conditions, the test rejects H0 with probability approaching
1 as n → ∞ whenever g(x) �= G(x) on a set of non-zero probability. Moreover, the test can
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detect a large class of structural functions g whose distance from the conditional mean
function G in a suitable metric is O(n−1/2). In contrast, the rate of convergence in probability of a
non-parametric estimator of g is always slower than Op(n−1/2).3

Throughout the remaining discussion, we will use an extended version of (2.1) that allows
g to be a function of a vector of endogenous explanatory variables, X , and a set of exogenous
explanatory variables, Z . We write this model as

Y = g(X, Z)+U ; E(U | Z ,W ) = 0, (2.3)

where Y and U are random scalars, X and W are random variables whose supports are contained
in a compact set that we take to be [0,1]p (p ≥ 1), and Z is a random variable whose support is
contained in a compact set that we take to be [0,1]r (r ≥ 0). The compactness assumption is not
restrictive because it can be satisfied by carrying out monotone increasing transformations of any
components of X , W , and Z whose supports are not compact. If r = 0, then Z is not included in
(2.3). W is an instrument for X . The inferential problem is to test the null hypothesis, H0, that

E(U | X = x, Z = z) = 0, (2.4)

except, possibly, if (x, z) belongs to a set of probability 0. The alternative hypothesis, H1, is
that (2.4) does not hold on some set B ⊂ [0,1]p+r that has non-zero probability. The data,
{Yi , Xi , Zi ,Wi : i = 1, . . . ,n} are a simple random sample of (Y, X, Z ,W ).

2.2. The test statistic

To form the test statistic, let fX ZW denote the probability density function of (X, Z ,W ). Define
G(x, z) = E(Y | X = x, Z = z). In what follows, we use operator notation that is taken from
functional analysis and is widely used in the literature on non-parametric IV estimation. See, for
example, Darolles et al. (2002), Carrasco, Florens and Renault (2005), Hall and Horowitz (2005),
and Horowitz (2006). For each z ∈ [0,1]r , define the operator Tz on L2[0,1]p by

Tzψ(x, z) =
∫

tz(ξ, x)ψ(ξ, z)dξ,

where for each (x1, x2) ∈ [0,1]2p,

tz(x1, x2) =
∫

fX ZW (x1, z,w) fX ZW (x2, z,w)dw.

Assume that Tz is non-singular for each z ∈ [0,1]r . Then H0 is equivalent to

S̃(x, z) ≡ Tz(g − G)(x, z) = 0, (2.5)

for almost every (x, z) ∈ [0,1]p+r . H1 is equivalent to the statement that (2.5) does not hold on
a set B ⊂ [0,1]p+r with non-zero Lebesgue measure. A test statistic can be based on a sample
analogue of

∫
S̃(x, z)2dxdz, but the resulting rate of testing is slower than n−1/2 if r > 0. The

rate n−1/2 can be achieved by carrying out an additional smoothing step. To this end, let �(z1, z2)
denote the kernel of a non-singular integral operator, L , on L2[0,1]r . That is, L is defined by

Lψ(z) =
∫

�(ζ, z)ψ(ζ )dζ ,

3. Non-parametric estimation and testing of conditional mean and median functions is another setting in which
the rate of testing is faster than the rate of estimation. See, for example, Horowitz and Spokoiny (2001, 2002) and Guerre
and Lavergne (2002).
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and is non-singular. Define the operator T on L2[0,1]p+r by (Tψ)(x, z) = (LTz)ψ(x, z). Then
H0 is equivalent to

S(x, z) ≡ T (g − G)(x, z) = 0, (2.6)

for almost every (x, z) ∈ [0,1]p+r . H1 is equivalent to the statement that (2.6) does not hold
on a set B ⊂ [0,1]p+r with non-zero Lebesgue measure. The test statistic is based on a sample
analogue of

∫
S(x, z)2dxdz.

The motivation for basing a test of H0 on S(x, z) can be understood by observing that
g(x, z) = T −1

z Q(x, z), where Q(x, z) = fZ (z)EW |Z [E(Y | Z = z,W ) fX ZW (x, z,W ) | Z = z)],
and fZ is the probability density function of Z (Hall and Horowitz, 2005). T −1

z is a discontinuous
operator, and this discontinuity is the source of the ill-posed inverse problem in estimating g.
Basing the test of H0 on S(x, z) avoids this problem because S(x, z) = L(Q −TzG)(x, z), which
does not involve T −1

z .
To form a sample analogue of S(x, z), observe that S(x, z) = E{[Y − G(X, Z)] × fXW (x,

z,W )�(Z , z)}. Therefore, the analogue can be formed by replacing G and fXW with estimates and
E with the sample average in E{[Y − G(X, Z)] fXW (x, z,W )�(Z , z)}. To do this, let f̂ (−i)

X ZW and
Ĝ(−i), respectively, denote leave-observation-i-out “boundary kernel” estimators of fX ZW and G
(Gasser and Müller, 1979; Gasser, Müller and Mammitzsch, 1985). To describe these estimators,
let Kh(·, ·) denote a boundary kernel function with the property that for all ξ ∈ [0,1] and some
integer s ≥ 2

h−( j+1)

ξ+1∫
ξ

u j Kh(u,ξ)du =
{

1 if j = 0

0 if 1 ≤ j ≤ s −1.
(2.7)

Here, h > 0 denotes a bandwidth, and the kernel is defined in generalized form to overcome
edge effects. In particular, if h is small and ξ is not close to 0 or 1, then we can set Kh(u,ξ) =
K (u/h), where K is an “ordinary” order s kernel. If ξ is close to 1, then we can set Kh(u,ξ) =

K (u/h), where 
K is a bounded, compactly supported function satisfying

∞∫
0

u j 
K (u)du =
{

1 if j = 0

0 if 1 ≤ j ≤ s −1.

If ξ is close to 0, we can set Kh(u,ξ) = 
K (−u/h). There are, of course, other ways of over-
coming the edge-effect problem, but the boundary kernel approach used here works satisfactorily
and is simple analytically.

Now define

K p,h(x,ξ) =
p∏

k=1

Kh(x (k), ξ (k)),

where x (k) denotes the k-th component of the vector x . Define Kr,h similarly. Then

f̂ (−i)
X ZW (x, z,w) = 1

nh2p+r
1

n∑
j=1, j �=i

K p,h1(x − X j , x)K p,h1(w − W j ,w)Kr,h1(z − Z j , z),

and

c© 2007 The Review of Economic Studies Limited



1040 REVIEW OF ECONOMIC STUDIES

Ĝ(−i)(x, z) = 1

nh p+r
2 f̂ (−i)

X Z (x, z)

n∑
j=1, j �=i

Yi K p,h2(x − X j , x)Kr,h2(z − Z j , z),

where h1 and h2 are bandwidths, and

f̂ (−i)
X Z (x, z) = 1

nh p+r
2

n∑
j=1, j �=i

K p,h2(x − X j , x)Kr,h2(z − Z j , z).

The sample analogue of S(x, z) is

Sn(x, z) = n−1/2
n∑

i=1

[Yi − Ĝ(−i)(Xi , Zi )] f̂ (−i)
X ZW (x, Zi ,Wi )�(Zi , z).

The test statistic is

τn =
∫

S2
n(x, z)dxdz,

H0 is rejected if τn is large.

2.3. Relation to testing for omitted variables

As was mentioned in Section 1, an omitted variables test imposes stronger restrictions than are
implied by the hypothesis of exogeneity. We now show that τn is not a test of whether W is an
omitted variable in the mean regression of Y on (X, Z). Specifically, the null hypothesis of the
τn test (that X is exogenous) can be true and the null hypothesis of the omitted variable test false
simultaneously. The converse cannot occur. Therefore, the null hypothesis of the omitted variable
test is more restrictive than the exogeneity hypothesis of the τn test.

In a test that W is an omitted variable, the null hypothesis is H̃0 : P[E(Y | X, Z ,W ) =
E(Y | X, Z)] = 1. The alternative hypothesis is P[E(Y | X, Z ,W ) = E(Y | X, Z)] < 1. Tests of
H̃0 have been developed by Gozalo (1993), Fan and Li (1996), Lavergne and Vuong (2000),
and Aït-Sahalia, Bickel and Stoker (2001). The difference between these tests and τn is that τn

assumes that P[E(U | Z ,W ) = 0] = 1 always and P[E(U | X, Z) = 0] = 1 if H0 is true, but not
that P[E(U | X, Z ,W ) = 0] = 1. It is easy to show that E(U | Z ,W ) = E(U | X, Z) = 0 with
probability 1 does not imply that E(U | X, Z ,W ) = 0 with probability 1. The exogeneity null
allows the conditional mean of U given X and Z to vary with W. For example, let X , Z , W , and
ν be independent random variables with means of 0, and set U = XW +ν. Then E(U | Z ,W ) =
E(U | X, Z) = 0 but E(U | X, Z ,W ) = XW. The null hypothesis of the τn test is true, but the
null hypothesis of the omitted variable test is false. Thus, τn is not a test of the hypothesis that
W is an omitted variable. The hypothesis of exogeneity tested by τn is less restrictive than the
hypothesis that W is an omitted variable.

3. ASYMPTOTIC PROPERTIES

3.1. Regularity conditions

This section states the assumptions that are used to obtain the asymptotic properties of τn . Let
‖(x1, z1,w1)− (x2, z2,w2)‖ denote the Euclidean distance between the points (x1, z1,w1) and
(x2, z2,w2) in [0,1]2p+r . Let D j fX ZW denote any j-th partial or mixed partial derivative of
fX ZW . Set D0 fX ZW (x, z,w) = fX ZW (x, z,w). Let s ≥ 2 be an integer. Define V = Y −G(X, Z),
and let fX Z denote the density of (X, Z). The assumptions are as follows.

c© 2007 The Review of Economic Studies Limited
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1. (i) The support of (X, Z ,W ) is contained in [0,1]2p+r . (ii) (X, Z ,W ) has a probability den-
sity function fX ZW with respect to Lebesgue measure. (iii) There is a constant CX > 0 such
that fX Z (x, z) ≥ CX for all (x, z) ∈ supp(X, Z). (iv) There is a constant C f < ∞ such that
|D j fX ZW (x, z,w)| ≤ C f for all (x, z,w) ∈ [0,1]2p+r and j = 0,1, ...,s, where derivatives
at the boundary of supp(X, Z ,W ) are defined as one sided. (v) |Ds fX ZW (x1, z1,w1) −
Ds fX ZW (x2, z2,w2)| ≤ C f ‖(x1, z1,w1)− (x2, z2,w2)‖ for any s-th derivative and any
(x1, z1,w1), (x2, z2,w2) ∈ [0,1]2p+r . (vi) Tz is non-singular for almost every z ∈ [0,1]r .

2. (i) E(U | Z = z,W = w) = 0 and E(U2 | Z = z,W = w) ≤ CU V for each (z,w) ∈ [0,1]p+r ,
and some constant CU V < ∞. (ii) |g(x, z)| ≤ Cg for some constant Cg < ∞ and all (x, z) ∈
[0,1]p+r .

3. (i) The conditional mean function G satisfies |D j G(x, z)| ≤ C f for all (x, z) ∈ [0,1]p+r

and j = 0,1, ...,s. (ii) |DsG(x1, z1)− DsG(x2, z2)| ≤ C f ‖(x1, z1)− (x2, z2)‖ for any
s-th derivative and any (x1, z1, x2, z2) ∈ [0,1]2(p+r). (iii) E(V 2 | X = x, Z = z) ≤ CU V

for each (x, z) ∈ [0,1]p+r .
4. (i) Kh satisfies (2.7) and |Kh(u2,ξ) − Kh(u1,ξ)| ≤ CK |u2 − u1|/h for all u2, u1,

all ξ ∈ [0,1], and some constant CK < ∞. For each ξ ∈ [0,1], Kh(h,ξ) is supported on
[(ξ −1)/h,ξ/h]∩K, where K is a compact interval not depending on ξ . Moreover,

sup
h>0,ξ∈[0,1],u∈K

|Kh(hu,ξ)| < ∞.

(ii) The bandwidth h1 satisfies h1 = ch1n−1/(2s+2p+r), where ch1 < ∞ is a constant.
(iii) The bandwidth, h2, satisfies h2 = ch2n−α , where ch2 < ∞ is a constant and 1/(2s) <
α < 1/(p + r).
Assumption 1(iii) is used to avoid imprecise estimation of G in regions where fX Z is close
to 0. The assumption can be relaxed by replacing the fixed distribution of (X, Z ,W ) by
a sequence of distributions with densities { fnX ZW } and { fnX Z } (n = 1,2, ...) that satisfy
fnX Z (x, z) ≥ Cn for all (x, z) ∈ [0,1]p+q and a sequence {Cn} of strictly positive constants
that converges to 0 sufficiently slowly. This complicates the proofs but does not change
the results reported here. Assumption 1(vi) combined with the moment condition E(U |
X, Z) = 0 implies that g is identified and the instruments W are valid in the sense of being
suitably related to X .4 Assumption 4(iii) implies that the estimator of G is undersmoothed.
Undersmoothing prevents the asymptotic bias of Ĝ(−i) from dominating the asymptotic
distribution of τn . Assumption 4 requires the use of a higher-order kernel if p +r ≥ 4. The
remaining assumptions are standard in non-parametric estimation.

3.2. Asymptotic properties of the test statistic

To obtain the asymptotic distribution of τn under H0, define Vi = Yi − G(Xi , Zi )

Bn(x, z) = n−1/2
n∑

i=1

[Ui fX ZW (x, Zi ,Wi )− Vi tZi (Xi , x)/ fX Z (Xi , Zi )]�(Zi , z),

4. Tz is a self-adjoint, positive-semi-definite operator, so its eigenvalues are non-negative. Under 1(vi), Tz is
positive definite, and all its eigenvalues are strictly positive. If 1(vi) does not hold, then some eigenvalues are 0. Let A
denote the linear space spanned by the eigenvectors of Tz corresponding to non-zero eigenvalues. If 1(vi) does not hold,
then one can test for deviations from H0 such that g(·, z)−G(·, z) has a non-zero projection into A. It is not possible to test
for deviations from H0 for which g(·, z)− G(·, z) lies entirely in the complement of A. In non-parametric IV estimation,
validity of the instruments is equivalent to non-singularity of Tz . If Tz is non-singular, then whether the instruments are
“weak” or “strong” depends on the rate at which the eigenvalues of Tz converge to 0. The instruments are weak if the
eigenvalues converge rapidly and strong otherwise. There appears to be no simple, intuitive characterization of strength
or weakness of instruments in this setting. In particular, in non-parametric IV estimation, the strength of correlation of X
and W does not characterize the strength or weakness of W as an instrument.

c© 2007 The Review of Economic Studies Limited
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and

R(x1, z1; x2, z2) = E[Bn(x1, z1)Bn(x2, z2)].

Under H0, Ui = Vi . The distinction between Ui and Vi in the definition of Bn will be used
later to investigate the distribution of τn when H0 is false. Define the operator 	 on L2[0,1]p+r

by

(	ψ)(x, z) =
1∫

0

R(x, z; ξ,ζ )ψ(ξ,ζ )dξdζ .

Let {ω j : j = 1,2, . . .} denote the eigenvalues of 	 sorted so that ω1 ≥ ω2 ≥ ·· · ≥ 0.5 Let
{χ2

1 j : j = 1,2, . . .} denote independent random variables that are distributed as chi-square with
one degree of freedom. The following theorem gives the asymptotic distribution of τn under H0.6

Theorem 1. Let H0 be true. Then under assumptions 1–4,

τn →d
∞∑
j=1

ω jχ
2
1 j .

3.3. Obtaining the critical value

The statistic τn is not asymptotically pivotal, so its asymptotic distribution cannot be tabulated.
This section presents a method for obtaining an approximate asymptotic critical value. The
method is based on replacing the asymptotic distribution of τn with an approximate distribu-
tion. The difference between the true and approximate distributions can be made arbitrarily small
under both the null hypothesis and alternatives. Moreover, the quantiles of the approximate dis-
tribution can be estimated consistently as n → ∞. The approximate 1−α critical value of the τn

test is a consistent estimator of the 1−α quantile of the approximate distribution.
We now describe the approximation to the asymptotic distribution of τn . Under H0, τn is

asymptotically distributed as

τ̃ ≡
∞∑
j=1

ω jχ
2
1 j .

Given any ε > 0, there is an integer Kε < ∞ such that

0 < P

⎛
⎝ Kε∑

j=1

ω jχ
2
1 j ≤ t

⎞
⎠−P(τ̃ ≤ t) < ε

uniformly over t . Define

τ̃ε =
Kε∑
j=1

ω jχ
2
1 j .

5. R is a bounded function under the assumptions of Section 3.1. Therefore, 	 is a compact, completely continuous
operator with discrete eigenvalues.

6. A referee asked whether τn satisfies the Liapounov condition (Serfling, 1980, p. 30), which would imply that
τn is asymptotically normal. The answer is that τn does not satisfy the Liapounov condition. In our setting, the condition

is an/bn → 0 as n → ∞, where an =
(∑n

j=1 ων
j

)1/ν
and bn =

(∑n
j=1 ω2

j

)1/2
for some ν > 2. Boundedness of fX ZW

implies that 0 <
∑∞

j=1 ωc
j < ∞ for any c ≥ 2, so the convergence to 0 required by the Liapounov condition does not

happen.
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Let zεα denote the 1 −α quantile of the distribution of τ̃ε. Then 0 < P(τ̃ > zεα)−α < ε.
Thus, using zεα to approximate the asymptotic 1 − α critical value of τn creates an arbitrarily
small error in the probability that a correct null hypothesis is rejected. Similarly, use of the
approximation creates an arbitrarily small change in the power of the τn test when the null
hypothesis is false. The approximate 1 − α critical value for the τn test is a consistent estima-
tor of the 1 − α quantile of the distribution of τ̃ε. Specifically, let ω̂ j ( j = 1,2, . . . , Kε) be
a consistent estimator of ω j under H0. Then the approximate critical value of τn is the 1 − α
quantile of the distribution of

τ̂n =
Kε∑
j=1

ω̂ jχ
2
1 j .

This quantile can be estimated with arbitrary accuracy by simulation.
At the cost of additional analytic complexity, it may be possible to let ε → 0 and Kε → ∞

as n → ∞, thereby obtaining a consistent estimator of the asymptotic critical value of τn . How-
ever, this would likely require stronger assumptions than are made here while providing little
insight into the accuracy of the estimator or the choice of Kε in applications. This is because
the difference between the distributions of τ̂n and τ̃ is a complicated function of the spacings and
multiplicities of the ω j ’s (Hall and Horowitz, 2006). The spacings and multiplicities are unknown
in applications and appear difficult to estimate reliably.

In applications, Kε can be chosen informally by sorting the ω̂ j ’s in decreasing order and
plotting them as a function of j . They typically plot as random noise near ω̂ j = 0 when j is
sufficiently large. One can choose Kε to be a value of j that is near the lower end of the “random
noise” range. The rejection probability of the τn test is not highly sensitive to Kε, so it is not
necessary to attempt precision in making the choice.

The remainder of this section explains how to obtain the estimated eigenvalues {ω̂ j }.
Because V = U under H0, a consistent estimator of R(x1, z1; x2, z2) can be obtained by replacing
unknown quantities with estimators on the R.H.S. of

R(x1, z1; x2, z2)

= E
{[

fX ZW (x1, Z ,W )− tZ (X,x1)
fX Z (X,Z)

][
fX ZW (x2, Z ,W )− tZ (X,x2)

fX Z (X,Z)

]
�(Z , z1)�(Z , z2)V 2

}
.

To do this, let f̂ X ZW be a kernel estimator of fX ZW with bandwidth h. Define

t̂z(x1, x2) =
1∫

0

f̂ X ZW (x1, z,w) f̂ X ZW (x2, z,w)dw.

Estimate the Vi ’s by

V̂i = Yi − Ĝ(−i)(Xi , Zi ).

R(x1, z1; x2, z2) is estimated consistently by

R̂(x1, z1, x2, z2) = n−1
n∑

i=1

[
f̂ X ZW (x1, Zi ,Wi )− t̂Zi (Xi ,x1)

f̂ X Z (Xi ,Zi )

]

×
[

f̂ X ZW (x2, Zi ,Wi )− t̂Zi (Xi ,x2)

f̂ X Z (Xi ,Zi )

]
�(Zi , z1)�(Zi , z2)V̂ 2

i .

Define the operator 	̂ on L2[0,1]p+r by
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(	̂ψ)(x, z) =
1∫

0

R̂(x, z; ξ,ζ )ψ(ξ,ζ )dξdζ.

Denote the eigenvalues of 	̂ by {ω̂ j : j = 1,2, . . .} and order them so that ω̂1 ≥ ω̂2 ≥ ·· · ≥ 0.
The relation between the ω̂ j ’s and ω j ’s is given by the following theorem.

Theorem 2. Let assumptions 1–4 hold. Then ω̂ j − ω j = op[(logn)/(nh2p+r )1/2] as
n → ∞ for each j = 1,2, . . . .

To obtain an accurate numerical approximation to the ω̂ j ’s, let F̂(x, z) denote the n × 1
vector whose i-th component is [ f̂ X ZW (x, Zi ,Wi )− t̂Zi (Xi , x)/ f̂ XW (Xi , Zi )]�(Zi , z), and let ϒ

denote the n ×n diagonal matrix whose (i, i) element is V̂ 2
i . Then

R̂(x1, z1; x2, z2) = n−1 F̂(x1, z1)
′ϒ F̂(x2, z2).

The computation of the eigenvalues can now be reduced to finding the eigenvalues of a
finite-dimensional matrix. To this end, let {φ j : j = 1,2, . . .} be a complete, orthonormal basis
for L2[0,1]p+r . Then

f̂ X ZW (x, z,W )�(Z , z) =
∞∑
j=1

∞∑
k=1

d̂ jkφ j (x, z)φk(Z ,W ),

where

d̂ jk =
1∫

0

dx

1∫
0

dz1

1∫
0

dz2

1∫
0

dw f̂ X ZW (x, z1,w)�(z2, z1)φ j (x, z1)φk(z2,w),

and

t̂Z (X, x)�(Z , z) =
∞∑
j=1

∞∑
k=1

â jkφ j (x, z)φk(X, Z),

where

â jk =
1∫

0

dx1

1∫
0

dx2

1∫
0

dz1

1∫
0

dz2 t̂z1(x1, x2)�(z1, z2)φ j (x2, z2)φk(x1, z1).

Approximate f̂ X ZW (x, z,W )�(Z , z) and t̂z(X, x)�(Z , z) by the finite sums

� f (x, z,W, Z) =
L∑

j=1

L∑
k=1

d̂ jkφ j (x, z)φk(Z ,W ),

and

�t (x, z, X, Z) =
L∑

j=1

L∑
k=1

â jkφ j (x, z)φk(X, Z),

for some integer L < ∞. Since f̂ X ZW � and tZ� are known functions, L can be chosen to
approximate f̂ X ZW � and t̂Z� with any desired accuracy. Let � be the n × L matrix whose (i, j)
component is
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�i j = n−1/2
L∑

k=1

[d̂ jkφk(Zi ,Wi )− â jkφk(Xi , Zi )/ f̂ X Z (Xi , Zi )].

The eigenvalues of 	̂ are approximated by those of the L × L matrix �′ϒ�.

3.4. Consistency of the test against a fixed alternative model

In this section, it is assumed that H0 is false. That is, P[X, Z : g(X, Z) = G(X, Z)] < 1. Define
q(x, z) = g(x, z) − G(x, z). Let z̃α denote the 1 − α quantile of the distribution of τn under
sampling from the null-hypothesis model Y = G(X, Z) + V,E(V | X, Z) = 0. The following
theorem establishes consistency of the τn test against a fixed alternative hypothesis.

Theorem 3. Suppose that

1∫
0

[(T q)(x, z)]2dxdz > 0.

Let assumptions 1–4 hold. Then for any α such that 0 < α < 1,

lim
n→∞P(τn > z̃α) = 1.

Because T is non-singular, the τn test is consistent whenever g(x, z) differs from G(x, z) on
a set of (x, z) values whose probability exceeds 0.

3.5. Asymptotic distribution under local alternatives

This section obtains the asymptotic distribution of τn under the sequence of local alternative
hypotheses

Y = g(X, Z)+U ; E(U | Z ,W ) = 0; E(U | X, Z) = n−1/2�(X, Z), (3.1)

where � is a bounded function on [0,1]p+r . Under (3.1), the distributions of U and V depend
on n, n1/2(U − V ) = �(X, Z), and G(X, Z) = g(X, Z)+n−1/2�(X, Z). To provide a complete
characterization of the sequence of alternative hypotheses, it is necessary to specify the depen-
dence of the distributions of U and V on n. Here, it is assumed that

V = ν +n−1/2ε, (3.2)

where ε and ν are random variables whose distributions do not depend on n, E(ν | X, Z) = E(ν |
Z ,W ) = 0, V ar(ν) < ∞, E(ε | X, Z) = 0, E(ε | Z ,W ) = −E[�(X, Z) | Z ,W ], and Var(ε) < ∞.
It follows from (3.1) and (3.2) that

U = ν +n−1/2�(X, Z)+n−1/2ε. (3.3)

The following additional notation is used. Define

B̃n(x, z) = n−1/2
n∑

i=1

νi [ fX ZW (x, Zi ,Wi )− tZi (Xi , x)/ fX Z (Xi , Zi )]�(Zi , z).

and R̃(x1, z1; x2, z2) = E[B̃n(x1, z1)B̃n(x2, z2)]. Define the operator 	̃ on L2[0,1]p+r by
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(	̃ψ)(x, z) =
1∫

0

R̃(x, z; ξ,ζ )ψ(ξ,ζ )dξdζ.

Let {(ω̃ j ,ψ j ) : j = 1,2, . . .} denote the eigenvectors and orthonormal eigenvectors of 	̃.
Define µ(x, z) = (T�)(x, z), and

µ j =
1∫

0

µ(x, z)ψ j (x, z)dxdz.

Let {χ2
1 j (µ

2
j/ω̃ j ) : j = 1,2, . . .} denote independent random variables that are distributed

as non-central chi-square with one degree of freedom and non-central parameters {µ2
j/ω̃ j }. The

following theorem states the result.

Theorem 4. Let assumptions 1–4 hold. Under the sequence of local alternatives (3.1)–
(3.3),

τn →d
∞∑
j−1

ω̃ jχ
2
1 j (µ

2
j/ω̃ j ).

It follows from Theorems 2 and 4 that under (3.1)–(3.3),

limsup
n→∞

|P(τn > ẑεα)−P(τn > zα)| ≤ ε,

for any ε > 0, where ẑεα denotes the estimated approximate α-level critical value.

3.6. Uniform consistency

This section shows that for any ε > 0, the τn test rejects H0 with probability exceeding 1 − ε
uniformly over a set of functions g whose distance from G is O(n−1/2). This set contains devia-
tions from H0 that cannot be represented as sequences of local alternatives. Thus, the set is larger
than the class of local alternatives against which the power of τn exceeds 1 − ε. The practical
consequence of this result is to define a relatively large class of alternatives against which the τn

test has high power in large samples.
The following additional notation is used. Define q(x, z) = g(x, z)− G(x, z). Let fX ZW be

fixed. For each n = 1,2, . . . and finite C > 0, define Fnc as a set of distributions of (Y, X, Z ,W )
such that: (i) fX ZW satisfies assumption 1; (ii) E[Y − g(X, Z) | Z ,W ] = 0 for some function
g that satisfies assumption 2 with U = Y − g(X, Z); (iii) E[Y − G(X, Z) | X, Z ] = 0 for some
function G that satisfies assumption 3 with V = Y − G(X, Z); (iv) ‖T q‖ ≥ n−1/2C , where ‖·‖
denotes the L2 norm; and (v) hs

1(logn)‖q‖/‖T q‖ = o(1) as n → ∞. Fnc is a set of distributions
of (Y, X, Z ,W ) for which the distance of g from G shrinks to zero at the rate n−1/2 in the sense
that Fnc includes distributions for which ‖q‖ = O(n−1/2). Condition (v) rules out distributions
for which q depends on (x, z) only through sequences of eigenvectors of T whose eigenvalues
converge to 0 too rapidly. For example, let p = 1, r = 0, so Z is not in the model. Let {λ j ,φ j :
j = 1,2, . . .} denote the eigenvalues and eigenvectors of T ordered so that λ1 ≥ λ2 ≥ ·· · > 0.
Suppose that G(x) = φ1(x), g(x) = φ1(x) + φn(x), and the instrument is W̃ = φ1(W ). Then
h2

1 ‖q‖/‖T q‖ = h2
1/λn . Because h1 ∝ n−1/6, condition (v) is violated if λn = o(n−1/3). The

practical significance of condition (v) is that the τn test has low power when g differs from G
only through eigenvectors of T with very small eigenvalues. Such differences tend to oscillate
rapidly (i.e. to be very wiggly) and are unlikely to be important in most applications.
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The following theorem states the result of this section.

Theorem 5. Let assumption 4 hold. Then given any δ > 0, any α such that 0 < α < 1, and
any sufficiently large (but finite) C,

lim
n→∞ inf

Fnc

P(τn > zα) ≥ 1− δ,

and

lim
n→∞ inf

Fnc

P(τn > ẑεα) ≥ 1−2δ.

3.7. Alternative weights

This section compares τn with a generalization of the test of Bierens (1990) and Bierens and
Ploberger (1997). To minimize the complexity of the discussion, assume that p = 1 and r = 0, so
Z is not in the model. Let H(·, ·) be a bounded, real-valued function on [0,1]2 with the property
that ∥∥∥∥∥∥

1∫
0

H(z,w)s(w)dw

∥∥∥∥∥∥
2

= 0

only if s(w) = 0 for almost every w ∈ [0,1]. Then a test of H0 can be based on the statistic

τnH =
1∫

0

S2
nH (z)dz,

where

SnH (z) = n−1/2
n∑

i=1

[Yi − Ĝ(−i)(Xi )]H(z,Wi ).

If H(z,w) = H̃(zw) for a suitably chosen function H̃ , then τnH is a modification of the
statistic of Bierens (1990) and Bierens and Ploberger (1997) for testing the hypothesis that a
conditional mean function belongs to a specified, finite-dimensional parametric family. In this
section, it is shown that the power of the τnH test can be low relative to that of the τn test.
Specifically, there are combinations of density functions fXW and local alternative models (3.1)–
(3.3) such that an α-level τnH test based on a fixed H that does not depend on the sampled
population has asymptotic local power arbitrarily close to α, whereas the α-level τn test has
asymptotic local power that is bounded away from α. The opposite situation cannot occur under
the assumptions of this paper. That is, it is not possible for the asymptotic power of the α-level
τn test to approach α while the power of the α-level τnH test remains bounded away from α.

The conclusion that the power of τnH can be low relative to that of τn is reached by con-
structing an example in which the α-level τn test has asymptotic power that is bounded away from
α but the τnH test has asymptotic power that is arbitrarily close to α. To minimize the complexity
of the example, assume that G is known and does not have to be estimated. Define

B̄n(z) = n−1/2
n∑

i=1

Ui fXW (z,Wi ),
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B̄nH (z) = n−1/2
n∑

i=1

Ui H(z,Wi ),

R̄(z1, z2) = E[B̄n(z1)B̄n(z2)],and R̄H (z1, z2) = E[B̄nH (z1)B̄nH (z2)]. Also, define the operators
	̄ and 	̄H on L2[0,1] by

(	̄ψ)(z) =
1∫

0

R̄(z, x)ψ(x)dx,

and

(	̄Hψ)(z) =
1∫

0

R̄H (z, x)ψ(x)dx .

Let {ω̄ j , ψ̄ j : j = 1,2, . . .} and {ω̄ j H , ψ̄ j H : j = 1,2, . . .} denote the eigenvalues and eigen-
vectors of 	̄ and 	̄H , respectively, with the eigenvalues sorted in decreasing order. For � defined
as in (3.1), define µ̄(z) = (T�)(z),

µ̄H (z) =
1∫

0

1∫
0

�(x)H(x,w) fXW (x,w)dxdw,

µ̄ j =
1∫

0

µ̄(z)ψ̄ j (z)dz,

and

µ̄ j H =
1∫

0

µ̄H (z)ψ̄ j H (z)dz.

Then arguments like those used to prove Theorem 4 show that under the sequence of local
alternatives (3.1)–(3.3) with a known function G,

τn →d
∞∑
j=1

ω̄ jχ
2
1 j (µ̄

2
j/ω̄ j ),

and

τnH →d
∞∑
j=1

ω̄ j Hχ2
1 j (µ̄

2
j H/ω̄ j H ),

as n → ∞. Therefore, to establish the first conclusion of this section, it suffices to show that for
a fixed function H , fXW and � can be chosen so that ‖µ̄‖2 /

∑∞
j=1 ω̄ j is bounded away from 0

and ‖µ̄H‖2 /
∑∞

j=1 ω̄ j H is arbitrarily close to 0.
To this end, let φ1(x) = 1, and φ j+1(x) = 2−1/2 cos( jπx) for j ≥ 1. Let � > 1 be a finite

integer. Define

λ j =
{

1 if j = 1or �

e−2 j otherwise.
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Let

fXW (x,w) = 1+
∞∑
j=1

λ
1/2
j+1φ j+1(x)φ j+1(w).

Let E(U2 | W = w) = 1 for all w ∈ [0,1]. Then R̄(z1, z2) = t (z1, z2), ω̄ j = λ j , and
∑∞

j=1 ω̄ j

is non-zero and finite. Set �(x) = Dφ�(x) for some finite D > 0. Then ‖µ̄‖2 = D2λ2
� = D2. Since

H is fixed, it suffices to show that � can be chosen so that ‖µ̄H‖2 is arbitrarily close to 0. To do
this, observe that H(z,w) has the Fourier representation

H(z,w) =
∞∑

j,k=1

h jkφ j (z)φk(w),

where {h jk : j,k = 1,2, . . .} are constants. Moreover, ‖µ̄H‖2 = D2 ∑∞
j=1 h2

j�. Since H is bounded,
� can be chosen so that

∑∞
j=1 h2

j� < ε/D2 for any ε > 0. With this �, ‖µ̄H‖2 < ε, which estab-
lishes the first conclusion.

The opposite situation (a sequence of local alternatives for which ‖µ̄‖2 approaches 0 while
is ‖µ̄H‖2 remains bounded away from 0) cannot occur. To show this, assume without loss of
generality that the marginal distributions of X and W are U [0,1], E(U 2 | W = w) = 1 for all
w ∈ [0,1], and

∑∞
j=1 ω̄ j H = 1. Also, assume that ‖�‖2 < C� for some constant C� < ∞. Then,

1∫
0

1∫
0

H(z,w)2dzdw =
∞∑
j=1

ω̄ j H .

It follows from the Cauchy–Schwartz inequality that

‖µ̄H‖2 ≤
⎡
⎣ 1∫

0

1∫
0

H(z,w)2dzdw

⎤
⎦ 1∫

0

⎡
⎣∫

0

fXW (x,w)�(x)dx

⎤
⎦

2

dw

=
1∫

0

⎡
⎣∫

0

fXW (x,w)�(x)dx

⎤
⎦

2

dw

≤ ‖�‖2 ‖T�‖2

≤ C� ‖µ̄‖2 .

Therefore, ‖µ̄‖2 can approach 0 only if ‖µ̄H‖2 also approaches 0.

4. MONTE CARLO EXPERIMENTS

This section reports the results of a Monte Carlo investigation of the finite-sample performance
of the τn test. In the experiments, p = 1 and r = 0, so Z does not enter the model. Realizations
of (X,W ) were generated by X = �(ξ) and W = �(ζ), where � is the cumulative normal
distribution function, ζ ∼ N (0,1), ξ = ρζ + (1−ρ2)1/2ε, ε ∼ N (0,1), and ρ = 0·35 or ρ = 0·7,
depending on the experiment. Realizations of Y were generated from

Y = θ0 + θ1 X +σUU, (4.1)
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TABLE 1

Results of Monte Carlo experiments

Empirical probability
that H0 is rejected using

n η τn Hausman test τnH

ρ = 0·35

250 0·0 0·042 0·050 0·012
0·10 0·062 0·072 0·022
0·15 0·077 0·126 0·039
0·20 0·076 0·164 0·068
0·25 0·119 0·265 0·116

500 0·0 0·048 0·055 0·025
0·10 0·256 0·304 0·187
0·15 0·539 0·590 0·429
0·20 0·814 0·876 0·724
0·25 0·945 0·971 0·922

750 0·0 0·048 0·053 0·035
0·10 0·137 0·172 0·131
0·15 0·274 0·313 0·232
0·20 0·422 0·468 0·379
0·25 0·596 0·675 0·601

ρ = 0·70

250 0·0 0·047 0·051 0·028
0·10 0·156 0·188 0·079
0·15 0·293 0·366 0·192
0·20 0·464 0·568 0·360
0·25 0·705 0·802 0·563

500 0·0 0·048 0·055 0·025
0·10 0·256 0·304 0·187
0·15 0·539 0·590 0·429
0·20 0·814 0·876 0·724
0·25 0·945 0·971 0·922

750 0·0 0·050 0·049 0·025
0·10 0·383 0·479 0·298
0·15 0·728 0·806 0·646
0·20 0·929 0·958 0·896
0·25 0·994 0·997 0·983

where θ0 = 0, θ1 = 0·5, U = ηε + (1 − η2)1/2ν, ν ∼ N (0,1), σU = 0·2, and η is a constant
parameter whose value varies among experiments. H0 is true if η = 0 and false otherwise. To
provide a basis for judging whether the power of the τn test is high or low, we also report the
results of a Hausman (1978) type test of the hypothesis that the OLS and IV estimators of θ1 in
(4.1) are equal. The instruments used for IV estimation of (4.1) are (1,W ). In addition, we report
the results of simulations with τnH . The weight function is H(x,w) = exp(xw) and is taken
from Bierens (1990). The bandwidth used to estimate fXW was selected by cross-validation. The
bandwidth used to estimate fX is n1/5−7/24 times the cross-validation bandwidth. The kernel is
K (v) = (15/16)(1 − v2)2 I (|v| ≤ 1), where I is the indicator function. The asymptotic critical
value was estimated by setting Kε = 25. The results of the experiments are not sensitive to the
choice of Kε, and the estimated eigenvalues ω̂ j are very close to 0 when j > 25. The experiments
use sample sizes of n =250, 500, and 750 and the nominal 0·05 level. There are 1000 Monte Carlo
replications in each experiment.

The results of the experiments are shown in Table 1. The differences between the nominal
and empirical rejection probabilities of the τn and Hausman-type tests are small when H0 is true.
When H0 is false, the power of the τn test is, not surprisingly, somewhat smaller than the power
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of the Hausman-type test, which is parametric, but the differences in power are not great. The
performance of τnH is worse than that of τn . When H0 is true, the difference between the nominal
and empirical rejection probabilities of the τnH test is relatively large, and the power of the τnH

test is usually lower than that of the τn test.

5. EXOGENEITY AND CONSUMER EXPANSION PATHS

The empirical analysis of consumer expansion paths (or Engel curves) concerns the relationship
between expenditures on specific commodities and total consumption; see Deaton (1998), for
example. The shape of the expansion path defines whether a good is a necessity or a luxury,
and knowledge of the expansion path allows the researcher to measure reactions to policies that
change the resources allocated to individuals across the wealth distribution. The relationship we
wish to recover for policy analysis is the structural function that describes changes in commodity
demands in response to exogenous changes in overall consumption. In household expenditure
survey data it is likely that the total consumption (expenditure) variable will be endogenous
for the expansion path, and standard non-parametric regression estimators will not recover the
structural relationship of interest.

Here we explore the expansion path relationship for leisure services bought by consumers
in a particular month. This curve has been shown to be non-linear in non-parametric regression
analysis (see Blundell, Duncan and Pendakur, 1998) and so poses a particularly acute problem
in estimation under endogeneity. We present an empirical application of our test statistic τn to
this expansion path problem and assess whether we can reject the exogeneity hypothesis for
total consumption in the leisure services expansion path. The curve is given by (2.3) with p = 1
and r = 0, where Y denotes the expenditure share of services, X denotes the logarithm of total
expenditures, and W denotes annual income from wages and salaries of the head of household.

The data consist of household-level observations from the British Family Expenditure Sur-
vey, which is a popular data source for studying consumer behaviour.7 This is a diary-based
household survey that is supplemented by recall information. We use a subsample of 1518 mar-
ried couples with one or two children and an employed head of household.8 W should be a good
instrument for X if income from wages and salaries is not influenced by household budgeting
decisions.

The bandwidths for estimating fXW were selected by the method described in the Monte
Carlo section. The kernel is the same as the one used in the Monte Carlo experiments. As in
the experiments, the critical value of τn was estimated by setting Kε = 25. The τn test of the
hypothesis that X is exogenous gives τn = 0·162 with a 0·05-level critical value of 0·151. Thus,
the test rejects the hypothesis that X is exogenous.

Parametric specifications are often linear or quadratic in X (Muellbauer, 1976; Banks,
Blundell and Lewbel, 1997). Consequently, the hypothesis was also tested by comparing the
OLS and IV estimates of θ1 and θ2 in the quadratic model

Y = θ0 + θ1 X + θ2 X2 +U.

The instruments are (1,W,W 2). The hypothesis that the OLS estimates of θ1 and θ2 equal
the IV estimates is rejected at the 0·05 level. Thus, the τn test and the parametric test both reject
the hypothesis that the logarithm of total expenditures is exogenous.

7. See Blundell, Pashardes and Weber (1993), for example.
8. The data are available on the Review’s website. This is also the sample selection used in the Blundell et al.

(2007) study.
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6. CONCLUSIONS

Endogeneity of explanatory variables is an important problem in applied econometrics. Erro-
neously assuming that explanatory variables are exogenous can cause estimation results to be
highly misleading. Conversely, unnecessarily assuming that one or more variables are endoge-
nous can greatly reduce estimation precision, especially in the non-parametric setting considered
in this paper. This paper has described a test for exogeneity of explanatory variables that min-
imizes the need for auxiliary assumptions that are not required by the definition of exogeneity.
Specifically, the test does not make parametric functional form assumptions, thereby avoiding the
possibility of obtaining a misleading result due to model misspecification. In addition, the test
described here does not make the auxiliary assumptions that are implied by a test for omitted IV.
We have shown that the hypothesis of exogeneity can be true and the hypothesis of no omitted
variables false simultaneously. The opposite situation cannot occur. Thus, an omitted variables
test requires assumptions that are stronger than implied by exogeneity and can erroneously reject
the hypothesis of exogeneity due to failure of the auxiliary conditions to hold. We have illustrated
the usefulness of the new exogeneity test through Monte Carlo experiments and an application to
estimation of Engel curves.

APPENDIX : PROOFS OF THEOREMS

To minimize the complexity of the presentation, we assume that p = 1, r = 0, and s = 2. The proofs for p > 1,
r > 0, and/or s > 2 are identical after replacing quantities for p = 1, r = 0, and s = 2 with the analogous quantities for
the more general case. Let fXW denote the density function of (X,W ).

Define

Sn1(z) = n−1/2
n∑

i=1

Ui fXW (z,Wi ),

Sn2(z) = n−1/2
n∑

i=1

[g(Xi )− G(Xi )] fXW (z,Wi ),

Sn3(z) = n−1/2
n∑

i=1

[G(Xi )− Ĝ(−i)(Xi )] fXW (z,Wi ),

Sn4(z) = n−1/2
n∑

i=1

Ui [ f̂ (−i)
XW (z,Wi )− fXW (z,Wi )],

Sn5(z) = n−1/2
n∑

i=1

[g(Xi )− G(Xi )][ f̂ (−i)
XW (z,Wi )− fXW (z,Wi )],

and

Sn6(z) = n−1/2
n∑

i=1

[G(Xi )− Ĝ(−i)(Xi )][ f̂ (−i)
XW (z,Wi )− fXW (z,Wi )].

Then

Sn(z) =
6∑

j=1

Snj (z).

Define Vi = Yi − G(Xi ).

Lemma A1 As n → ∞,

Sn3(z) = −n−1/2
n∑

i=1

Vi t (Xi , z)/ fX (Xi )+ rn(z),

where
∫ 1

0 r2
n (z)dz = op(1).
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Proof. Define

R(−i)
n1 (x) = 1

nh2 fX (x)

n∑
j=1, j �=i

V j Kh2 (x − X j , x),

R(−i)
n2 (x) = 1

nh2 fX (x)

n∑
j=1, j �=i

[G(X j )− G(x)]Kh2 (x − X j , x),

Sn3a(z) = n−1/2
n∑

i=1

Ei [R(−i)
n1 (Xi ) fXW (z,Wi )],

where Ei denotes the expected value over i-subscripted random variables,

Sn3b(z) = n−1/2
n∑

i=1

{R(−i)
n1 (Xi ) fXW (z,Wi )− Ei [R(−i)

n1 (Xi ) fXW (z,Wi )]},

and

Sn3c(z) = n−1/2
n∑

i=1

R(−i)
n2 (Xi ) fXW (z,Wi ).

Standard calculations for kernel estimators show that

Ĝ(−i)(x)− G(x) = 1

nh2 fX (x)

∑
j=1, j �=i

[Y j − G(x)]Kh2 (x − X j , x)+ O

[
(logn)2

nh2
+h4

2

]
,

uniformly over x ∈ [0,1]. Therefore,

Sn3(z) = −[Sn3a(z)+ Sn3b(z)+ Sn3c(z)]+op(1),

uniformly over z ∈ [0,1]. Lengthy but straightforward calculations show that

E

1∫
0

S2
n3b(z)dz = o(1), E

1∫
0

S2
n3c(z)dz = o(1),

as n → ∞. Therefore,

1∫
0

S2
n3b(z)dz = op(1), (A.1)

and

1∫
0

S2
n3c(z)dz = op(1), (A.2)

by Markov’s inequality. Moreover, we can write

Ei [R(−i)
n1 (Xi ) fXW (z,Wi )] = 1

nh2

n∑
j=1, j �=i

V j

1∫
0

[ fXW (x,w) fXW (z,w)/ fX (x)]Kh2 (x − X j , x)dxdw

= 1

n

n∑
j=1, j �=i

V j [t (X j , z)/ fX (X j )+ρn1(X j , z)],

where ρn1(x, z) = O(h2
2) uniformly over (x, z) ∈ [0,1]2. Therefore,

Sn3a(z) = n−1/2
n∑

i=1

Vi t (Xi , z)/ fX (Xi )+ρn2(z), (A.3)

where E
∫ 1

0 ρ2
n2(z)dz = o(1) as n → ∞. The lemma follows by combining (A.1)–(A.3). ‖
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Lemma A2 As n → ∞,
∫ 1

0 S2
n4(z)dz = op(1).

Proof. Define

Dn = n−1 E
n∑

i=1

n∑
j=1, j �=i

UiU j

1∫
0

[ f̂ (−i)
XW (z,Wi )− fXW (z,Wi )][ f̂ (− j)

XW (z,W j )− fXW (z,W j )]dz.

Then

E

1∫
0

S2
n4(z)dz = Dn +n−1 E

n∑
i=1

U2
i

1∫
0

[ f̂ (−i)
X (z,Wi )− fX (z,Wi )]

2dz

= Dn +o(1). (A.4)

Now define

f̂ (−i,− j)
XW (z,w) = 1

nh2
1

n∑
k=1,k �=i, j

Kh1 (z − Xk , z)Kh1 (w − Wk ,w),

and

δ j (z,w) = 1

nh2
1

Kh1 (z − X j , z)Kh1 (w − W j ,w).

Then Dn = Dn1 +2Dn2 + Dn3, where

Dn1 = n−1 E
n∑

i=1

n∑
j=1, j �=i

Ui U j

1∫
0

[ f̂ (−i,− j)
XW (z,Wi )− fXW (z,Wi )][ f̂ (− j,−i)

XW (z,Wi )− fXW (z,W j )]dz

Dn2 = n−1 E
n∑

i=1

n∑
j=1, j �=i

Ui U j

1∫
0

[ f̂ (−i,− j)
XW (z,Wi )− fXW (z,Wi )]δ j (z,Wi )dz,

and

Dn3 = n−1 E
n∑

i=1

n∑
j=1, j �=i

Ui U j

1∫
0

δi (z,W j )δ j (z, ,Wi )dz.

But E(U | W ) = 0. Therefore, Dn1 = Dn2 = 0, and Dn3 = O[(nh2
1)−1]. The lemma now follows from Markov’s

inequality. ‖

Lemma A3 As n → ∞, Sn6(z) = op(1) uniformly over z ∈ [0,1].

Proof. This follows from f̂ (−i)
XW (x,w) − fXW (x,w) = O[(logn)/(nh2

1)1/2 + h2
1] a.s. uniformly over (x,w) ∈

[0,1]2 and Ĝ(−i)(x)− G(x) = O[(logn)/(nh2)1/2 +h2
2] a.s. uniformly over x ∈ [0,1]. ‖

Proof of Theorem 1. Under H0, Sn2(z) = Sn5(z) = 0 for all z ∈ [0,1]. Therefore, it follows from Lemmas A1–A3
that

τn =
1∫

0

B2
n (z)dz +op(1).

The result follows by writing
∫ 1

0 [B2
n (z)− E Bn(z)2]dz as a degenerate U statistic of order two. See, for example

Serfling (1980, pp. 193–194). ‖

Proof of Theorem 2. |ω̂ j − ω̃ j | = O(‖	̂− 	̃‖) by theorem 5.1a of Bhatia, Davis and McIntosh (1983). Moreover,
standard calculations for kernel density estimators show that ‖	̂− 	̃‖ = O[(logn)/(nh2

1)1/2]. Part (i) of the theorem
follows by combining these two results. Part (ii) is an immediate consequence of part (i). ‖
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Proof of Theorem 3. Let z̃α denote the 1−α quantile of the distribution of
∑∞

j=1 ω̃ j χ
2
1 j . Because of Theorem 2,

it suffices to show that if H1 holds, then under sampling from Y = g(X)+U ,

lim
n→∞ P(τn > z̃α) = 1.

This will be done by proving that

plim
n→∞

n−1τn =
1∫

0

[(T q)(z)]2dz > 0.

To do this, observe that by a uniform law of large numbers of Pakes and Pollard (1989, lemma 2.8), n−1/2Sn2(z) =
(T q)(z) + op(1) uniformly over z ∈ [0,1]. Moreover, n−1/2Sn5(z) = op(1) uniformly over z ∈ [0,1] because f̂ (−i)

XW
(z,w)− fXW (z,w) = O[(logn)/(nh2

1)1/2 +h2
1] a.s. uniformly over (z,w) ∈ [0,1]2. Combining these results with Lem-

mas A1–A3 yields

n−1/2Sn(z) = n−1/2 Bn(z)+ (T q)(z)+ rn(z),

where
∫ 1

0 r2
n (z)dz = op(1) as n → ∞. It follows from Theorem 1 that n−1 ∫ 1

0 B2
n (z)dz = op(1). Therefore, n−1τn →p∫ 1

0 [(T q)(z)]2dz. ‖

Proof of Theorem 4. The conclusions of Lemmas A1–A3 hold under (3.1)–(3.3). Therefore,

Sn(z) = Bn(z)+ Sn2(z)+ Sn5(z)+ rn(z),

where
∫ 1

0 r2
n (z)dz = op(1). Moreover,

Sn5(z) = n−1
n∑

i=1

�(Xi )[ f̂ (−i)
XW (z,Wi )− fXW (z,Wi )] = o(1),

a.s. uniformly over z. In addition

Sn2(z) = n−1
n∑

i=1

�(Xi ) fXW (z,Wi ) = µ(z)+o(1),

a.s. uniformly over z. Therefore, Sn(z) = Bn(z)+µ(z)+ rn(z). But

Bn(z) = B̃n(z)+op(1),

uniformly over z ∈ [0,1]. Therefore, it suffices to find the asymptotic distribution of

1∫
0

[B̃n(z)+µ(z)]2dz =
∞∑
j=1

(b̃ j +µ j )
2,

where

b̃ j =
1∫

0

B̃n(z)ψ j (z)dz.

The random variables b̃ j +µ j are asymptotically distributed as independent N (µ j , ω̃ j ) variates. Now proceed as
in, for example, Serfling’s (1980, pp. 195–199) derivation of the asymptotic distribution of a degenerate, order-2 U
statistic. ‖

The following definitions are used in the proof of Theorem 5. For each distribution π ∈Fnc , let A(π) be a random
variable. Let {cn : n = 1,2, . . .} be a sequence of positive constants. Write A = Op(cn) uniformly over Fnc if for each
ε > 0 there is a constant Mε such that

sup
π∈Fnc

P[|A(π)| /cn > Mε] < ε.

For each π ∈Fnc , let {An(π) : n = 1,2, . . .} be a sequence of random variables. Write An = op(1) uniformly over
Fnc if for each ε > 0

lim
n→∞ sup

π∈Fnc

P[|An(π)| > ε] = 0.
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Proof of Theorem 5. Let zα denote the critical value of τn . Observe that zα is bounded uniformly over Fnc .
The arguments used to prove Lemmas A1–A3 show that

∫ 1
0 S2

nj (z)dz = op(1) for j = 4,6 and
∫ 1

0 S2
n3(z)dz = Op(1)

uniformly over Fnc . In addition, an application of Markov’s inequality shows that
∫ 1

0 S2
n1(z)dz = Op(1) uniformly over

Fnc . Define

S̃n(z) = Sn1(z)+ Sn3(z)+ Sn4(z)+ Sn6(z),

and

Dn(z) = Sn2(z)+ Sn5(z).

Let ‖·‖ denote the L2[0,1] norm. Use the inequality a2 ≥ 0·5b2 −(b−a)2 with a = Sn and b = Sn2 + Sn5 to obtain

P(τn > zα) ≥ P(0·5‖Dn‖2 −‖S̃n‖2 > zα).

For any finite M > 0,

P(0·5‖Dn‖2 −‖S̃n‖2 ≤ zα) = P(0·5‖Dn‖2 ≤ zα +‖S̃n‖2,‖S̃n‖2 ≤ M)

+P(0·5‖Dn‖2 ≤ zα +‖S̃n‖2,‖S̃n‖2 > M)

≤ P(0·5‖Dn‖2 ≤ zα + M)+ P(‖S̃n‖2 > M).

‖S̃n‖ = Op(1) uniformly over Fnc . Therefore, for each ε > 0 there is Mε < ∞ such that for all M > Mε

P(0·5‖Dn‖2 −‖S̃n‖2 ≤ zα) ≤ P(0·5‖Dn‖2 ≤ zα + M)+ ε,

for all distributions in Fnc . Equivalently,

P(0·5‖Dn‖2 −‖S̃n‖2 > zα) ≥ P(0·5‖Dn‖2 > zα + M)− ε,

and

P(τn > zα) ≥ P(0·5‖Dn‖2 > zα + M)− ε. (A.5)

Now

Dn(z) = n−1/2
n∑

i=1

[g(Xi )− G(Xi )] f̂ (−i)
XW (z,Wi ).

Therefore,

E Dn(z) = n−1/2 E
n∑

i=1

[g(Xi )− G(Xi )][ fXW (z,Wi )+h2
1 Rn(z)],

where Rn(z) is non-stochastic, does not depend on g or G, and is bounded uniformly over z ∈ [0,1]. It follows that

E Dn(z) = n1/2(T q)(z)+ O[n1/2h2
1‖q‖],

and

E Dn(z) ≥ 0·5n1/2(T q)(z),

for all distributions in Fnc and all sufficiently large n. Moreover,

Dn(z)− E Dn(z) = n−1/2
n∑

i=1

[q(Xi )E(−i) f̂ (−i)
XW (z,Wi )− Eq(X) f̂ (−i)

XW (z,Wi )]

+n−1/2
n∑

i=1

q(Xi )[ f (−i)
XW (z,Wi )− E(−i) f̂ (−i)

XW (z,Wi )]

≡ Dn1(z)+ Dn2(z),
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where E(−i) denotes the expectation with respect to the distribution of {X j ,W j : j = 1, . . . ,n; j �= i}. It is clear that
‖Dn1‖2 = Op(1) uniformly over Fnc . Moreover, it follows from the properties of kernel estimators that

|Dn2(z)| ≤ rn logn

nh1

n∑
i=1

|q(Xi )| = rn logn

h1
[E |q(X)|+ Op(n−1/2)],

uniformly overFnc , where rn = O(1) almost surely as n → ∞ and depends only on the distribution of (X,W ). Therefore,

‖Dn − E Dn‖2 ≤
(

rn logn

n1/2h 1

)2
n(E |q|)2 Op(1)+ Op(1).

A further application of a2 ≥ 0·5b2 − (b −a)2 with a = Dn and b = E Dn gives

‖Dn‖2 ≥ n ‖T q‖2

[
0·125−

(
rn logn
n1/2h3

1

)2 h4
1(E |q|)2

‖T q‖2 Op(1)

]
+ Op(1)

= n ‖T q‖2

[
0·125−

(
rn logn
n1/2h3

1

)2
op(1)

]
+ Op(1)

uniformly over Fnc . Therefore, if C is sufficiently large, 0·5‖Dn‖2 > zα + M with probability approaching 1 as n → ∞
uniformly over Fnc . ‖
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