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Introduction

This presentation investigates the role of restrictions from economic
theory in the microeconometric estimation of nonparametric models
of consumer behaviour.

Objective is to uncover demand responses from consumer expenditure
survey data.

Inequality restrictions from revealed preference are used to improve
the performance of nonparametric estimates of demand responses.

Particular attention is given to nonseparable unobserved heterogeneity
and endogeneity.
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Introduction

New insights are provided about the price responsiveness of demand

especially across di¤erent income groups and across unobserved
heterogeneity.

Derive welfare costs of relative price and tax changes.
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The Problem

Assume every consumer is characterised by observed and unobserved
heterogeneity (h, ε) and responds to a given budget (p,x), with a
unique, positive J-vector of demands

q = d(x ,p,h, ε),

where demand functions d(x ,p,h, ε) : RK
++ ! RJ

++ satisfy
adding-up: p0q = x for all prices and total outlays x 2 R.

ε 2 RJ�1, J � 1 vector of (non-separable) unobservable heterogeneity.
Assume ε? (x ,h) for now.
The environment is described by a continuous distribution of q, x and
ε, for discrete types h.
Will typically suppress observable heterogeneity h in what follows.
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Non-Separable Demand

For demands q = d(x ,p, ε):

One key drawback has been the (additive) separability of ε assumed
in empirical speci�cations.

We will consider the non-separable case and impose conditions on
preferences that ensure invertibility in ε (which corresponds to
monotonicity for J = 2 which is our leading case). Assume unique
inverse structural demand functions exists - Fig 1a.
Here we consider the case of a small number of price regimes and use
revealed preference inequalities applied to d(x ,p, ε) to improve
demand predictions

In other related work Slutsky inequality conditions have been shown
to help in �smoothing�demands for �dense�or continuously distributed
prices
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Revealed Preference and Expansion Paths

Suppose we have a discrete price distribution, fp (1) ,p (2) , ...p (T )g.
Observe choices of large number of consumers for a small (�nite) set
of prices - e.g. limited number of markets/time periods

Market de�ned by time and/or location.

Questions to address here:

How do we devise a powerful test of RP conditions in this
environment?
How do we estimate demands for some new price point p0?

In this case Revealed Preference conditions, in general, only allow
set identi�cation of demands.
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Revealed Preference and Expansion Paths

How do we devise a powerful test of RP?

Afriat�s Theorem
Data (pt ,qt ) satisfy GARP if qtRqs implies psqs � psqt

� if qt is indirectly revealed preferred to qs then qs is not
strictly preferred to qt

9 a well behaved concave utility function � the data satisfy GARP
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Revealed Preference and Expansion Paths

Data: Observational or Experimental - Is there a best design for
experimental data?

Blundell, Browning and Crawford (Ecta, 2003) develop a method for
choosing a sequence of total expenditures that maximise the power of
tests of RP (GARP).

De�ne sequential maximum power (SMP) path

fx̃s , x̃t , x̃u , ...x̃v , xw g = fp0sqt (x̃t ),p0tqu(x̃u),p0vqw (x̃w ), xw g

Proposition (BBC, 2003) Suppose that the sequence

fqs (xs ) ,qt (xt ) ,qu (xu) ...,qv (xv ) ,qw (xw )g

rejects RP. Then SMP path also rejects RP. (Also de�ne Revealed
Worse and Revealed Best sets.)
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Revealed Preference and Expansion Paths

- great for experimental design but we have Observational Data

continuous micro-data on incomes and expenditures

�nite set of observed price and/or tax regimes (across time and
markets)

discrete demographic di¤erences across households

use this information alone, together with revealed preference theory to
assess consumer rationality and to place �tight�bounds on demand
responses and welfare measures.
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Revealed Preference and Expansion Paths

So, is there a best design for observational data?

Suppose we have a discrete price distribution,
fp (1) ,p (2) , ...p (T )g.
Observe choices of large number of consumers for a small (�nite) set
of prices - e.g. limited number of markets/time periods. Market
de�ned by time and/or location.

Given t, qt (x ; ε) = d(x ,p(t), ε) is the (quantile) expansion path of
consumer type ε facing prices p(t).
Fig 1b
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Support Sets and Bounds on Demand Responses:

Suppose we observe a set of demands fq1,q2, ...qT g which record the
choices made by a particular consumer (ε) when faced by the set of
prices fp1,p2, ...pT g .

What is the support set for a new price vector p0 with new total
outlay x0?
Varian support set for d (p0, x0, ε) is given by:

SV (p0, x0, ε) =
�
q0 :

p00q0 = x0, q0 � 0 and
fpt ,qtgt=0...T satis�es RP

�
.

In general, support set will only deliver set identi�cation of
d(x ,p0, ε).
Figure 2(a) - generating a support set: SV (p0, x0, ε) for consumer
of type ε
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e-Bounds on Demand Responses

Can we improve upon SV (p0, x0, ε)?

Yes! We can do better if we know the expansion paths
fpt ,qt (x , ε)gt=1,..T .
For consumer ε: De�ne intersection demands eqt (ε) = qt (x̃t , ε) by
p00qt (x̃t , ε) = x0
Blundell, Browning and Crawford (2008): The set of points that are
consistent with observed expansion paths and revealed preference is
given by the support set:

S (p0, x0, ε) =
�
q0 :

q0 � 0, p00q0 = x0
fp0,pt ;q0, eqt (ε)gt=1,...,T satisfy RP

�
By utilizing the information in intersection demands, S (p0, x0, ε)
yields tighter bounds on demands.
These are sharp in the case of 2 goods. (BBC, 2003, for RW bounds
for the many goods case).
Figure 2b, c - S (p0, x0, ε) the identi�ed set of demand responses for
p0, x0, ε given t = 1, ...,T .
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Unrestricted Demand Estimation

Observational setting: At time t (t = 1, ...,T ), we observe a random
sample of n consumers facing prices p (t).

Observed variables (ignoring other observed characteristics of
consumers):

p (t) = prices that all consumers face,

qi (t) = (q1,i (t) , q2,i (t)) = consumer i�s demand,

xi (t) = consumer i�s income (total budget)
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Unrestricted Demand Estimation

We �rst wish to recover demands for each of the observed price
regimes t,

q (t) = d(x(t), t, ε), t = 1, ...,T ,

where d is the demand function in price regime p (t).

We will here only discuss the case of 2 goods with 1-dimensional error:

ε 2 R,

d(x(t), t, ε) = (d1(x(t), t, ε), d2(x(t), t, ε)) .

Given t, d1(x(t), t, ε) is exactly the quantile expansion path (Engel
curve) for good 1 at prices p (t).
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Unrestricted Demand Estimation

Assumption A.1: The variable x (t) has bounded support, x (t)
2 X = [a, b] for �∞ < a < b < +∞, and is independent of
ε � U [0, 1].

Assumption A.2: The demand function d1 (x , t, ε) is invertible in ε
and is continuously di¤erentiable in (x , ε).

Identi�cation Result: d1(x , t, τ) is identi�ed as the τth quantile of
q1jx(t):

d1 (x , t, τ) = F�1q1(t)jx (t) (τjx) .

Thus, we can employ standard nonparametric quantile regression
techniques to estimate d1.
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Unrestricted Demand Estimation

We propose to estimate d using sieve methods.

Let
ρτ (y) = (I fy < 0g � τ) y , τ 2 [0, 1] ,

be the check function used in quantile estimation.

The budget constraint de�nes the path for d2. We let D be the set of
feasible demand functions,

D =
�
d � 0 : d1 2 D1, d2 (x , t, τ) =

x � p1 (t) d1 (x , t, ε (t))
p2 (t)

�
.
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Unrestricted Demand Estimation

Let (qi (t) , xi (t)), i = 1, ..., n, t = 1, ...,T , be i.i.d. observations
from a demand system, qi (t) = (q1i (t) , q2i (t))

0.

We then estimate d (t, �, τ) by

d̂ (�, t, τ) = arg min
dn2Dn

1
n

n

∑
i=1

ρτ (q1i (t)� d1n (xi (t))) , t = 1, ...,T ,

where Dn is a sieve space (Dn ! D as n! ∞).
Let Bi (t) = (Bk (xi (t)) : k 2 Kn) 2 RjKn j denote basis functions
spanning the sieve Dn.
Then d̂1 (x , t, τ) = ∑k2Kn π̂k (t, τ)Bk (x), where π̂k (t, τ) is a
standard linear quantile regression estimator:

π̂ (t, τ) = arg min
π2RjKn j

1
n

n

∑
i=1

ρτ

�
q1i (t)� π0Bi (t)

�
, t = 1, ...,T .
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Unrestricted Demand Estimation

Adapt results in Belloni, Chen, Chernozhukov and Liao (2010) for
rates and asymptotic distribution of the linear sieve estimator:

jjd̂ (�, t, τ)� d (�, t, τ) jj2 = OP
�
n�m/(2m+1)

�
,

p
nΣ�1/2

n (x , τ)
�
d̂1 (x , t, τ)� d1 (x , t, τ)

�
!d N (0, 1) ,

where Σn (x , τ)! ∞ is an appropriate chosen weighting matrix.
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RP-restricted Demand Estimation

No reason why estimated expansion paths for a sequence of prices
t = 1, ...,T should satisfy RP.

In order to impose the RP restrictions, we simply de�ne the
constrained sieve as: DTC ,n = DTn \ fdn (�, �, τ) satis�es RPg .
We de�ne the constrained estimator by:

d̂C (�, �, τ) = arg min
dn(�,�,τ)2DTC ,n

1
n

T

∑
t=1

n

∑
i=1

ρτ (q1,i (t)� d1,n (t, xi (t))) .

Since RP imposes restrictions across t, the above estimation problem
can no longer be split up into T individual sub problems as the
unconstrained case.
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RP-restricted Demand Estimation

Theoretical properties of restricted estimator: In general, the RP
restrictions will be binding. This means that d̂C will be on the
boundary of DTC ,n. So the estimator will in general have non-standard
distribution (estimation when parameter is on the boundary).

Too hard a problem for us....

Instead: We introduce DTC ,n (ε) as the set of demand functions
satisfying

x (t) � p (t)0 d (x (s) , s, τ) + ε, s < t, t = 2, ...,T ,

for some ("small") ε � 0.
Rede�ne the constrained estimator to be the optimizer over
DTC ,n (ε) � DTC ,n.
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Under assumptions A1-A3 and that d0 2 DTC , then for any ε > 0:

jjd̂ε
C (�, t, τ)� d0 (�, t, τ) jj∞ = OP (kn/

p
n) +OP

�
k�mn

�
,

for t = 1, ...,T . Moreover, the restricted estimator has the same
asymptotic distribution as the unrestricted estimator.

Also derive convergence rates and valid con�dence sets for the
support sets.

In practice, use simulation methods or the modi�ed bootstrap
procedures developed in Bugni (2009, 2010) and Andrews and Soares
(2010); alternatively, the subsampling procedure of CHT.
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Demand Bounds Estimation

Simulation Study: Cobb-Douglas demand function.

95% con�dence bands of demand bounds.
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Figure: Performance of demand bound estimator.
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Testing for Rationality

Constrained demand and bounds estimators rely on the fundamental
assumption that consumers are rational.

We wish to test the null of consumer rationality.
Let Sp0,x0 denote the set of demand sequences that are rational given
prices and income:

Sp0,x0 =

�
q 2 BTp0,x0 :

9V > 0,λ � 1 :
V (t)� V (s) � λ (t) p (t)0 (q (s)� q (t))

�
.
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Testing for Rationality

Test statistic: Given the vector of unrestricted estimated
intersection demands, bq, we compute its distance from Sp0,x0 :

ρn (bq,Sp0,x0) := inf
q2Sp0 ,x0

kbq�qk2Ŵ test
n
,

where k�kŴ test
n
is a weighted Euclidean norm,

kbq�qk2Ŵ test
n
=

T

∑
t=1
(bq (t)� q (t))0 Ŵ test

n (t) (bq (t)� q (t)) .

Distribution under null: Using Andrews (1999,2001),

ρn (bq,Sp0,x0)!d ρ (Z ,Λp0,x0) := inf
λ2Λp0 ,x0

kλ� Zk2 ,

where Λp0,x0 is a cone that locally approximates Sp0,x0 and
Z � N (0, IT ).
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Estimating e-Bounds on Local Consumer Responses

For each household de�ned by (x , ε), the parameter of interest is the
consumer response at some new relative price p0 and income x or at
some sequence of relative prices. The later de�nes the demand curve
for (x , ε).

A typical sequence of relative prices in the UK:

Figure 4: Relative prices in the UK and a �typical�relative price
path p0.
Figure 5: Engel Curve Share Distribution
Figure 6: Density of Log Expenditure.
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Estimation

In the estimation, we use log-transforms and polynomial splines

log d1,n(log x , t, τ) =
qn

∑
j=0

πj (t, τ) (log x)
j

+
rn

∑
k=1

πqn+k (t, τ) (log x � νk (t))
qn
+ ,

where qn � 1 is the order of the polynomial and νk , k = 1, ..., rn, are
the knots.

In the implementation of the quantile sieve estimator with a small
penalization term was added to the objective function, as in BCK
(2007).
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Unrestricted Engel Curves
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Figure: Unconstrained demand function estimates, t = 1983.
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RP Restricted Engel Curves
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Figure: Constrained demand function estimates, t = 1983.
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Estimation

conditional quantile splines - 3rd order pol. spline with 5 knots

RP restrictions imposed at 100 x-points over the empirical support x .
1983-1990 (T=8).
Figures 9-11: Estimated e-Bounds on Demand Curve

Demand (e-)bounds (support sets) are de�ned at the quantiles of x
and ε

tightest bounds given information and RP.
varies with income and heterogeneity
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Demand Bounds Estimation
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Figure: Demand bounds at median income, τ = 0.1.
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Figure: Demand bounds at median income, τ = 0.5.
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Figure: Demand bounds at median income, τ = 0.9.
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Demand Bounds Estimation
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Figure: Demand bounds at 25th percentile income, τ = 0.5.
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Figure: Demand bounds at 75th percentile income, τ = 0.5.
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Endogenous Income

To account for the endogeneity of x we can utilize IV quantile
estimators developed in Chen and Pouzo (2009) and Chernozhukov,
Imbens and Newey (2007).

Chen and Pouzo (2009) apply to exactly this data using the same
instrument as in BBC (2008).

Our basic results remain valid except that the convergence rate stated
there has to be replaced by that obtained in Chen and Pouzo (2009)
or Chernozhukov, Imbens and Newey (2007).

Alternatively, the control function approach taken in Imbens and
Newey (2009) can be used. Again they estimate using the exact same
data and instrument. Specify

ln x = π(z, v)

where π is monotonic in v , z are a set of instrumental variables.
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Summary

Objective to elicit demand responses from consumer expenditure
survey data.

Inequality restrictions from revealed preference used to produce tight
bounds on demand responses.

Derive a powerful test of RP conditions.

Particular attention given to nonseparable unobserved heterogeneity
and endogeneity.

New (empirical) insights provided about the price responsiveness of
demand, especially across di¤erent income groups.

Derive welfare costs of relative price and tax changes across the
distribution of demands by income and taste heterogeneity.
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