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Economic models of agent’s optimization
problems or of interactions among agents of
ten exhibit simultaneity. It is well known that
any function in which an explanatory variable is
partly determined by the dependent variable of
the function, cannot be identified without addi
tional information. Typically this additional in
formation is provided by observable exogenous
variables or functional structures. Here we fo
cus on nonlinear simultaneous equations models
with nonadditive disturbances. Nonlinear non
additive specifications are a fundamental feature
of economic models with unobserved hetero
geneity, including multidimensional models of
consumer and producer choice, models of Nash
equilibrium in industrial organization and many
models of labour market behavior.

In linear models with additive disturbances
there are many alternative approaches to ad
dressing endogeneity in estimation. Twostage
least squares, instrumental variable and con
trol function approaches are three such com
monly adopted approaches. In simple speci
fications of the linear simultaneous model all
three approaches generate consistent, often ana
lytically identical, estimators (Hausman (1987),
for example). However, linear models with ad
ditive disturbances are highly restrictive repre
sentations of simultaneity in economic behav
ior. The marginal effect of endogenous vari
ables is constant across all its values and ho
mogenous across all individuals. Nonlinear non
additive models are more attractive but the con
ditions for the application of standard simultane
ous equations estimators are quite different and
somewhat more involved.

The instrumental variable approach in the
nonlinear case typically proceeds by using an
observable instrument for a single structural
equation, independent of the structural errors
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and functionally dependent with the endogenous
explanatory variable. Newey and Powell (1989,
2003), Ai and Chen (2003), Hall and Horowitz
(2003) and Darolles, Fan, Florens, and Renault
(2011) follow this general approach.1 Iden
tification requires additional conditions on the
relationship between the endogenous variable
and the excluded instrument, and estimation in
volves solving an illposed inverse problem.

We take a different tack in this paper and
consider approaches that specify equations for
all endogenous variables determined within the
system. We retain the focus on a single struc
tural equation but by completing the simultane
ous system, these approaches avoid the illposed
inverse problem. They do however require the
complete specification of the simultaneity be
tween the endogenous variables.

A particularly convenient method, and one
we direct our attention to here, is the control
function approach (Heckman and Robb, 1985).
This is available when the simultaneous sys
tem can be expressed in a triangular form where
the variables entering satisfy certain conditional
independence restrictions; the precise restric
tion is provided below. Linear simultaneous
models with additive errors can always be ex
pressed in triangular form with variables satisfy
ing a conditional mean independence restriction.
However, in nonlinear nonadditive simultane
ous systems, conditional independence requires
an additional restriction, socalled control func
tion separability. Blundell and Matzkin (2010)
derive this condition and show that it completely
characterizes simultaneous models where the
control function approach can be used to esti
mate the structural function of interest. Chesher
(2003), Imbens and Newey (2009), Hahn and
Ridder (2011) and Kasy (2011), amongst oth
ers, develop identification and estimation results
assuming triangularity. Here we review some of

1See also Blundell, Chen and Kristensen (2007), Cher
nozhukov and Hansen (2005), Chernozhukov, Imbens, and
Newey (2007) and Chen and Pouzo (2012), Chen, Cher
nozhukov, Lee and Newey (2011).
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the different ‘system’ approaches to estimation
in nonlinear simultaneous equations models, fo
cussing on the control function approach, and
document the biases that can occur when inap
propriately assuming a linear structural model.

We first characterize nonlinear simultaneous
systems and briey review different approaches
to estimation. We contrast a number of specific
approaches to estimation. In particular, those
that use a conditional independence assumption
with conditioning either on an observable vari
able or, as in the control function case, on an
unobservable variable. We also note approaches
that rely on exclusive instruments. In nonlin
ear simultaneous models, if the control function
separability assumption is not satisfied, estima
tion using a control function approach may be
highly misleading. A numerical example is used
to show the potential biases from inappropri
ately adopting a control function approach.

I. Simultaneous Equation Systems

Consider the following simultaneous model
describing the interactions between two out
come variables y1 and y2

(1)
y1  b10  b11y2  b12z1  1

y2  b20  b21y1  b22z2  2


satisfying 1  b11b21  0 For ease of inter
pretation we assume all variables are scalar and
the variables  j  R, and z j  R are continu
ously distributed, for j  1 2 and the z j vari
ables are exclusive to specific equations. The in
verse form of the simultaneous system (1) may
be written  j  a j0  a j1 y1  a j2y2  a j3z j

for j  1 2 with appropriate restrictions on the
coefficients. Similarly, the reduced form can be
derived explicitly and has a linear additive form.

Although convenient, linearity in endogenous
variables implies that the marginal effect of the
endogenous variable is constant across all its
values. Moreover, the additivity in unobserv
ables implies that the marginal effect of endoge
nous variables is homogeneous across individ
uals with the same z  z1 z2  If we wish
to interpret the  j as unobserved heterogeneity
relating to agents making the observed actions
on y1 and y2such as in models for demand and
supply or the interactions between agents, then
it is very difficult to derive a separable struc
tural model. Consequently, in models describ

ing structural equations of economic behavior
with unobserved heterogeneity we would typ
ically wish to consider nonlinear nonadditive
systems of the form y1  m1y2 z1 1 and
y2  m2y1 z2 2

Parameters of Interest: In nonadditive
specifications we have to consider carefully the
parameters of interest. Suppose we are inter
ested in the feedback from y2 to y1 as described
by the structural function m1. For this purpose
we can ignore the presence of z1 and write

(2)
y1  m1 y2 1
y2  m2 y1 z2 2



There are three parameters of interest we wish
to highlight.

(a) The average structural function of m1, de
fined by Blundell and Powell (2003) as Gy2 

m1 y2 1 f11 d1

(b) The local average response function, de
fined by Altonji and Matzkin (2005) as y2 
 m1y21

y2
f1Y2y21 d1 which will be

constant for all y2 when m1 is linear.

These two parameters refer to averages. We
might also be interested in parameters defined at
points in the distribution of unobservables. For
example,

(c) The quantile structural function,
q1   y2, defined by Imbens and Newey
(2009) as the  th quantile of m1 y2 1 for y2

fixed (so that the only source of randomness is
1). We may also be interested in derivatives
of q1   y2 w.r.t. y2; see Chesher (2003) for
identification results on this.

Characterizing the Simultaneous Model:
To characterize the simultaneous equations
model we retain the simple structural system (2)
where m1 and m2 are assumed to be continu
ously differentiable, and that, conditional on any
value z2 the densities of 1 2 and of y1 y2
are continuous with convex support.

We make two further assumptions:
(Monotonicity) the functions m1 and m2

are strictly monotone in 1 and 2, respectively;
(Crossing)


m1y2


my1  1. The

monotonicity assumption guarantees that m j

can be inverted in  j , j  1 2. This assumption
allows us to express the direct system of struc
tural equations (2), defined by


m1m2


 in

terms of a structural inverse system of functions
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r1 r2



(3)
1  r1 y1 y2
2  r2 y1 y2 z2



The crossing assumption is a weakening of
the common situation where the value of the en
dogenous variables is determined by the inter
section of a downwards and an upwards sloping
function. Together with monotonicity, this as
sumption guarantees the existence of a unique
value for y1 y2  given any z2 In other words,
these assumptions guarantee the existence of a
reduced form system of equations, defined by
functions


h1 h2


 which map the vector of ex

ogenous variables 1 2 z2 into the vector of
endogenous variables y1 y2

(4)
y1  h1 z2 1 2
y2  h2 z2 1 2



These assumptions also guarantee that the re
duced form function h j is monotone increasing
in  j , j  1 2. These results are established in
Blundell and Matzkin (2010, Lemma 1).

II. Approaches to Identification and
Estimation

Suppose we are simply interested in the deriv
ative of the unknown function m1 in a structural
model y1  m1 y2 1 where m1 is strictly
increasing in 1 and where it is suspected or
known that y2 is itself a function of y1.

The single equation approach proceeds by us
ing an observable instrument, z2 independent of
1 and functionally dependent with y2. Identifi
cation takes the form of asking whether an inte
gral equation has a unique solution. The answer
requires restrictions on the conditional distrib
ution of y2 given z2 Estimation involves deal
ing with an illposed inverse problem. We refer
to the references on nonparametric instrumental
variables provided in the introduction for details.

The approaches we focus on in this paper in
volve describing the source of simultaneity, by
specifying some function m2 and unobservable
2 such that y1 y2 satisfies eq. (2), where
m2 is strictly increasing with respect to 2 and
where, as in the single equation approach, z2

is an observable variable that is excluded from
m1. Identification in the system approach is
analyzed in terms of conditions on the struc

tural system composed by

m1m2


and the dis

tribution of 1 2 z2  Pointwise estimation
of the derivative of m1 with respect to y2 can
be performed without facing illposed inverse
problems. Roehrig (1988), Benkard and Berry
(2006), and Matzkin (2004, 2008, 2010) follow
this approach.

A. Conditional Independence

One system approach to the identification and
estimation of the derivative of the function m1

in the system (2) proceeds by assuming that the
system is observationally equivalent to an alter
native system, of the form

(5)
y1  m1 y2 1
y2  s z2 



The second equation is then used to determine
a variable or sets of variables such that, condi
tioning the distribution of y1 on y2 and those ad
ditional variables has the effect of purging the
dependence between y2 and 1 When such ad
ditional conditioning variables are observed, the
method is called "conditioning on observables".
When a conditioning variable is unobserved and
is estimated in a firststage, the estimated vari
able is usually called a "control function". In ei
ther case, the additional conditioning variable or
variables can be interpreted as providing a proxy
for the elements within 1 that are not distrib
uted independently of y2 Conditioning on such
"proxy" leaves the unobserved part of the equa
tion independent of y2 and the "proxy". (See
Matzkin, 2004, for details.)

Conditioning on observables: Suppose that
in the system (5) 1 is distributed independently
of  conditional on z2 Given z2 y2  s z2 
is a function of only  Recall that when two
random variables are independently distributed,
any functions of those random variables are also
independently distributed. Hence,  being in
dependent of 1 given z2 implies that y2 as a
function of  y2  s z2   is distributed inde
pendently of 1 given z2 Hence, "conditioning
on the observable z2" purges the dependence be
tween y2 and 1

Control function: Suppose instead that in the
system (5) 1 is distributed independently of z2

conditional on  Then, in this case, the "proxy"
that purges the dependence between y2 and 2 is
 Conditional on  y2  s   is a function
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of z2 Since conditional on  1 is distributed
independently of z2 the function y2  s  
is also distributed independently of 1 condi
tional on  When the relation y2  s z2 
is such that  can be estimated, one can condi
tion the first equation on the estimated  and pro
ceed as if there existed no endogeneity. Chesher
(2003) and Imbens and Newey (2009) follow
this approach in the nonparametric nonadditive
setup above. Conditions for pointwise identifi
cation and estimation of the derivatives of m1

again avoid an illposed inverse problem. They
obtain the expressions for m1 and the derivative
of m1 as displayed in Section 2.1. They both ex
ploit the indirect mapping from the observable
variables y1 y2 z2 to the unobservable vari
ables, 1  


r1 y1 y2 s y2 z2




When can a control function be used in
models with simultaneity? If the simultane
ous model m1 and m2 were linear and addi
tive in 1 and 2 as in (1), the elements of m1

could be easily identified (and estimated) recur
sively, following the control function approach.
One can obtain the second equation in the form
needed to estimate the control function by solv
ing for y2 in the first eq. of (1) and rewrit
ing the system as a recursive one. This would
yield (5) with s z2  being linear and, condi
tional on , y2 is mean independent of 1 As
a consequence, estimation of the parameters in
the structural equation for y1 can proceed using
the augmented regression approach (Dhrymes
(1970), Telser (1964)). This triangular repre
sentation implies no further restrictions in the
linear system.

If, however, the simultaneous equations
model were either nonlinear or nonadditive in
either 1 or 2 it might not be possible to ex
press the structural system (2) in the triangular
form (5) with z2 being independent of 1 
as needed for the implementation of the control
function approach. So under what conditions
are the two systems, (2) and (5), observationally
equivalent?

Bundell and Matzkin (2010) provided an an
swer to this question. They defined a new con
cept, control function separability defined in
terms of the indirect system (3):
Definition (CFS): The structural inverse sys
tem (3) satisfies control function separability
(CFS) if there exist functions  : R2  R and
q : R2  R such that (a) r2 y1 y2 z2 



q z2 y2  r

1 y1 y2

; (b)  is strictly in

creasing in its first argument, and; (c) q is
strictly increasing in its second argument.

For CFS to be satisfied, r2 y1 y2 z2 must
be weakly separable in r1 y1 y2  Moreover,
y1 can affect the value of 2 only through
r1 y1 y2. This implies that the reduced form
for y2 can be written as a function of the scalar
unobservable control variable 1 2 and z2,
where  is independent of z2. Under regular
ity conditions, Blundell and Matzkin (2010) es
tablish that CFS completely characterizes obser
vational equivalence between (2) and (5). In
particular, if CFS holds, the functions m1 and
m2 are identified and can be estimated using
the twostep procedure described in Imbens and
Newey (2009).

B. Exclusive Instruments

When the system of simultaneous equations is
not observationally equivalent to one of the tri
angular systems considered in the previous sec
tion, identification can be obtained by impos
ing alternative restrictions on the system. One
such set of restrictions is in terms of the inverse
system (3) where, for example, we could im
pose the restriction that the second equation of
(3) satisfies 2  r2 y1 y2  z2. In this case,
Matzkin (2010) provides additional conditions
on

r1 r2


and the distribution of 1 2 z2

under which, the derivative of m1 with respect
to y2 can be read off the conditional density of
the observable variables y1 y2 conditional on
the observable variable z2 at either one or two
values of z2 The particular values of z2 that
provide such identification can also be read off
from the conditional density of y1 y2 given
z2 Indirect estimation of such derivative is then
obtained by substituting the conditional density
by a nonparametric estimator for it. Under sim
ilar conditions, a minimum distance estimator
for such derivative is also obtained, which has
a closed form solution.

III. Numerical Illustration

Here we develop a simple bivariate non
linear nonadditive system with inverse
equations 1  1

1 y2  1
2 y1, im

plying m1 y2 1  1


1

2 y2 1




and 2  1 b1 z2 b2 z2
1
1 y2 



VOL. VOL NO. ISSUE CONTROL FUNCTIONS 5

b1 z2 b2 z2
1
1 y1  g2 z2 where

1 x  x3, 2 x  x is the standard
normal cdf, and g z2  z22  1. The
functions b j z2 will be specified below. It is
easily checked that the system is invertible if
b2 z2  0 and that CFS is satisfied if, for some
constant c  R, b1 z2  cb2 z2, in which
case y2  s z2   2 g2 z2 b2 z2 ,
where   c1  2. In particular, y2 is
endogenous if c  0. We then investigate how
control function estimators of m1 perform when
CFS is satisfied or not, respectively.

We focus exclusively on biases incurred by
different estimators and so choose the sample
size to be n  10 000 such that the variance
of the different estimators can be ignored. For
the two estimators in question, we evaluate their
performance by plotting the true quantile struc
tural function which takes the form q1   y1 

1


1

2 y2 q1  


, where q1  is  th

quantile of 1, against the ones implied by the
estimators. The quantile structural functions are
evaluated at three different quantiles,  1  02,
2  05 and 3  08.

We first consider the case where CFS is sat
isfied with b2 z2 


19 190 z2 and

b1 z2  2b2 z2. Figure 1 plots the nonpara
metric structural quantile estimator of Imbens
and Newey (2009) for this case. Here and in
the following figures the drawn lines represent
the true function and dotted lines the estimates
for three different quantiles. We find that this
estimator does well and closely tracks the popu
lation versions.
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Figure 1. CFS holds
Next, we investigate how the Imbens and

Newey (2009) estimator does when CFS
does not hold in data. For this case,

b2 z2 remains unchanged but now b1 z 
05 005 z4  log1 z210. Figure 2

shows the performance of the ImbensNewey es
timator in this case. Biases are now present, in
particular, in the upper quantiles.
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Figure 2. CFS is violated
Finally, Figure 3 shows the mean of the es

timated quantile structural function based on
the control function estimator assuming (incor
rectly) that data is generated by a linear regres
sion model, q1

2SLS   y1  b10  b11 y2 

q1  , where b10 and b11 are twostage least
squares (2SLS) estimates and q1  is the 
quantile of the residuals from the 2SLS regres
sion. We see that the 2SLS estimator is severely
biased and overestimates of the impact of y2 on
y1. This is not surprising given the highly non
linear features of the datagenerating process
which is ignored by the 2SLS estimator. In par
ticular, the datagenerating process has fat tails
which affects predictions based on covariances
but not quantiles.
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Figure 3. CFS holds, misspecified model used

IV. Summary and Conclusions

We have reviewed two broad alternative
classes of ‘system’ approaches to estimation in
nonlinear nonadditive simultaneous equations
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models. The first use a conditional indepen
dence assumption and second adopt exclusion
restrictions on instrumental variables. In par
ticular, we have focussed on a special case of
the second approach, the control function, not
ing that in nonlinear models estimation using
the control function estimator may be severely
inconsistent unless strong restrictions on the si
multaneous model are satisfied. A simulation
model was then used to show the potential biases
from inappropriately adopting a control function
approach.
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