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[1] We present a novel conceptual framework and methodology for studying virtual
water trade. We utilize complex network theory to analyze the structure of the global
virtual water trade associated with the international food trade. In the global virtual water
trade network, the nations that participate in the international food trade correspond
to the nodes, and the links represent the flows of virtual water associated with the trade
of food from the country of export to the country of import. We find that the number
of trade connections follows an exponential distribution, except for the case of import trade
relationships, while the volume of water that each nation trades compares well with a
stretched exponential distribution, indicating high heterogeneity of flows between nations.
There is a power law relationship between the volume of virtual water traded and the
number of trade connections of each nation. Highly connected nations are preferentially
linked to poorly connected nations and exhibit low levels of clustering. However, when
the volume of virtual water traded is taken into account, this structure breaks down.
This indicates a global hierarchy, in which nations that trade large volumes of water are
more likely to link to and cluster with other nations that trade large volumes of water,
particularly when the direction of trade is considered. Nations that play a critical role
in maintaining the global network architecture are highlighted. Our analysis provides the
necessary framework for the development of a model of global virtual water trade aimed
at applications ranging from network optimization to climate change impact evaluations.
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1. Introduction

[2] Global freshwater resources are finite and subject
to increasing pressures from population growth, economic
development, and climate change [Vorosmarty et al., 2000;
Gleick, 2008; Strzepek and Boehlert, 2010]. The vast
majority (90%) of global freshwater use is for food produc-
tion [Shiklomanov, 1997; Oki and Kanae, 2004; Hoekstra
and Chapagain, 2008], which is why much attention and
research has been devoted to the use of water in agriculture.
In fact, there is a growing body of literature that focuses
on the water that is embodied in the production and trade of
agricultural commodities, referred to as “virtual water.” Since
the concept was first introduced by Allan [1993], there has
been a dramatic increase in the virtual water literature, largely
in an attempt to quantify its potential to alleviate regional
water scarcity and save water globally [Chapagain et al.,
2006; Yang et al., 2006; D’Odorico et al., 2010].

[3] International trade links the fortunes and resources
of countries, providing potentially important conduits for
geographically limited water resources to be transferred to
water‐stressed regions. The virtual water trade between
regions [Hoekstra and Hung, 2005; Chapagain et al., 2006;
Yang et al., 2006; Hanasaki et al., 2010] and the gross
virtual water flow of nations [Chapagain and Hoekstra,
2008] have been quantified. These studies have focused
primarily on agricultural commodities [Hoekstra and Hung,
2005; Liu et al., 2007; Rost et al., 2008; Hanasaki et al.,
2010], including those used for biofuel production [Gerbens‐
Leenes et al., 2009], but the concept has also been extended
to include industrial products [Chapagain and Hoekstra,
2008]. However, the global properties of virtual water trade
have not yet been quantified or explored. In this paper we build
upon the virtual water literature and utilize complex network
methods to characterize the global structure of the virtual water
trade associated with the international food trade.
[4] The origin of complex network theory can be traced

back to the work of Erdös and Rényi [1961] on random
graphs. Recently, much research has been devoted to the
field of complex network analysis, both theoretically and as
applied to real‐world systems [Barabási and Albert, 1997;
Newman et al., 2006]. This recent interest in complex net-
works is largely due to the discovery of organizing princi-
ples in networks [Costa et al., 2007], such as community
structure [Watts and Strogatz, 1998] and scale‐free proper-
ties [Barabási and Albert, 1997]. Additionally, network
analysis has become increasingly popular because of its
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flexibility and generality for representing many natural
structures [Barabási, 2002; Costa et al., 2007], including
street systems [Kalapala et al., 2006;Masucci et al., 2009], the
internet and World Wide Web [Barabási and Albert, 1997],
international tourism [Miguens and Mendes, 2008], financial
transactions [Garlaschelli and Loffredo, 2005; Kyriakopoulos
et al., 2009], Hollywood actors, and scientific collaborations
[Newman, 2001; Barrat et al., 2004], among others.
[5] We present a novel application of network theory to

the global virtual water trade. The global virtual water trade
forms a weighted and directed network in its complete
representation. A weighted network is one in which values
are associated with the links of the network, while a directed
network is one where the links connect nodes in a particular
direction [Wasserman and Faust, 1994; Newman, 2003;
Newman et al., 2006; Jackson, 2008]. For the virtual water
trade network, the links are assigned a weight on the basis of
the volume of virtual water that is traded between countries
and a direction according to the direction of the underly-
ing commodity trade flow (i.e., from exporter nation to
importing nation). In this paper, we study the virtual water
trade network associated with the trade of 58 agricultural
commodities from five major crops (i.e., barley, corn, rice,
soy, and wheat) and three major livestock products (i.e.,
beef, pork, and poultry) in the year 2000. These products
account for approximately 60% of global calorie consump-
tion (Food and Agriculture Organization of the United
Nations (FAO), FAOSTAT, 2010, http://faostat.fao.org/site/
291/default.aspx, hereinafter referred to as FAOSTAT,
2010). There are 166 nations that participate in the export of
these commodities and 151 that import these commodities,
comprising the nodes of the network. The volume of virtual
water that is traded globally is 625 × 109 m3 yr−1, which
accounts for approximately 10% of the global freshwater
use in agriculture, or 8% of total global water use [Hoekstra
and Chapagain, 2008].
[6] Complex network theory has been used to character-

ize the world trade web weighted by the financial value of
traded commodities (e.g., refer to Garlaschelli and Loffredo
[2005], Fagiolo et al. [2008], Kyriakopoulos et al. [2009],
and Barigozzi et al. [2010]). In this paper, we analyze the
network structure of global virtual water trade associated
with the international food trade. Thus, we apply the tools of
complex network theory to a subset of the world trade web.
However, the major departure between our analysis and
other network studies of world trade centers on the weights
(i.e., value) assigned to the trade flows. We assign weights
to links in the international food trade on the basis of the
volumes of water embodied in a given trade relationship,
while other studies of the world trade web in the literature
assign weights in terms of financial values [Garlaschelli
and Loffredo, 2005; Fagiolo et al., 2008; Kyriakopoulos
et al., 2009; Barigozzi et al., 2010]. Additionally, we ana-
lyze both the directed and weighted properties of the net-
work, which is seldom done in the literature, with rare
exceptions like the work of Miguens and Mendes [2008].
[7] Scientific understanding of natural hydrological pro-

cesses has dramatically increased over the past 50 years [Oki
and Kanae, 2004]. Now a similar quantitative representation
of the social aspects of water use is necessary. With this goal
in mind, we analyze the global structure of virtual water
trade. The network analysis presented here highlights global

properties of virtual water trade jointly with individual roles
and mutual interactions of single nations within the overall
network architecture. Not only is this type of analysis
fascinating in its own right, but it is our hope that future
extensions of this work will illuminate unprecedented
opportunities to save water globally and serve as a tool for
impact assessment, particularly under future scenarios of
climate change, whose impacts on the linked water and food
systems will likely be captured by changes in global virtual
water flows. In particular, in order to develop a theoretical
network model [Suweis et al., 2011] that may account for
the structural features of real‐world virtual water trade,
we must first be able to frame what those features are [e.g.,
Newman et al., 2006]. Hence, a thorough analysis of
empirical data of the type presented in this paper is essential.

2. Building the Global Virtual Water
Trade Network

[8] Here we describe the construction of the global virtual
water trade network. In the network, each country partici-
pating in food trade is represented by a node. Links between
nodes are directed on the basis of the direction of trade flow
and are weighted by the volume of virtual water embodied
in the traded commodities. To construct this network, we
require two main pieces of information: the crop trade
between all nations and the virtual water content of each
crop in all nations. For a complete list of the commodities
considered in this paper refer to Table 1. We obtain the
bilateral trade of agricultural products from the FAO. To
calculate the virtual water content of the commodities, we
utilize the H08 global hydrological model [Hanasaki et al.,
2008a, 2008b]. Virtual water flows between nations are then
calculated by multiplying the international trade flow of a
particular commodity by the associated virtual water content
of that commodity in the country of export.

2.1. Virtual Water Content Data

[9] We calculated the virtual water content of five
unprocessed crops (barley, corn, rice, soy, and wheat) and
three livestock products (beef, chicken, and pork) for each
nation by water withdrawal source using the H08 global
hydrological model [Hanasaki et al., 2008a, 2008b]. Virtual
water content (VWC, kg water kg−1 product) of raw crops is
defined as the evapotranspiration during a cropping period
(kg m−2) divided by the crop yield (kg m−2). The VWC of
unprocessed livestock products is defined as the water
consumption per head of livestock (kg head−1) divided by
the livestock production per head (kg head−1). A brief
description of the H08 model is provided here; for further
information the interested reader is referred to Hanasaki
et al. [2010].
[10] The H08 model consists of six modules: land surface

hydrology, river routing, crop growth, reservoir operation,
environmental flow requirements estimate, and anthropo-
genic water withdrawal. The model operates on a 0.5° × 0.5°
grid spatial resolution with water and energy balance clo-
sure. Two types of input data are necessary to run the H08
model: meteorological forcing and land use. Using the H08
model, we are able to assess the two major sources of vir-
tual water content: precipitation (“green water”) and irriga-
tion (“blue water”) [Falkenmark and Rockstrom, 2004].
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Blue water evapotranspiration was further subdivided into
three categories on the basis of the water source: stream-
flow, medium‐size reservoir, and nonrenewable and non-
local water.

[11] The virtual water content of unprocessed crop com-
modities (dimensionless) is calculated as

VWCe;c;s ¼ ETe;c;s

Ye;c
; ð1Þ

where ET is the evapotranspiration during a cropping period
(kg water m−2) and Y is the crop yield (kg crop m−2). The
subscripts e, c, and s denote the exporting country, crop, and
water withdrawal source, respectively. To transform the
VWC of raw crops into that of a processed commodity,
(1) is multiplied by pxcx/rx. The price ratio (p) is the ratio
between the price of the raw crop and the commodity pro-
duced from that raw crop. The content ratio (c) indicates
the fraction of crop origin ingredients in unit commodities.
The yield ratio (r) quantifies the fraction of ingredients in
raw crops. Values of r, p, and c are specific to commodity
x (r, p, and c for each of the 58 commodities are provided in
Table 1, originally provided by Hanasaki et al. [2010]).
Although crop yield was an output of the H08 model, data
from the FAO (FAOSTAT, 2010) was used for increased
reliability in the calculation of VWC.
[12] The VWC of unprocessed livestock products (dimen-

sionless) is calculated as

VWCe;l;s ¼ WCe;l;s

Pe;l
; ð2Þ

where WC is the water consumption per head of livestock
(kg water head−1) and P is the livestock production per head
(kg livestock head−1). The subscripts e, l, and s denote the
exporting country, livestock product, and water withdrawal
source, respectively. To transform the VWC of unprocessed
livestock products into that of a processed commodity, (2) is
multiplied by pxcx/rx. The coefficients p, c, and r have the
same meaning as they do for the crop coefficients, and their
values for livestock commodities can be found in Table 1.
WC was calculated by estimating the virtual water content
of livestock feed. Next, the required livestock feed per head
was estimated taking into account the life cycle of livestock.
Then water use other than feed, such as drinking and
cleaning water, was added.
[13] Graphs of the mean VWC are shown in Figure 1. The

mean VWC for each of the six world regions (United Nations,
Composition of macro geographical (continental) regions,
2010, http://unstats.un.org/unsd/methods/m49/m49regin.htm,
hereinafter referred to as United Nations, 2010) is illustrated
in Figure 1a, separated into livestock and crop categories. The
globally averagedVWC for each of the unprocessed livestock
and crop products is provided in Figure 1b.

2.2. Food Trade Data

[14] International food trade statistics list 58 commodities
(shown in Table 1) that contain barley, corn, rice, soy,
wheat, beef, chicken, or pork. The annual trade matrix (T )
of these 58 commodities was obtained from the FAO
(FAOSTAT, 2010) for 233 nations in the year 2000. For any
discrepancy in the trade volume reported between two
nations, the average was taken, with the exception of cases
in which no trade was reported by one of the nations, for
which we use the reported trade values. When no data were

Table 1. List of Commodities and the Yield Ratio r, Price Ratio p,
and Content Ratio ca

Ratio

r p c

Crop Commodities
Wheat 1 1 1
Flour of wheat 0.78 0.97 1
Bran of wheat 0.22 0.024 1
Macaroni 0.78 0.97 1
Germ of wheat 0.025 0.01 1
Bread 0.78 0.97 0.71
Bulgur 1 1 1
Rice, paddy 1 1 1
Rice, husked 0.72 1 1
Milled husked rice 0.72 1 1
Rice, milled 0.65 0.95 1
Rice, broken 0.65 0.95 1
Bran of rice 0.07 0.049 1
Rice, bran oil 0.013 0.049 1
Cake rice bran 0.057 0.049 1
Rice, flour 0.65 0.95 1
Rice, fermented beverages 0.48 0.95 0.36
Barley 1 1 1
Pot barley 0.46 0.76 1
Barley, pearled 0.46 0.76 1
Bran of barley 0.54 0.24 1
Barley flour and grits 0.46 1 1
Malt 0.78 1 1
Malt extract 0.78 1 0.8
Beer of barley 0.78 1 0.14
Maize 1 1 1
Germ of maize 0.115 0.18 1
Flour of maize 0.8 0.75 1
Bran of maize 0.085 0.068 1
Maize oil 0.04 0.18 1
Cake of maize 0.075 0.18 1
Soybeans 1 1 1
Soybean oil 0.19 0.35 1
Cake of soybeans 0.76 0.65 1
Soya sauce 0.76 0.65 0.17
Maize, green 1 1 1
Maize for forage and silage 1 1 1

Livestock Products
Cattle meat 0.6 0.61 1
Offal of cattle, edible 0.32 0.38 1
Fat of cattle 0.04 0.0024 1
Meat cattle boneless

(beef and veal)
0.6 0.61 1

Cattle, butchered fat 0.04 0.0024 1
Preparation of beef 0.4 0.61 1
Pig meat 0.7 0.88 1
Offal of pigs, edible 0.12 0.12 1
Fat of pigs 0.06 0.006 1
Pork 0.49 0.88 1
Bacon and ham 0.49 0.88 1
Pig, butchered fat 0.06 0.006 1
Pork sausages 0.49 0.88 1
Prepared pig meat 0.49 0.88 1
Lard 0.06 0.006 1
Chicken meat 0.53 0.95 1
Offal and liver of chicken 0.022 0.014 1
Fat liver prepared (foie gras) 0.022 0.014 1
Chicken meat canned 0.53 0.95 1
Fat of poultry 0.022 0.013 1
Fat of poultry, rendered 0.022 0.013 1

aModified from Hanasaki et al. [2010].
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reported between two nations, we assumed that no trade
occurred between those two nations.

2.3. Network Construction

[15] The VWC and T data in combination allow us to
construct the global virtual water trade network (W). In this
network, each nation is expressed as a node, and the links
represent the volume of virtual water flow between nations.
We calculate the virtual water flows between nations by
multiplying the crop and livestock trade between nations by
the VWC of that crop or livestock product in the country of
export. The network connections are thus determined by the
agricultural trade relationships and the weight of each con-
nection by the volume of virtual water embodied in the crop
and livestock trade.
[16] The total virtual water trade is thus expressed as

We;i ¼
X
s;c

VWCe;a;s

X
x2a

pxcx
rx

Te;i;x

" #
; ð3Þ

where the subscripts a, x, e, i, and s denote the raw agricul-
tural item (i.e., the raw crop or livestock item), commodity,
exporting country, importing country, and water withdrawal
source, respectively. The notation x 2 a indicates the
ensemble of commodities that are produced from the raw
agricultural item a. Te,i,x is the annual trade of commodity
x from exporting country e to importing country i. W is the
virtual water trade between nations (m3 yr−1) aggregated
over all commodities considered in the international food
trade. For this reason, we will refer to W as the “aggregate”
network throughout this paper, as opposed to a particular
commodity or combination of commodities.
[17] The virtual water trade network forms a weighted,

directed network, which we will refer to as WD throughout
the rest of this paper to stress the trade direction. Each
country involved in trade is a node in the network. A link

exists between two nodes that trade with one another. Each
link is directed on the basis of the trade flow direction and is
weighted by the volume of virtual water. A network map is
provided in Figure 2. For any pair of nodes (i, j) the matrix
element WD(i, j) represents the volume of water traded from
node i to node j (i.e., node i exports to node j). Note that WD

is not symmetric and W(i, i) = 0; that is, a country cannot
trade with itself. In the FAO trade data there was one
instance, the case of Venezuela, of a country reporting trade
with itself. We determined that this data point was erroneous
and set it equal to zero.
[18] From the complete network with information on link

weights and direction, we create simpler networks: the
weighted, undirected network (WU); the unweighted, directed
network (AD); and the unweighted, undirected network (AU).
An unweighted network is referred to as an adjacency matrix
(A). We create these simpler networks to assess network
topology with and without link weights and direction. First,
WU was created by symmetrizing the directed, weighted
network on the basis of the sum of the link weights between
two nodes. This symmetrization creates an undirected net-
work with at most a single link between any two nodes; inWD

and AD there may be zero, one, or two links between any two
nodes. For example, if Japan exports to the United States and
the United States exports to Japan in the directed network,
there are two links between the nodes representing Japan and
the United States. In the undirected networks, these two links
are collapsed into a single link. This single link now repre-
sents the sum of the volumes of the two former links. Second,
AD and AU were constructed by replacing all strictly positive
elements of WD and WU with a unit value.

3. Network Analysis

3.1. Regional Networks

[19] To quantify and visualize flows between world
regions, we construct regional virtual water trade networks.

Figure 1. Mean virtual water content (VWC) by water source. The blue portion of the bar represents the
blue VWC; the green portion shows the green VWC. (a) Mean VWC for each of the six regions: Africa
(Af), North America (NA), South America (SA), Asia (As), Europe (E), and Oceania (O). The thick bars
represent the mean VWC for the livestock products: beef, pork, and poultry. The thin bars show the mean
VWC for the crops: barley, corn, rice, soy, and wheat. (b) Global average VWC for each of the unpro-
cessed livestock and crop products: beef (Bf), chicken (Ck), pork (P), soy (S), barley (Br), corn (Cr),
wheat (W), and rice (R).
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To do this, we aggregated the virtual water flow at the
country scale to the regional scale using the United Nations
global regions (United Nations, 2010). We construct nine
regional networks on the basis of categories of water source
(i.e., green, blue, or total water) and product type (i.e., crop
or livestock or both). We used network visualization soft-
ware [Krzywinski, 2009] to create Figure 3. In Figure 3 the
links have the same color as their region of origin, and the
link width is proportional to the volume of water exchanged.
For each region, we have also included the internal trade (i.e.,
trade between countries of that region). This is represented by
links that originate and terminate in the same region. Trade
between regions of a negligible size has been excluded from
Figure 3 for clarity.
[20] For the aggregate network from all water sources

(e.g., Figure 3a), Asia, Europe, and Africa are net importers,
while Oceania, North America, and South America are net
exporters. The largest link is the export from North America
to Asia (over 94 × 109 m3 yr−1, almost 50% of the total
export volume from North America), followed by the export
from South America to Europe and Asia (71 × 109 m3 yr−1

and 50 × 109 m3 yr−1, respectively). Asia is the largest
importer of virtual water (267 × 109 m3 yr−1) and exhibits
a large internal trade (77% of exports are internal; refer to
Figure 3a). Although Europe imports only 137 × 109 m3 yr−1,
it is the largest importer on a per capita basis, importing
0.34 × 109 m3 yr−1 per capita.
[21] Asia transfers very large amounts of blue water from

both crop and livestock products internally (see Figures 3g–
3i); about 76% of blue water exports are internal in Asia.
On the other hand, South America exports much more green
water than blue water. This difference is related to the
varying values of blue VWC for both crop and livestock
products between these two continents (refer to Figure 1).
Livestock and crop commodities produced in Asia utilize
much higher values of blue water (33% and 44% of total
virtual water content, respectively), while livestock and crop

commodities produced in South America use much less blue
water (6% and 10% of total virtual water content, respec-
tively). With the exception of North America and Oceania,
most of the blue water trade (e.g., Figures 3g–3i) is internal.
Note that regions with lowVWC import less virtual water from
other regions than do regions with high virtual water content.
VWC is essentially a measure of how efficient, in terms of
water use, because of both climate (i.e., total evapotranspira-
tion) and farming practices (i.e., crop yield), a country or region
is in producing a given crop or livestock product. For this
reason, it makes sense that regions with a relatively high VWC
(i.e., less efficient) import from regions with a comparative
advantage in water use (i.e., more efficient).
[22] From Figure 3 we notice that a regional network

associated with the crop trade alone drives the aggregate
(i.e., both crop and livestock commodities) regional trade
network. Note that Figures 3a and 3b are very similar in
both link connectivity and magnitude, while Figures 3c and
3d show differences when compared with Figure 3a. Thus,
even though the VWC of livestock products is higher than
the VWC of crop products (refer to Figure 1), the crop
commodity trade drives the aggregated virtual water trade
because of the fact that the volumes of crop commodities
traded are much larger than volumes of livestock com-
modities. In fact, the regional crop trade network from green
water (e.g., Figure 3e) drives the entire crop trade network
(notice the similarities between Figures 3e and 3b, as well
as those between Figures 3e and 3a), indicating that this
regional network forms the foundation of the aggregate
network from all water sources. This highlights the impor-
tance of the underlying commodity trade network in driving
the virtual water trade considered.

3.2. Undirected Networks

[23] In this section, we will focus our analysis on
the symmetric, undirected networks, AU and WU. In these
networks there are 184 active nodes (nations) and 4550

Figure 2. Map of the weighted and directed global virtual water trade network. Each point indicates a
node, or nation, in the network. Bilateral trade between countries is displayed by a line between points,
with an arrow indicating the direction of trade. The color and width of each line is scaled on the basis of
the weight of the link it is representing. In this network, there are 166 nations that import, 151 nations that
export, and 6033 links. Note that the export of virtual water from the United States to Japan is the largest
link in the network, with a volume of 29.2 × 109 m3 yr−1, which accounts for approximately 5% of the
entire volume in the network. The second largest link is that from the United States to Mexico, with a
virtual water trade volume of 20.2 × 109 m3 yr−1, or approximately 3% of the flow volume.
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links. Element (i, j) of the adjacency matrix, A, is repre-
sented by ai,j. The elements of the principal diagonal (ai,i)
are set to 0 and elements off the principal diagonal (ai,j)
are equal to 1 when there is flow between nodes i and j.

In this symmetric matrix, ai,j = aj,i. Similarly, we constructed
the symmetric weighted matrix WU, in which the elements
wi,j are computed as the sum of the i → j and j → i flows
between the corresponding nations.

Figure 3. Regional virtual water trade networks. Numbers are in billions of cubic meters of water per
year. The regional networks are broken down by source of virtual water and commodity trade. Regional
network of virtual water trade from (a) all sources of virtual water associated with trade in both crop
and livestock commodities, (b) all sources of virtual water associated with trade in crop commodities only,
(c) all sources of virtual water associated with trade in livestock commodities only, (d) green sources of
virtual water associated with trade in both crop and livestock commodities, (e) green sources of virtual
water associated with trade in crop commodities only, (f) green sources of virtual water associated with
trade in livestock commodities only, (g) blue sources of virtual water associated with trade in both crop
and livestock commodities, (h) blue sources of virtual water associated with trade in crop commodities
only, and (i) blue sources of virtual water associated with trade in livestock commodities only. The regional
map at the bottom provides a key to the color scheme of the regional trade networks. Note that the regional
acronyms follow those provided in the caption of Figure 1.

KONAR ET AL.: NETWORK ANALYSIS OF GLOBAL VIRTUAL WATER W05520W05520

6 of 17



[24] A fundamental network property is the node degree
(k), which measures the number of links of each node and is
defined as ki = Sj ai,j. Here the node degree is a measure of
the number of trade partners of each nation. Node degree
values range from 1 to 162, with an average value of hki =
49.46. The node degree is a first approximation of its
topological centrality, which is an indication of its impor-
tance within the network. Two nations share the maximum
node degree value of 162: Netherlands and the United States
(see Table 2 for a ranking of the top 15 nations in terms
of node degree). Node degree statistics for the aggregate
and individual crop networks are collected in Table 3.
[25] The volume of water traded globally is 625 × 109 m3

yr−1 (calculated as 1/2Si, j wi, j). The link weights range from
77.72 m3 yr−1 to 29.2 × 109 m3 yr−1 with a mean value of
hwi = 137 × 106 m3 yr−1, indicative of high link weight
heterogeneity. The largest link in this network is between
the United States and Japan, with a virtual water trade
of 29.2 × 109 m3 yr−1, which accounts for 4.7% of the entire
volume in the network. The second largest link is that
between the United States and Mexico, with a virtual water

trade volume of 20.2 × 109 m3 yr−1, or 3.2% of the flow
volume. In fact, in WU the United States is involved in 7 out
of the 10 largest links (refer to Table 4).
[26] Node strength (s) is a measure of the weight of each

node’s links. This value is calculated as si = Sj wi,j. Node
strength values range from 50 × 103 to 183 × 109 m3 yr−1,
with an average value of 6.79 × 109 m3 yr−1. The nation that
trades the most virtual water (i.e., maximum strength) is the
United States. Refer to Table 5 for the top 15 ranked nations
in terms of the volume of virtual water traded. This node
strength information provides a description of the centrality
of nations according to the volume of virtual water traded.
[27] Graphs of undirected network properties are provided

in Figure 4. The cumulative degree distribution P(K > k)
is shown in Figure 4a. Many empirical analyses of real‐
world networks in the literature fit a power law to the tail
of P(K > k) [e.g., Barrat et al., 2004; Garlaschelli and
Loffredo, 2005; Kyriakopoulos et al., 2009]. However,
it is clear that here the simple exponential distribution, e.g.,
P(K > x) = e−lx, as used by DeMontis et al. [2007], accu-
rately reflects the entirety of the data set (an exponential
distribution of hki is shown by the solid line in Figure 4a).
Thus, the topology of the food trade networks exhibits a
characteristic scale, different from the scale‐free behavior
of other real‐world systems, such as those highlighted by
Barabási and Albert [1997]. The exponential parameter is
given by hki and is provided for each individual crop net-
work in Table 3.
[28] The cumulative distribution of node strength is

shown in Figure 4b, where a stretched exponential distri-
bution, e.g., P(K > x) = e(−lx)

a
, is compared with the data.

The stretched exponential distribution parameter (a) for
the aggregate and individual crop networks is provided in
Table 3. This fat‐tailed distribution indicates that the volumes
of virtual water traded by each nation are highly heteroge-
neous. Thus, when the network weights are considered, a
heavy‐tailed distribution is required to fit the data, unlike the
exponential distribution fit to the node degrees. This implies
that the inclusion of network weights increases the heteroge-
neity of the system in a nontrivial way.
[29] Probability distributions are frequently used in the

natural sciences to explain data. Many environmental vari-
ables are distinctly asymmetric (i.e., non‐Gaussian) and

Table 2. Country Rankings in 2000a

Rank

Undirected Export Import

k Country kout Country kin Country

1 162 Netherlands 159 United States 97 United States
2 162 United States 158 Netherlands 94 UK
3 161 France 154 France 89 Germany
4 156 UK 152 Italy 87 Canada
5 154 Italy 150 UK 84 Netherlands
6 152 Germany 149 Germany 82 France
7 146 Belgium 142 Denmark 72 Saudi Arabia
8 145 China 142 Belgium 69 Japan
9 144 Denmark 142 China 68 Spain
10 141 Canada 136 Canada 68 Belgium
11 133 Australia 129 Thailand 67 Switzerland
12 133 Thailand 126 Australia 65 Italy
13 126 Spain 124 Argentina 64 Australia
14 125 Argentina 124 Brazil 64 Russia
15 125 Brazil 119 Spain 60 Hong Kong

aTop 15 positions according to node degree (k) statistics. Node degree is
a measure of the number of trade partners of a given country, k is a measure
of the trade connections in the undirected network, kout counts the number
of export trade partners, and kin counts the number of import trade partners.

Table 3. Global Network Measures for Undirected Virtual Water Trade Networks

Symbol

Crop

Barley Corn Rice Soy Wheat Beef Pork Poultry Aggregate

Active nodes N 175 178 175 175 178 172 169 168 184
Global flow (m3 yr−1) g 30.5 × 109 62.9 × 109 52.9 × 109 241 × 109 137 × 109 59.2 × 109 19.7 × 109 21.6 × 109 625 × 109

Number of links L 2257 1633 1860 1712 2664 1835 1675 1466 4550
Average degree hki 25.79 18.35 21.23 19.57 29.93 21.34 19.82 17.45 49.46
Maximum degree kmax 148 141 135 123 150 111 118 134 162
Average strength

(m3 yr−1)
hsi 0.35 × 109 0.71 × 109 0.61 × 109 2.75 × 109 1.54 × 109 0.69 × 109 0.23 × 109 0.26 × 109 6.79 × 109

Maximum strength
(m3 yr−1)

smax 7.23 × 109 30.9 × 109 17.0 × 109 67.4 × 109 39.6 × 109 23.4 × 109 6.31 × 109 8.38 × 109 183 × 109

Clustering coefficient c 0.71 0.62 0.62 0.67 0.69 0.64 0.73 0.68 0.75
Clustering coefficient

random
cER 0.15 0.10 0.12 0.11 0.17 0.12 0.12 0.10 0.27

Clustering coefficient
weighted

cW 0.79 0.73 0.73 0.77 0.80 0.73 0.80 0.79 0.87

Stretched exponential
parameter

g 0.28 0.22 0.22 0.2 0.24 0.35 0.3 0.24 0.28
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important to properly quantify. For example, the Gamma
distribution has been often used to explain precipitation
data, with important applications in hydrologic models, such
as flooding or drought estimates [Wilks, 2006]. Similarly,
we believe that the distributions of virtual water resources
presented here, influenced by both social and natural forces,
provide necessary statistical descriptions of the linked water
and food system for water resource professionals.
[30] To explore in further detail the relationship between

the node connectivity and weights, we plot the strength
of the nodes as a function of their degree in Figure 4c.
We observe a power law relationship that follows the form
s(k) ∼ kb. The parameter b = 2.60 for the aggregate net-
work and is provided in Table 6 for the individual crop
networks. This high b value indicates that there is a strong
relationship between the volume of virtual water that each
nation trades and its number of trade partners. The node
strength grows faster than node degree, so the more trade
connections a country has, the much more it is able to
participate in the exchange of virtual water in a highly
nonlinear way.

[31] While node degree is the simplest proxy for cen-
trality, it is a local measure that does not provide any
information about the importance of the node within the
global structure [Barthelemy, 2004]. A measure of centrality
that takes into account the location of a node within the
entire network architecture is the betweenness centrality,
which counts the fraction of shortest paths going through
a given node. The betweenness centrality (B) is defined as
Bu = Si,j

� i;u;jð Þ
� i;jð Þ , where s(i, u, j) is the number of shortest

paths between nodes i and j that pass through node u, s(i, j)
is the total number of shortest paths between i and j, and the
sum is over all pairs i, j of nodes [Costa et al., 2007]. We
normalize B by (N − 1)(N − 2)/2 to maintain B 2 [0, 1] as
suggested by Barthelemy [2004].
[32] B is an important measure of how important a node is

in terms of connecting other nodes in the network [Jackson,
2008]. The United States has the highest betweenness
centrality in the virtual water trade network, as shown in
Table 7, highlighting its crucial role in the global struc-
ture. France and the United Kingdom also exhibit high
betweenness centrality, ranking a close second and third,

Table 4. Link Rankings in 2000a

Rank wU(i, j) (m
3 yr−1) Country 1 Country 2 wD(i, j) (m

3 yr−1) Country of Export Country of Import

1 29.2 × 109 United States Japan 29.2 × 109 United States Japan
2 20.2 × 109 United States Mexico 19.2 × 109 United States Mexico
3 14.5 × 109 Canada United States 12.9 × 109 Brazil Netherlands
4 12.9 × 109 Brazil Netherlands 12.0 × 109 United States China
5 12.5 × 109 Argentina Brazil 11.9 × 109 Argentina Brazil
6 12.0 × 109 United States China 9.17 × 109 United States Egypt
7 9.17 × 109 United States Egypt 8.84 × 109 Brazil France
8 8.90 × 109 Brazil France 8.65 × 109 United States Taiwan
9 8.65 × 109 United States Taiwan 8.30 × 109 Argentina China
10 8.30 × 109 United States Korea 8.28 × 109 United States Korea
11 8.30 × 109 Argentina China 8.08 × 109 Canada United States
12 7.79 × 109 Australia Japan 7.79 × 109 Australia Japan
13 7.68 × 109 Kazakhstan Russia 7.61 × 109 Kazakhstan Russia
14 7.49 × 109 Argentina Spain 7.48 × 109 Argentina Spain
15 6.88 × 109 Argentina Italy 6.87 × 109 Argentina Italy

aTop 15 positions according to link weight (w): wU(i, j) represents element (i, j) in the weighted, undirected network and WD(i, j) represents element (i, j)
in the weighted, directed network. Note that we report which two countries share a particular link for wU(i, j). Since there is no direction in this network the
import‐export relationship does not exist.

Table 5. Country Rankings in 2000a

Rank

Undirected Export Import Import per Capita

s (m3 yr−1) Country sout (m
3 yr−1) Country sin (m

3 yr−1) Country sin (capita
−1) Country

1 183 × 109 United States 165 × 109 United States 52.1 × 109 Japan 1,954 United Arab Emirates
2 92.7 × 109 Argentina 91.0 × 109 Argentina 31.1 × 109 China 1,885 Aruba
3 88.2 × 109 Brazil 69.7 × 109 Brazil 28.7 × 109 Netherlands 1,802 Netherlands
4 52.5 × 109 Japan 38.5 × 109 Australia 24.2 × 109 Korea 1,375 Cyprus
5 44.5 × 109 China 34.5 × 109 India 21.8 × 109 Mexico 1,242 Qatar
6 40.7× 109 Canada 32.7 × 109 Canada 21.8 × 109 Iran 1,158 Singapore
7 39.3 × 109 Australia 20.0 × 109 Thailand 19.5 × 109 Italy 1,153 Hong Kong
8 37.7 × 109 India 18.1 × 109 France 19.3 × 109 Egypt 1,127 Denmark
9 36.8 × 109 Netherlands 13.4 × 109 China 18.8 × 109 Indonesia 1,097 Seychelles
10 35.5 × 109 France 12.7 × 109 Kazakhstan 18.5 × 109 Brazil 974 Kuwait
11 30.0 × 109 Thailand 11.7 × 109 Germany 18.3 × 109 Spain 927 Belgium
12 27.7 × 109 Germany 11.2 × 109 Pakistan 17.6 × 109 Russia 826 Uruguay
13 25.0× 109 Italy 8.65 × 109 Denmark 17.5 × 109 France 822 Netherlands Antilles
14 24.5 × 109 Korea 8.06 × 109 Netherlands 17.4 × 109 United States 821 Malta
15 24.1 × 109 Mexico 7.35 × 109 Paraguay 16.1 × 109 Germany 801 Israel

aTop 15 positions according to node strength (s) statistics. Node strength is a measure of the weight of a given country; s is the volume of virtual water
traded by a country in the undirected network, sout measures the volume of virtual water exported by a country, and sin measures the volume of virtual water
imported by a country.
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respectively, with values closely trailing the United States.
The United States, France, and the United Kingdom all
exhibit B values that are approximately 3 times higher
than other highly ranked countries, such as Spain and India
(e.g., ranked 14th and 15th out of 184 countries, respec-
tively). B versus node degree follows a power law distri-
bution of the form B(k) ∼ kg, shown in Figure 4d. The
parameter g = 3.04 for the aggregate network, and it is
provided in Table 6 for individual crop networks.
[33] We next consider the network correlation structure,

typically quantified using the average nearest‐neighbor

degree (knn); knn measures the affinity of a given node to
connect to high‐ or low‐degree neighbors. The unweighted
definition of knn is given by [Pastor‐Satorras et al., 2001]

knni ¼
1

ki

X
j2V ið Þ

kj; ð4Þ

where j 2 V(i) indicates the j neighbors of node i. Thus, knni
identifies all nodes in the neighborhood of i (i.e., connected
to node i), sums their respective node degrees, then nor-
malizes by the node degree of node i.

Figure 4. Graphs for the undirected virtual water trade network. (a) The cumulative distribution of the
node degrees compared with an exponential distribution of parameter hki = 49.46. (b) The cumulative dis-
tribution of the node strength compared with a stretched exponential distribution of parameter a = 0.42.
(c) Node strength plotted against node degree exhibiting a power law relationship of the form s(k) ∼ kb, with
parameter b = 2.60. (d) Betweenness centrality of each node plotted against node degree exhibiting a power
law relationship of the form B(k) ∼ kg, with parameter g = 3.04. (e) Weighted (solid line) and unweighted
(dashed line) average nearest‐neighbor degree as a function of node degree. (f) Weighted (solid line) and
unweighted (dashed line) clustering coefficient as a function of node degree.

Table 6. Parameters for Each Network

Symbol

Crop

Barley Corn Rice Soy Wheat Beef Pork Poultry Aggregate

s versus k b 2.37 2.28 1.87 2.68 2.15 2.41 2.41 2.07 2.60
sin versus kin bin 2.16 2.71 2.02 3.32 2.12 2.63 2.75 2.20 3.05
sout versus kout bout 2.21 1.71 1.76 1.90 1.75 2.10 1.91 1.91 1.93
B versus k g 2.76 2.58 2.61 2.60 2.70 2.56 2.79 2.31 3.04
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[34] The behavior of knn as a function of k allows us to
determine whether or not the network exhibits degree cor-
relations. If knn increases with k, the network is referred to as
assortative, and nodes with a high degree tend to connect to
other nodes with a high degree, while nodes with a low
degree tend to connect to nodes with a low degree. How-
ever, if knn is a decreasing function of k, then the network
is disassortative, indicating that nodes of high degree tend
to connect to neighbors with low degree and nodes of low
degree tend to connect to others with a high degree. In
Figure 4e, we see that for the undirected case, knn decreases
with k, suggesting that the global virtual water trade network
is disassortative, typical of technological, biological, and
transportation networks [Newman, 2003; Costa et al., 2007].
In other words, when we consider only network topology,
nations of high degree tend to be connected to nations that
have a low degree. This disassortative behavior indicates
that the network exhibits a global architecture in which
hubs (i.e., nations with high degree) provide the connec-
tivity for the peripheral nations with small degree [DeMontis
et al., 2007].
[35] The definition of knn has been extended for weighted

networks by [Barrat et al., 2004]

kWnni ¼
1

si

X
j2V ið Þ

wijkj; ð5Þ

where, as in the unweighted definition, j 2 V(i) indicates
the j neighbors of node i. The value of the links between
node i and its neighbors (wij) is now accounted for, in
addition to the node degree of the neighbors, before nor-
malizing by the node strength of i rather than the node
degree of i as in the unweighted definition. This definition
measures the affinity of a node to connect with low‐ or
high‐degree neighbors on the basis of the magnitude of the
actual interactions. If links with large edges point to
neighbors with large degree, then knn

W (k) > knn (k). However,
knn
W (k) < knn if links with large weights point to neighbors
with low degree [Barrat et al., 2004].
[36] Both knn and knn

W are plotted against k in Figure 4e.
Note that the disassortative structure of the unweighted knn
breaks down when weights are taken into account (compare
the solid line with the dashed line in Figure 4e). The dif-

ference between knn
W and knn grows with increasing k, indi-

cating that highly connected nations are more likely to
be connected when link flows are considered. In sharp con-
trast to topological disassortativity, we observe an affinity
between nations of high degree which exchange large
volumes of virtual water. In other words, large weights
preferentially connect hubs, while nodes of a smaller degree
are connected via smaller weights.
[37] The clustering coefficient allows us to study the

tendency of nations in the network to form tightly connected
groups. The clustering coefficient is defined as

ci ¼ 2ei
ki ki � 1ð Þ ; ð6Þ

where ei is the number of links between the ki neighbors of
node i and ki(ki − 1)/2 is the maximum possible number of
links existing between the ki neighbors of i [Boguna and
Pastor‐Satorras,2003; DeMontis et al., 2007]. In other
words, ci counts the number of closed triangles formed in
the neighborhood of node i. This value measures the local
cohesiveness of the network and 2 [0,1]. Values of ci = 0
indicate that the neighbors of i are not connected at all,
while values of ci = 1 correspond to the case in which all
the neighbors of i are themselves connected. The average
clustering coefficient of the virtual water trade network
is 0.75, much higher than that of a random network (cER)
with the same number of links and nodes (refer to Table 3;
cER = 0.27), where cER = L/N (N − 1) [Bollobás, 1985].
[38] The definition of ci has been extended to weighted

networks by Barrat et al. [2004] and is defined as

cWi ¼ 1

si ki � 1ð Þ
X
j;h

wij þ wih

� �
2

aijaihajh; ð7Þ

where 1/si(ki − 1) is a normalization factor to maintain ci
W 2

[0,1]. Using this definition, the relative weight of closed
triangles in the neighborhood of node i is considered. Here
the mean weighted clustering coefficient is greater than the
unweighted version (refer to Table 3; cW = 0.87 > c = 0.75),
indicating that cohesiveness is more likely when link weights
are taken into account.
[39] We plot c and cW as a function of node degree in

Figure 4f; c decreases with increasing values of k. This
behavior indicates that nations with a low degree belong to
tightly connected groups of nations, while nations with
high degree connect otherwise disconnected portions of the
network [DeMontis et al., 2007]. Here, as with the nearest‐
neighbor degree, the introduction of network weights
destroys the correlation structure, such that cW (k) is approx-
imately constant and cW (k) > c (k) over the whole range
of degrees.
[40] In summary, the disassortative behavior of the aver-

age nearest‐neighbor degree and the clustering coefficient
breaks down with the inclusion of network weights (refer to
Figures 4e and 4f). The accumulation of weight on highly
connected nations destroys the disassortative behavior,
suggesting the existence of the “weighted rich club” phe-
nomenon [DeMontis et al., 2007]. This phenomenon occurs
when prominent elements in a system engage in stronger
or weaker interactions among themselves than expected by
pure chance [Opsahl et al., 2008]. Thus, when we utilize

Table 7. Country Rankings in 2000a

Rank B Country

1 0.093 United States
2 0.092 France
3 0.091 United Kingdom
4 0.078 Netherlands
5 0.068 Italy
6 0.065 Germany
7 0.063 China
8 0.053 Denmark
9 0.052 Australia
10 0.049 Canada
11 0.045 Thailand
12 0.044 Japan
13 0.038 South Africa
14 0.034 Spain
15 0.032 India

aTop 15 positions according to node betweenness centrality (B) statistics.
Node betweenness centrality measures the centrality of each node in terms
of its location within the global network architecture.
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information on the volume of virtual water embedded in
each trade link, we obtain additional insights into the net-
work organizing principles.

3.3. Directed Networks

[41] We now consider the direction of trade in the network
analysis. In this section we focus our attention on the AD

and WD networks. Direction is an important characteristic
because the virtual water trade network is not symmetric,
which means that information on the network structure is
lost when we symmetrize the network for the undirected
analysis. In these directed networks there are 151 nations
that export, 166 nations that import, and 6033 links. There
are some nations that either import or export but not both
(e.g., Qatar does not export but only imports). The global
volume of water traded in the directed network is equivalent
to that of the undirected network at 625 × 109 m3 yr−1. Our
global flow volume is slightly greater than that found by
Hanasaki et al. [2010] (i.e., 625 × 109 m3 yr−1 compared with
545 × 109 m3 yr−1) because of the fact that we utilize both
the import and export trade data from the FAO.
[42] As in the undirected case, ai,j represents element i, j

of the adjacency matrix. The elements of the principal
diagonal (ai,i) are set to 0 and elements off the principal
diagonal (ai,j) are equal to 1 when there is flow i → j.
However, unlike in the symmetric case, element ai,j ≠ aj,i.
In the weighted matrix (WU), the elements (wi,j) represent
the flows i→ j between the corresponding nations. Note that
wi,j is no longer equivalent to wj,i.
[43] We now consider the out‐ and in‐node degrees,

which provide additional information on the heterogeneity
of the network connectivity. The out‐node degree (kouti =
Sj ai, j) values range from 0 to 159 with a mean value of
32.79; the in‐node degree (kini = Sj aj,i) values range from
0 to 97 with a mean value of 32.79. We rank each nation
according to its degree for both the undirected and directed
network in Table 2. Note that the United States has the
highest kin and kout values. This is striking, since Netherlands
and the United States tie for the highest rank in the undi-
rected network. This indicates that although the United
States has the most import and export trading partners, there
is significant overlap in these trading partners such that
when AD is symmetrized, Netherlands gains the most links.
Netherlands is a strategic harbor in Europe, so this diversity
in trading partners makes sense.
[44] The cumulative distributions of the out‐ and in‐node

degrees of AD are shown in Figures 5a and 5b. We compare
an exponential distribution of parameter hkouti to the out‐
node degrees and parameter hkini to the in‐node degrees,
as we did for the undirected network. Note that the in‐node
degree does not follow an exponential distribution, while
the out‐node degree distribution does appear to follow an
exponential. The tail of kout is fatter than the tail of kin. The
tail of kin actually drops off quicker than an exponential
distribution (refer to the tails in Figures 5a and 5b). This
indicates that it is frequent that countries will export to many
trade partners, while they tend to import from just a few
trade partners. This makes sense, since if a country is effi-
cient at producing a given commodity, then it will likely
export it to many partners. However, if a nation must import
a given commodity, it will likely be able to meet its demand
for this commodity in a few trade relationships.

[45] The link weights in the directed network range from
77.72 m3 yr−1 to 29.2 × 109 m3 yr−1, with a mean value of
104 × 106 m3 yr−1. The largest link weight in WD is United
States → Japan, with a value of 29.2 × 109 m3 yr−1, or 4.7%
of the network’s total flow. The United States and Japan
have been shown to be important nations in the virtual water
literature [Hoekstra andHung, 2005;Hoekstra andChapagain,
2008], which this study confirms. The second largest link in
the network is United States → Mexico, with a value of
20.2 × 109 m3 yr−1, which represents 3.1% of the global flow.
Even though the links between Japan and the United States
and the United States and Mexico were also the largest links
in the undirected network, we are now able to distinguish
flow direction. The link between Canada and the United
States is the third largest link in the symmetric network (with
a value of 14.5 × 109 m3 yr−1) but the 11th largest link in the
directed network. In the directed network, the link Canada→
United States accounts for 8.08 × 109 m3 yr−1 (see Table 4), a
whole order of magnitude less, because of the fact that trade
United States → Canada is also relatively large (valued at
6.46 × 109 m3 yr−1). This example illustrates that information
is lost through network symmetrization.
[46] Differences between our virtual water flow volumes

and other values reported in the literature can be attributed
to differences in VWC and the agricultural commodities
considered, though major differences are mainly due to
differences in the underlying commodities. For example, we
calculate the total virtual water import of the United States
due to crop commodities to be 8.21 × 109 m3 yr−1. However,
Hoekstra and Hung [2005], whose study is based on 38 crop
commodities, determine that the United States imports
29.3 × 109 m3 yr−1, while Hoekstra and Chapagain [2008],
in a study based on 285 crop commodities, calculate the
same value at 73.1 × 109 m3 yr−1. It makes sense that wewould
obtain a much lower value than Hoekstra and Chapagain
[2008] for the import of crops to the United States, since
this wealthy nation likely imports many specialty crops
that are not included in our analysis, since we focus on
staple crops. Our values compare relatively well for other
flows.
[47] For weighted, directed networks the natural gener-

alization of the out and in degree of a node is the out‐ and
in‐node strength, where souti = Sj wi, j and sini = Sj wj,i,
respectively. The import volumes (sin) range from 0 m3 yr−1

to 52.1 × 109 m3 yr−1, with a mean value of 3.40 × 109 m3

yr−1; the export volumes (sout) range from 0 m3 yr−1 to 165 ×
109 m3 yr−1, also with a mean value of 3.40 × 109 m3 yr−1.
The cumulative distributions of the in‐ and out‐node
strengths are compared with the stretched exponential dis-
tribution in Figures 5c and 5d. As in the undirected network,
the stretched exponential distribution provides an excellent fit
to the directed node strength distributions. This indicates that
the high node strength heterogeneity is maintained when
direction is taken into account.
[48] We rank nations according to their strength in

Table 5. Table 5 provides additional insight into the node
strength heterogeneity that is lost by symmetrizing the net-
work to create the undirected network. For example, Japan
imports the largest volume of virtual water but ranks 52nd
in terms of export volume. However, when we symmetrize
the directed network on the basis of the sum of trade
between any two nations, we lose this information and Japan
becomes the fourth‐ranked nation in terms of node strength.
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Similarly, Australia is the fourth largest global exporter of
virtual water but comes in 87th in terms of import and 7th
in the undirected case. When we analyze the volume of
virtual water that each country imports on a per capita
basis, the rankings change dramatically. The United Arab
Emirates is the largest importer per capita. Most of the
nations that import a lot of virtual water on a per capita basis
are either island nations or wealthy countries with a relatively
small population. Importantly, many of these countries are
extremely arid (i.e., United Arab Emirates, Qatar, Kuwait,
and Israel) or lack sufficient water and land resources for
agricultural production (i.e., Aruba, Cyprus, Singapore, Hong
Kong, Seychelles, Netherlands Antilles, and Malta).
[49] As in the undirected network analysis, we plot

the strength of the nodes as a function of their degree in
Figures 5e and 5f. Similarly, we observe a power law rela-
tionship that follows the form sin (kin) ∼ kin

bin and sout (kout) ∼
kout
bout. The parameter bin is 3.05, and the parameter bout
is 1.94 for the aggregate network and is provided in Table 6
for the individual crop networks. These high b values indi-
cate that the strong relationship between the volume of virtual

water and trade connections remains when direction is taken
into account. In fact, the value of bin is larger than the value of
b, which indicates that the relationship between sin and kin is
even stronger than the relationship between the undirected
strength and node degree, particularly for the soy network,
where bin = 3.32.
[50] Thus, as nations increase the number of countries that

they import from, they increase the volume of virtual water
obtained at an even greater rate. This finding has important
policy implications, indicating that increasing the number
of import trade partners is an efficient way for countries to
improve access to water resources. In our related paper
[Suweis et al., 2011], we develop a model of global virtual
water trade with predictive capabilities, in which we detail
the controls on the network structure. We find that both
economic and climatologic factors are necessary to capture
the global properties. In particular, the gross domestic
product of each nation is used to model the connectivity
structure, while the rainfall on agricultural area is necessary
to determine the weighted network properties (i.e., the
volumes of virtual water). Thus, both the economy and

Figure 5. Graphs for the directed virtual water trade network. (a) The cumulative distribution of the out‐
node degrees compared with an exponential distribution of parameter hkouti = 32.79. (b) The cumulative
distribution of the in‐node degrees compared with an exponential distribution of parameter hkini = 32.79.
(c) The cumulative distribution of the out‐node strengths compared with a stretched exponential distribu-
tion of parameter aout = 0.28. (d) The cumulative distribution of the in‐node strengths compared with a
stretched exponential distribution of parameter ain = 0.48. (e) Out‐node strength plotted against out‐
node degree exhibiting a power law relationship of the form sout(kout) ∼ kout

bout, where parameter bout =
1.93. (f) In‐node strength plotted against in‐node degree exhibiting a power law relationship of the form
sin(kin) ∼ kin

bin, where parameter bin = 3.05.
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the water resources of a country are necessary to reproduce
the network and explain why a country with more trade
partners exchanges much more virtual water. Note that our
finding that water availability is a determinant of virtual
water trade differs from the findings of Ma et al. [2006] and
Verma et al. [2009], who find that water availability does
not drive virtual water trade. Please refer to Suweis et al.
[2011] as we do not go into model details in this paper.
[51] When direction is taken into account, the average near-

est‐neighbor degree breaks into four classes: knn
out,in, knn

out,out, knn
in,out

and knn
in,in. The first element in the superscript determines the

neighborhood of node i , while the second element labels
the characteristic of the neighbors. For example, knni

in,out

determines the neighbors that node i imports from and then
calculates their export partnerships [Foster et al., 2010]. We
perform a local unweighted average of the directed nearest
neighbor degrees, defined as

k in;innni
¼ 1

kini

X
j2Vin ið Þ

ajikinj ; ð8Þ

kout;outnni
¼ 1

kouti

X
j2Vout ið Þ

aijkoutj ; ð9Þ

kin;outnni
¼ 1

kini

X
j2Vin ið Þ

ajikoutj ; ð10Þ

kout;innni
¼ 1

kouti

X
j2Vout ið Þ

; aijkinj ð11Þ

where j 2 V(i) indicates the j neighbors of node i for a given
trade direction. For example, 2 Vin(i) indicates the neighbors
from which node i imports. Once the appropriate neighbor-
hood of i has been established, then the degree of nodes
(again, of a particular direction) within that neighborhood
are summed; 1/ki serves as the normalization factor.
[52] We extend the definition of knn

W as given by Barrat
et al. [2004] for weighted undirected networks and as sug-
gested by Kyriakopoulos et al. [2009]. Here we provide the
explicit equations for the local weighted average of the
directed nearest‐neighbor degree:

kW in;inð Þ
nni

¼ 1

sini

X
j2Vin ið Þ

wjikinj ; ð12Þ

kW out;outð Þ
nni

¼ 1

souti

X
j2Vout ið Þ

wijkoutj ; ð13Þ

kW in;outð Þ
nni

¼ 1

sini

X
j2Vin ið Þ

wjikoutj ; ð14Þ

kW out;inð Þ
nni

¼ 1

souti

X
j2Vout ið Þ

wijkinj ; ð15Þ

where all symbols follow those in equations (8)–(11). W
indicates that we are dealing with the weighted definition,
and the normalization factor is 1/si. The local weight between
nodes is now taken into consideration. Equations (12)–(15)

Figure 6. Graphs of the weighted (solid line) and the topological (dashed line) assortativity for the
directed network. (a) The import neighbors and their import characteristics (for the unweighted and
weighted definition, refer to (8) and (12), respectively). (b) The import neighbors and their export
characteristics (for the unweighted and weighted definition, refer to (10) and (14), respectively). (c) The
export neighbors and their import characteristics (for the unweighted and weighted definition, refer to (11)
and (15), respectively). (d) The export neighbors and their export characteristics (for the unweighted and
weighted definition, refer to (9) and (13), respectively). Note that the disassortativity structure exhibited in
all of the unweighted networks breaks down when the network weights are considered.
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thus measure the effective affinity to connect with high‐
degree or low‐degree neighbors according to the magnitude
of the actual interactions and the direction of connection.
[53] Both the unweighted and weighted average nearest‐

neighbor degrees for our directed network are shown in
Figure 6. In all cases, the topological definition (i.e.,
unweighted) displays disassortative behavior (refer to the
dashed lines in Figure 6). Thus, nations in the directed virtual
water trade network tend to connect with other nations with
different topological characteristics from themselves when
only the network topology is considered. In all cases, the
addition of weights destroys the disassortative structure
exhibited in the unweighted case. Note that the solid lines in
Figure 6 all remain constant or increase with k. Here knn

W(in,out)

and knn
W(out,out) exhibit the largest increase with k, highlighting

the importance of major exporters in the network. Interest-
ingly, the accumulation of weights leads major exporting
nations to disproportionately connect with one another.
Indeed, Denmark, France, Germany, Italy, Netherlands, the
United Kingdom, the United States, and China are the

countries with the highest knn
W(out,out) and kout (i.e., these

nations are represented by the rightmost point on the solid
line in Figure 6d). Thus, including information on the net-
work weights and direction illuminates additional informa-
tion on the global structure of virtual water trade.
[54] When direction is taken into account, there are eight

possible combinations of the clustering coefficient that fall
into four categories (see Fagiolo [2007] for a complete
description and representation): cin, cout, ccyc, and cmid.
Connectivity between the import neighbors of node i is
measured by cin; cout quantifies the clustering between the
export neighbors of node i. For both cin and cout we include
all closed triangles, regardless of the direction of the con-
nection between the j, h neighbors of node i. However,
direction between the j, h neighbors of node i is considered
by ccyc, and cmid. The cyclic clustering coefficient (ccyc)
measures triangles that follow the specific ordering pattern
i → j → h → i or i → h → j → i. The middleman
clustering coefficient (cmid) measures triangles with the
specific ordering pattern j → i → h and j → h or h → i → j

Table 8. Global Network Measures for Directed Virtual Water Trade Networks

Symbol

Crop

Barley Corn Rice Soy Wheat Beef Pork Poultry Aggregate

Active export nodes Nout 126 133 127 116 138 116 102 101 151
Active import nodes Nin 166 166 165 166 166 166 166 163 166
Global flow (m3 yr−1) g 30.5 × 109 62.9 × 109 52.9 × 109 241 × 109 137 × 109 59.2 × 109 19.7 × 109 21.6 × 109 625 × 109

Number of links L 2852 1974 2124 1999 3376 2154 2005 1708 6033
Average export degree hkouti 16.30 11.10 12.14 11.42 18.97 12.52 11.86 10.17 32.79
Average import degree hkini 16.30 11.10 12.14 11.42 18.97 12.52 11.86 10.17 32.79
Maximum export degree kout

max 147 140 131 123 150 108 118 134 159
Maximum import degree kin

max 75 54 37 35 82 43 40 38 97
Average export strength

(m3 yr−1)
hsouti 99.0 × 106 0.35 × 109 0.30 × 109 1.38 × 109 0.77 × 109 0.34 × 109 0.12 × 109 0.13 × 109 3.40 × 109

Average import strength
(m3 yr−1)

hsouti 99.0 × 106 0.35 × 109 0.30 × 109 1.38 × 109 0.77 × 109 0.34 × 109 0.12 × 109 0.13 × 109 3.40 × 109

Maximum export strength
(m3 yr−1)

sout
max 7.23 × 109 30.8 × 109 17.0 × 109 67.2 × 109 36.2 × 109 12.8 × 109 6.19 × 109 8.36 × 109 165 × 109

Maximum import strength
(m3 yr−1)

sin
max 4.26 × 109 10.2 × 109 6.14 × 109 24.1 × 109 9.94 × 109 10.5 × 109 3.45 × 109 3.33 × 109 52.1 × 109

Clustering coefficient
export

cout 0.40 0.31 0.24 0.25 0.40 0.25 0.29 0.24 0.51

Clustering coefficient
import

cin 0.72 0.59 0.55 0.64 0.69 0.59 0.69 0.64 0.74

Clustering coefficient
cyclic

ccyc 0.07 0.05 0.03 0.03 0.07 0.04 0.04 0.03 0.09

Clustering coefficient
middleman

cmid 0.11 0.10 0.08 0.07 0.11 0.08 0.08 0.07 0.13

Clustering coefficient
export random

cERout
0.13 0.08 0.10 0.10 0.14 0.11 0.12 0.10 0.22

Clustering coefficient
import random

cERin
0.10 0.07 0.07 0.07 0.11 0.08 0.07 0.06 0.20

Clustering coefficient
cyclic random

cERcyc
0.19 0.12 0.14 0.13 0.21 0.15 0.14 0.12 0.36

Clustering coefficient
middleman random

cERmid
0.19 0.12 0.14 0.13 0.21 0.15 0.14 0.12 0.36

Clustering coefficient
export weighted

cout
W 0.54 0.47 0.41 0.42 0.58 0.46 0.49 0.45 0.73

Clustering coefficient
import weighted

cin
W 0.90 0.83 0.82 0.88 0.91 0.80 0.88 0.88 0.94

Clustering coefficient
cyclic weighted

ccyc
W 0.11 0.10 0.04 0.06 0.13 0.07 0.07 0.06 0.16

Clustering coefficient
middleman weighted

cmid
W 0.19 0.21 0.17 0.17 0.21 0.17 0.17 0.17 0.24

Stretched exponential
parameter export

aout 0.30 0.30 0.22 0.26 0.26 0.26 0.26 0.26 0.28

Stretched exponential
parameter import

ain 0.34 0.38 0.48 0.44 0.44 0.35 0.35 0.32 0.48
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and h → j. The explicit equations for the directed clustering
coefficients, as given by Fagiolo [2007], in the notation used
in this paper are

cini ¼
X

j;h2Vin ið Þ

aji þ ahi
� �

ajhjhj
2 � kini kini � 1ð Þ ; ð16Þ

couti ¼
X

j;h2Vout ið Þ

aij þ aih
� �

ajhjhj
2 � kouti kouti � 1ð Þ ; ð17Þ

ccyci ¼
X

j2Vout ið Þ

X
h2Vin ið Þ

aij þ ahi
� �

ajh
ktoti ktoti � 1ð Þ ; ð18Þ

cmidi ¼
X
j2Vin ið Þ

X
h2Vout ið Þ

aih þ aji
� �

ajh
ktoti ktoti � 1ð Þ ; ð19Þ

where ajh∣hj indicates that a closed triangle is formed if a link
exists (j → h or h → j). For this reason, cin and cout are
divided by two in the above equations to avoid double
counting closed triangles. We define ktot = kin + kout and stot =
sin + sout.
[55] When weights are taken into account, the definitions

for the directed clustering coefficients as given above become

cWini ¼
X

j;h2Vin ið Þ

wji þ whi

� �
ajhjhj

2sini kini � 1ð Þ ; ð20Þ

cWouti ¼
X

j;h2Vout ið Þ

wij þ wih

� �
ajhjhj

2souti kouti � 1ð Þ ; ð21Þ

cWcyci ¼
X

j2Vout ið Þ

X
h2Vin ið Þ

wij þ whi

� �
ajh

stoti ktoti � 1ð Þ ; ð22Þ

cWmidi
¼

X
j2Vin ið Þ

X
h2Vout ið Þ

wih þ wji

� �
ajh

stoti ktoti � 1ð Þ ; ð23Þ

where all symbols follow those in equations (16)–(19).
W indicates that we are dealing with the weighted definition.
The local weight between nodes is now taken into consid-
eration. Equations (20)–(23) thus measure clustering in the
network according to the magnitude of the actual interactions
between nodes and the direction of connection.
[56] Mean values for each of the four clustering combi-

nations are provided in Table 8. The mean cyclic and
middleman clustering coefficients are lower than we would
expect in a random network, where hcERmid

i and hcERcyc
i =

hktoti/Ntot. Even when weights are taken into account, these
clustering combinations occur less frequently in the network
than would be expected by pure chance. For this reason,
we focus our attention on cin and cout; cout

W > cout > cERout
and

cin
W > cin > cERin

. Thus, the in‐ and out‐clustering patterns
occur more frequently in the food trade network than would
be expected under pure chance, and the addition of weights
increases such clustering.
[57] Figure 7 shows the unweighted, directed clustering

coefficient and the weighted, directed clustering coefficient
plotted against node degree. From Figure 7, we see that the
unweighted clustering coefficient exhibits disassortivity,
similar to the undirected case. When weights are included
in the definition, the disassortivity breaks down, indicating
that highly connected nations form tighter cliques when the
volume of trade is considered.
[58] We have shown that the disassortative structure

breaks down for the directed network, just as it does for the
undirected network, when network weights are properly
accounted for. Additionally, incorporating direction high-
lights the tendency for major exporters to preferentially
connect with other major exporters when trade volume is
accounted for. This is further evidence that the “weighted
rich club” phenomenon is in effect.
[59] Destruction of the disassortative structure with the

addition of network weights is also a sign that a network
“backbone” exists [DeMontis et al., 2007]. A backbone of a
network is a subnetwork comprising only the dominant links
[Glattfelder and Battiston, 2009]. Following Glattfelder and
Battiston [2009], we define the backbone of the global
virtual water trade network as the core subnetwork where
most of the weight resides. Here we choose a threshold
value of 80%, so our backbone network comprises only the

Figure 7. Graphs of the weighted (solid line) and the topological (dashed line) clustering coefficient for
the directed network. (a) The out‐clustering coefficient (cout) as a function of out‐node degree (kout). Refer
to (17) and (21) for the unweighted and weighted definition, respectively. (b) The in‐clustering coefficient
(cin) as a function of in‐node degree (kin). Refer to (16) and (20) for the unweighted and weighted
definition, respectively. Note that the addition of the network weights destroys the disassortativity
observed in the unweighted case in both Figure 7a and Figure 7b.
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largest links that account for 80% of the flow volume. This
results in the removal of the weakest links and any resulting
isolated nodes. Surprisingly, 80% of the global flow is
captured with only 255 links, or 4.2% of the links in the
complete network. This backbone forms a single connected
component, which indicates that all of the nodes in the
backbone network are connected. The backbone consists
of 79 nodes that export and 37 that import, compared to
151 export nodes and 166 import nodes in the complete
network. It is interesting that there are more export nodes
in the backbone network, while there are more import nodes
in the complete network.
[60] This provides a clear picture in which dominant and

highly connected nations participate in large‐volume trade
with one another, while a large number of small countries
are on the trade periphery and are connected to these hubs
and each other through trade of relatively small volumes.

4. Conclusions

[61] In this paper we applied a novel conceptual and
methodological framework to the study of global virtual
water trade. The virtual water trade that we analyzed was
that associated with the international food trade (i.e., 58
commodities from five major crops and three livestock
types). These food products account for 60% of global cal-
orie consumption. The main motivation of this study was to
obtain empirical knowledge of the global network structure.
[62] Quantifying the global structure is important for the

understanding and management of any system, which here
is the linked water and food trade. Our analysis quantifies
the topology of the international food trade, an often dis-
cussed topic in the policy community, finding that export
trade connections follow an exponential distribution. We
also characterized the weighted features of the network
architecture as given by virtual water flows, which was
found to follow a stretched exponential distribution. These
probability distributions provide water resource professionals
with an accurate description of the system.
[63] We highlight how individual nations fit into the

global structure, which enables national policy makers to
determine the relationship of their country to the international
community. The United States is the dominant exporter of
virtual water, while Japan is the major importer. The trade of
virtual water from the United States to Japan alone accounts
for 5% of global virtual water flow. The United States,
France, and Netherlands occupy important roles in the global
structure. The trade volume exhibits a power law relationship
with the number of trade partners of each nation, indicating
that the more trading partners a country has, the much more
virtual water it trades, particularly in terms of import trade
relationships. This finding has important implications for the
trade policy of water‐scarce nations looking to increase their
access to water resources.
[64] This analysis provided evidence for the existence of

the weighted rich club phenomenon, where a tightly clus-
tered group of countries trade the majority of the resources
among themselves. This network structure exists with or
without direction. However, major exporters preferentially
trade large volumes of virtual water with one another. We
uncovered a global trading hierarchy, in which a few
dominant nations connect otherwise disconnected portions
of the network and form tight clusters with each other. The

majority of the nations reside on the periphery of the trade
network and participate in relatively small volume trade.
[65] Applying the analytical tools of complex network

theory to virtual water trade provides important insights into
its global architecture. This empirical analysis, while inter-
esting in its own right, is the necessary first step for developing
and validating modeling approaches. Additionally, we believe
that this analysis opens the way for many possible extensions
with practical applications, such as community detection;
mapping change over time; and understanding systemic risk,
particularly under the potential impacts of climate change,
as well as opportunities for network optimization.
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