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Abstract
Agriculture will need to significantly intensify in the next decades to continue providing essential
nutritive food to a growing global population.However, it can have harmful environmental impacts,
due to the use of natural and synthetic resources and the emission of greenhouse gases, which alter the
water, carbon and nitrogen cycles, and threaten the fertility, health and biodiversity of landscapes.
Because of the spatial heterogeneity of resource productivity, farming practices, climate, and land and
water availability, the environmental impact of producing food is highly dependent on its origin. For
this reason, food trade can either increase or reduce the overall environmental impacts of agriculture,
depending onwhether or not the impact is greater in the exporting region.Here, we review current
scientific understanding of the environmental impacts of food trade, focusing onwater and land use,
pollution and greenhouse gas emissions. In the case of water, these impacts aremainly beneficial.
However, in the cases of pollution and greenhouse gas emissions, this conclusion is not as clear.
Overall, there is an urgent need for amore comprehensive, integrated approach to estimate the global
impacts of food trade on the environment. Second, research is needed to improve the evaluation of
some key aspects of the relative value of each resource depending on the local and regional biophysical
and socio–economic context. Finally, to enhance the impact of such evaluations and their applicability
in decision-making, scenario analyses and accounting of key issues like deforestation and groundwater
exhaustionwill be required.

Introduction

Agriculture—growing crops and raising livestock—
provides essential nutritive food, as well as employ-
ment and economic return, in particular when com-
modities are traded domestically or internationally.
However, it can negatively impact the environment
through the use of natural (water, soil, land) and
synthetic (fertilizer, pesticides, herbicides, etc.)
resources, which alter the water, carbon and nitrogen
cycles, and threaten the fertility, health and biodiver-
sity of landscapes. Due to the spatial heterogeneity of
resource productivity, farming practices, climate, and
land and water availability, the environmental impact
of producing food is highly dependent on the location
of production. Trade can thus either increase or
decrease the overall environmental impacts of

agriculture, depending on the relative impacts in the
importing and exporting region.

Because essential resources required for food pro-
duction are largely immobile (e.g. water and land),
agriculture is only possible in certain places. Trade
thus allows people to live and access food in more pla-
ces, and with greater diversity and quantity (Porkka
et al 2013, D’Odorico et al 2014). The history of civili-
zation and development shows the importance of
trade in population and socio–economic growth. By
moving food from its production to consumption pla-
ces, trade facilitates growth but also distances con-
sumers from the potentially damaging environmental
impacts of agriculture (D’Odorico et al 2010). An eco-
nomic solution to this problem would be to account
for environmental damages in food prices (i.e. inter-
nalize externalities), but this is challenging due to
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equity issues across countries and groups with varying
financial capacities, and tendency for unilateral, rather
than multilateral policies. These economic and poli-
tical considerations are the object of many studies (e.g.
Barrett 1994, Esty 2001, Muradian and Martinez-
Alier 2001) and will not be discussed here. Instead, we
focus on work that has attempted to quantify the role
of food trade in the environmental impacts of agri-
culture. Importantly, unlike the impact of food pro-
duction, the overall impact of food trade is assessed by
comparing relative impacts between trading partners.
In the case of water, the impact of trade on global water
use is considered beneficial if the exporterʼs water-
productivity is higher than that of the importer,
whereas the impact of both countries’ production
declines when any of the two countries’ water pro-
ductivity improves.

Food systems are becoming increasingly global, as
trade is facilitated by better communication technol-
ogy, global governance, trade agreements, etc. With
the world population projected to reach 9 billion in
this century, the challenge to feed the planet with
already pressured natural resources is particularly dif-
ficult. Boosting agricultural production while mini-
mizing environmental impact is indeed one of the
major challenges of the 21st century (Global Food
Security Programme 2015). As trade plays an increas-
ingly important role in the worldʼs food supply, and
will be crucial for achieving global food security, it is
essential to understand its effects on the environment
and resource productivity, both key factors for
sustainability.

A growing body of literature has been developed to
answer the major research question of whether or not
trade alleviates the environmental impacts of the glo-
bal agricultural system. These impacts are multiple,
such as resource depletion, pollution, climate dis-
turbance, and biodiversity reduction. In this review
paper, we highlight findings about the effects of food
systems’ globalization on agriculture’s environmental
impacts via resource use and greenhouse gas emis-
sions.We present the current state of knowledge in the
critical issue of the environmental impacts of food
trade, and pinpoint key research directions ahead
toward an improved understanding of this major glo-
bal phenomenon.

Water resources

The agricultural sector is responsible for 70% of global
freshwater withdrawals, with even larger shares in Asia
and Africa (FAO 2011). In addition, irrigation drives
90% of global freshwater consumption (Hoekstra and
Mekonnen 2012). This makes agriculture and food
systems management crucial for water resources
strategies. While mostly rainfed (80% of cultivated
land in 2009, (FAO 2011)), global food production
importantly relies on productive irrigated fields, with

40% of the global food supply produced with irriga-
tion (WWAP 2014), and as much as 80% of food
production in Pakistan, 70% inChina and over 50% in
India. Irrigation water sources, referred to as ‘blue
water’, include surface and groundwater, from river
flow to reservoirs and deep aquifers, each type present-
ing a different opportunity cost, availability over time
and space, and renewal rate. In particular, non-renew-
able aquifers are increasingly overexploited in large
food baskets of the world, like the California Central
Valley, central USA, the North China Plain, Northern
India and Pakistan (Wada et al 2010, Famiglietti 2014).
As a highly significant issue for global, sustainable
water and food security, the consumptive use of water
resources for agriculture has been the focus of a vast
array of research. This section focuses on the environ-
mental impact of food trade on freshwater availability
via agricultureʼs water resources use.

Water resources are unevenly distributed on the
planet. In some regions, while population grows and
diets shift toward water-intensive products like meat,
water resources are placed under increased pressure,
leading to water and food security issues (Dalin
et al 2012, 2014). Besides, many areas of the world are
expected to suffer increasingly frequent and intense
droughts under climate change, which will strain
water resource use in agriculture even more and
potentially lead to crop failures(Field et al 2012).
However, other regions have abundant water resour-
ces, prosperous agriculture and might slightly benefit
from climate change in terms of crop yields(Parry
et al 2007). Thus, among different strategies to
increase agricultural water-use efficiency (e.g.
mechanization, water-saving irrigation, fertilizers),
trade of water-intensive food products, or virtual
water trade, is a way to improve global and regional
water-use efficiency by virtually transferring water
resources frommore to less water-productive areas.

In recent decades, the amount of water embedded
in traded food has been modeled, estimated, quanti-
fied and analyzed, at different temporal and spatial
scales. The water efficiency of trade, reflecting whether
commodities flow from relatively more water produc-
tive areas to less productive ones, has been the main
way to assess the impact of food trade on water resour-
ces use. The concept of global water savings has been
defined, for a specific trade relationship, as the weight
of commodity trade multiplied by the difference
between the exporting countryʼs water productivity
and that of the importing country (Chapagain
et al 2006). In other words, global water savings due to
an international trade relationship represent the dif-
ference between the volume of water actually con-
sumed by the exporter and the volume that the
importer would consume if it produced the food
domestically. The emerging conclusion from diverse
papers is that much water resources are saved from
trade, including irrigation water (de Fraiture
et al 2004, Oki and Kanae 2004, Chapagain et al 2006,
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Yang et al 2006, Konar et al 2011, Dalin et al 2012,
Konar et al 2012).

Chapagain et al (2006) estimated virtual water
trade flows associated with 285 crop and 123 livestock
commodities around the year 2000 and found they
induced global water savings of 352 km3 yr−1. Dalin
et al (2012) provided a temporal analysis of embedded
water in trade of 58 staple crop and livestock com-
modities from 1986–2007, and found that the corresp-
onding global water savings significantly increased
over this period, from about 50 to 250 km3 yr−1. Most
savings are induced by sizable and water-efficient
trade of wheat and corn, while relatively more water-
efficient but smaller trade of meat products con-
tributed about a third of savings; similar contributions
are found for year 2000 by Chapagain et al (2006).
Dalin et al (2012) highlight that volume of trade sig-
nificantly grew on existing water-efficient links, parti-
cularly on the importing link between China and its
major soybean trade partners: Brazil, Argentina and
the USA. Because of large differences in soy water pro-
ductivity between China and its partners, Chinese soy
imports were found to induce very large water savings.
These findings led to a spatially detailed study of Chi-
naʼs virtual water trade (figure 1(A), (Dalin
et al 2014, 2015)), showing that most associated water
savings are due to foreign imports (figure 1(B)). The
lower number of commodities studied by Konar et al
(2011) and Dalin et al (2012) explains the different
overall volume of virtual water trade (i.e. 625 km3 in
Konar et al (2011) and about 1,250 km3 in Chapagain

et al (2006), with about 400 commodities) and
corresponding savings between the studies. However,
the proportions of water saved relative to water used in
agriculture in both studies are comparable (i.e. 4% in
2000 in (Dalin et al 2012) and 6% in (Chapagain
et al 2006)). These results imply that food trade favors
efficient allocation of water resources, as places with
higher productivity tend to produce and export to less
productive ones, thus reducing overall water
consumption.

While the aggregate water efficiency of interna-
tional food trade is consistently shown across a num-
ber of studies, this pattern can shift when focusing on
specific countries, trade links, commodities or types of
water (Dalin et al 2012, Konar et al 2012, Konar and
Caylor 2013). An important case is that of China,
where Dalin et al (2014) highlight inefficient food
trade links across Chinese provinces, originating from
drier, less water-productive provinces like InnerMon-
golia. Other authors also point out trade links that
contribute to groundwater extraction, by analyzing
food exports produced with water resources from
threatened US aquifers (Marston et al 2015). Impor-
tantly, the water efficiency of trade asmeasured by sav-
ings is an informative, but not holistic measure of
tradeʼs impacts on water resources. Indeed, agri-
cultural systems that are currently highly productive
can also be unsustainable. For example, much irriga-
tion is based on non-renewable sources (Wada
et al 2012), including that in productive fields of the
Western and Central USA. Notably, water resources

Figure 1.Virtual water trade betweenChinese provinces and the rest of theworld (ROW) (A), and associated positive global water
savings (B). Numbers indicate the volume ofwater in cubic kilometers per year, and the linkʼs color corresponds to the exporting
province. Themap at the bottom right provides a key to the color scheme.Note that the largest water saving links are foreign imports
by Tianjin and Liaoning, and exports fromShandong toHainan. Taken fromDalin et al (2014).
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can hardly be displaced across river basins, and thus
water scarcity is a basin-level indicator. As a result, the
‘value’ of water varies across basins according to the
local water scarcity. For this reason, indicators should
account for these differences when comparing coun-
tries’ productivity. Separating water by source is an
initial step, but more needs to be done to assess the
impacts of food trade on global water scarcity (Chapa-
gain et al 2006). Some regions are productive but rely
on the intensive use of scarce resources (e.g. South
Africa, USA High Plains, etc.). In addition, some
regions are cultivated unsustainably and with low pro-
ductivity because of other concerns, like food self-suf-
ficiency, employment, local and regional subsistence,
political reasons and economic constraints. Recent
work by Yano et al (2015) develops a water unavail-
ability factor to inform on the local water resources
context according to different types of water, based on
their renewal rates. This allows not only for a con-
sistent conversion across water sources (instead of
summing all volumes), but also for an accounting of
the local water scarcity.

Land and soil resources

As global demand for food rapidly increases due to
population growth and changing diets, pressure for
agricultural expansion leads to more land clearing and
conversion to cropland or pasture, sometimes includ-
ing deforestation of productive tropical areas. These
land use changes can have important impacts on the
environment, by releasing stored carbon, fragmenting
species habitat, and altering the hydrological cycle,
among others. Agricultural practices also impact
ecosystems via the use of fertilizers, pesticides and
other chemicals that can infiltrate soils and water
streams, potentially leading to pollution or eutrophi-
cation. Here we will discuss work on land use and land
use change for agriculture, and on the use of nitrogen
(N) and phosphorus (P) fertilizers as potential pollu-
tants around and downstream of fields. Emissions of
greenhouse gases from agricultural activities, includ-
ing nitrous oxide, are treated in the next section. Other
environmental issues associated with using nutrients,
such as depletion of phosphorus reserves (Cordell
et al 2009) or impact of the N and P physically
embedded in foods (Grote et al 2005), and soil
salinization from irrigation in dry areas (Pitman and
Läuchli 2002), are not discussed here. This section
focuses on the environmental impact of food trade on
land availability and environmental quality via agricul-
tureʼs land use andN and P surplus.

In the past decade, deforestation rates have been
slightly decreasing in Brazil, and have significantly
increased in Indonesia, Malaysia, Paraguay, Bolivia,
Zambia, Angola, Papua New Guinea and other tropi-
cal areas (Hansen et al 2013). In Indonesia andMalay-
sia, forests have been cleared mainly for palm oil

production (Koh et al 2011, Carlson et al 2013), pri-
marily destined to international markets. Important
land clearings and conversions also occurred in the
Brazilian Amazon, and deforestation in the early 2000s
has been linked to export-oriented meat and livestock
feed production, withmuch of the cleared forests used
for pasture and soybean (Morton et al 2006). In these
cases, access to global markets via trade evidently
boosted forest clearings. However, tropical agriculture
can be done in more sustainable ways. Export-orien-
ted deforestation has been studied in Brazil and other
tropical regions by De Fries et al (2013), highlighting
the driving force of international food demand and
analyzing how the relative success of Brazil at slowing
down deforestation could be repeated in similar
regions. This success was enabled by governance and
technical monitoring capacity put in place to control
deforestation in the mid 2000s. Hansen et al (2013)
point out that although the short-term decline of Bra-
zilian deforestation is well documented, changing legal
frameworks governing Brazilian forests could reverse
this trend. The effectiveness of Indonesiaʼs recently
instituted moratorium on new licensing of conces-
sions in primary natural forest and peatlands, initiated
in 2011, is yet to be determined. Lambin and Mey-
froidt (2011) highlight the importance of under-
standing land change as part of global, open systems to
design policies allowing both agricultural develop-
ment and nature conservation in tropical regions.

The role of agricultural trade in the global area of
land used for agriculture (or ‘virtual land trade’) has
been analyzed by Meyfroidt et al (2010, 2013). Trade
was found to transfer varying areas of cropland glob-
ally depending on estimation methods (Kastner
et al 2014), which resulted in overall saving or losses of
land area, depending on trade data used: either from
multi-regional input–output (MRIO) methods or via
bilateral trade datasets (e.g. FAOSTAT). The authors
find these differences are most likely due to MRIO
using aggregated products classes, and using land
intensity per unit crop value, rather than per unit crop
mass, as done by other accounts, while large price dif-
ferences can exist for the same food commodity of
varying quality. This suggests trade accounts based on
mass are more appropriate to evaluate transfers of
embedded land. Fader et al (2011) compared water
and land transfers via agricultural trade and found that
it has led to savings for both resources (i.e.
263 km3 yr−1 and 41Mha yr−1, respectively). Soybean
and maize contribute the most to land savings, sug-
gesting trade of soy-based feed may be land efficient.
They emphasize the fact that flows and savings of vir-
tual water and land need to be analyzed together
because they are intrinsically related. Indeed, water
productivity correspond to a water flow per land area
(evapotranspiration) divided by crop yield per land
area. The crop yield per land area is exactly what could
be called the ‘land intensity’ of agriculture. When
comparing land intensity of crops, it is important to
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note that boosted yields have often come at the cost of
more nutrient and chemical surplus (Drinkwater and
Snapp 2007).

Land clearings and pollution from chemicals are
also threatening biodiversity, due to habitat loss or
fragmentation, and ecosystem disturbance. Lenzen
et al (2012) have shown that trade contributes to biodi-
versity threats, especially in developing nations.
Figure 2, from their study, highlights countries where
more species are threatened by imports than by
domestic production, including Japan, Germany,
France and the UK. Similarly to tropical deforestation,
biodiversity threats are often higher in mid latitudes,
developing countries, where specific food commod-
ities are produced for export to higher latitudes, more
developed countries that do not have a suitable climate
to make these commodities (e.g. palm, cocoa, bana-
nas). Thus, even though overall land productivity
seems higher in exporting nations than importing
ones (Fader et al 2011), specific frameworks are
required tomitigate biodiversity loss and forest threats
due to commodity specific South–North trade. Some
of such frameworks are currently in place, for example
for soybean and palmoil.

Pollution from chemical application (nutrients,
pesticides, herbicides, etc.) impacts soils, aquifers and
rivers. The influence of agricultural trade and livestock
production on the global phosphorus (Schipanski and
Bennett 2012) and nitrogen (Lassaletta et al 2014)
cycles are also of great importance. Lassaletta et al
(2014) state that ‘At the global scale the system is
becoming less efficient because of the disconnection
between crop and livestock production across

specialized regions, increasing the environmental
impacts’. Schipanski and Bennett (2012) found effi-
cient trade in terms of phosphorous at the global scale
but note a variety of issues related to the depletion of
fertilizer resources and recycling difficulties. The
authors note that trade of feed crops, particularly soy-
beans, increasingly contribute to global P transfers,
but no conclusion is drawn on its effect on global P
use. A model estimating the land, water and nitrogen
inputs of meat and feed production was used to evalu-
ate the virtual flows of these resources through trade
(Galloway et al 2007). While pointing out important
remaining improvements required in nitrogen use
efficiencies, Galloway et al (2007) do not compare
these values across trading partners. The agricultural
pollution embedded in trade has been quantified by
O’Bannon et al (2013), who highlight that increasing
amounts of water pollution by nitrogen are traded
globally, measured by the concept of ‘gray water’, i.e.
volume of water needed to dilute river and aquifer pol-
lutants to acceptable concentrations. However, con-
clusions are not clear regarding the efficiency of this
process, i.e. whether or not pollution is avoided by
trade. This important issue also needs to be studied
and quantified at regional scales, as multiple studies
point out that current trade contributes to con-
centrated N pollution impacts in exporting regions
(Galloway et al 2007, Schipanski and Bennett 2012,
O’Bannon et al 2013, Lassaletta et al 2014). Moreover,
the estimation of local effects of N and P applications
require to evaluate nutrient surplus, based on input
and crop intake, as well as to improve the quantifica-
tion of local rates of leaching to soil and streams.

Figure 2.Top net importers and exporters of biodiversity threats. In importer countriesmarkedwith an asterisk, the biodiversity
footprint restsmore abroad then domestically; that is,more species are threatened by implicated imports than are threatened by
domestic production. Taken fromLenzen et al (2012).
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Climate system

Fertilizer application, livestock management and land
use change induce emissions of greenhouse gas, with
varying intensities depending on the agricultural
practices and types of land cleared. Land use change
can also affect the hydrological cycle by modifying
evapotranspiration, infiltration and discharge pat-
terns. This section focuses on the potential environ-
mental impact of food trade on the climate via
agricultureʼs greenhouse gas emissions.

The major agricultural sources of greenhouse gas
emissions are agricultural soils, agricultural waste
burning, enteric fermentation and manure manage-
ment. These processes mainly emit methane and
nitrous oxide. Agriculture contributed 70% of global
nitrous oxide emissions in 2010, mainly from synth-
etic fertilizers, animal waste dropped on soils (either as
animal manure or by animals during grazing) and
agricultural waste burning (IEA report http://edgar.
jrc.ec.europa.eu/docs/IEA_PARTIII.pdfp 4). Studies
of the impact of food production and trade on green-
house gas emissions take a similar approach as studies
on embedded water use, where water productivity
(kg kgwater food) is replaced by carbon equivalent
(CO2

eq) intensity of products (kg kgCO food2
eq ). But

unlike water consumption, carbon emissions occur-
ring during transportation can be significant and
sometimes offset the emission avoided from trade due
the carbon intensity differences between partners.
Despite this, emissions from transportation have
rarely been included. Davis and Caldeira (2015) quan-
tified CO2

eq emissions embedded in trade of goods and
services and Caro et al (2014) calculated direct
methane and nitrous oxide emissions (from enteric
fermentation andmanure) embedded in international
trade of meat products. The latter do not provide a
comprehensive assessment of the impact ofmeat trade

on emissions for meat production (i.e. whether meat
trade increases or decreases global emissions), but
highlights some links where additional emissions
occur with trade, due to different emission intensities
of trade partners. Importantly, the authors note that
carbon dioxide emissions associated with transport
are not accounted for. In a study of world trade and its
role on greenhouse gas emissions, Cristea et al (2013)
account for emissions related to both food production
and transportation. The authors note that agricultural
products are often shipped with the least emission
intensive transport mode (e.g. cargo) which makes
transportation emissions very small relative to other
modes. By adding on each trade link the transporta-
tion emissions (positive) and the difference in emis-
sion intensities between exporter and importer
(positive or negative), Cristea et al (2013) find that
trade of bulk agriculture (i.e. raw crops) reduces emis-
sions in 41.6% of the trade flows (i.e. trade links from a
specific country to another), in many cases sub-
stantially, due to a difference in emission intensities
overcoming transportation emissions. However, the
remaining links represent significant increases in
emissions, so that the average effect of bulk agriculture
trade is to increase emissions by 359 g of CO2 per dol-
lar of trade (figure 3). The effect of processed agri-
culture trade (including fruits, meats and dairy
products) on global emissions is not provided, but the
authors note that this type of trade ismore likely to rely
on carbon intensive air transport than that of raw
crops, thus potentially increasing global emissions
further.

Agricultural emissions due to land use change can
also be significant, in particular when carbon rich tro-
pical forests are cleared for pasture or cropland.
Important contributors to these emissions include
palm oil plantations in Indonesia (Carlson et al 2013),
largely for foreign exports, and Brazilian export-

Figure 3.Net change in CO2 emissions for trade in thewearing apparel (left) and bulk agriculture (right) sectors, i.e. emissions from
transportation (e t od( ) ) and difference between emission intensities of the origin (e y( )) and destination country (e y d( ) ), representing
the increase or decrease of global emissions via a specific trade link. The units are in grams of CO2 equivalent per dollar. The histogram
weights each change inCO2 emission intensity by the value of trade corresponding to that origin–destination–sector pair. Taken from
Cristea et al (2013). Note that the carbon efficiency of agricultural trade significantly varies across trade links (i.e. country pairs).
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oriented agriculture (Karstensen et al 2013). This trade
likely contributes to important carbon emissions,
given the difference in carbon stocks between tropical
forests and most temperate lands. However, compar-
ison of impacts is not obvious because, as previously
mentioned, tropical commodities could not be pro-
duced domestically by most importers (e.g. Western
Europe). Analyzing the differential effect of trade
would need another counter-factual to imports than
domestic production, e.g. domestic cultivation of sub-
stitute commodities, or imports from regions with dif-
ferent land use practices.

Final comments

A range of methods have been applied in the assess-
ment of the environmental impacts of food produc-
tion and trade, such as life cycle analysis (Roy
et al 2009), material flow analysis (Kytzia et al 2004),
mass balance, and systems models. We do not further
develop here themethodological issues related to these
assessments. However, it is important to point out the
role of temporal, spatial and sectoral scales in the
estimation of trade flows and resource consumption
per unit commodity. A full range of spatial scales
(regional, national, geological) play a role in the links
between food trade and environmental issues. Aggre-
gation and disaggregation across temporal, spatial and
sectoral scales needs to be carried out in a consistent
manner and accounting for scale-specific constraints.
Importantly, comparison across existing studies of a
specific environmental impact of trade (e.g. on water
consumption) is limited by the different spatio-
temporal scales and product aggregations used.

All the environmental impacts of agriculture
reviewed here, in particular pollution, deforestation
and biodiversity reduction, can be associated with
equity issues. Indeed, Hoekstra andMekonnen (2012)
and O’Bannon et al (2013) found that water pollution
often occurs in relatively less developed countries
exporting to more developed ones. Similarly, biodi-
versity reduction (figure 2, (Lenzen et al 2012)) and
deforestation (De Fries et al 2013, Karstensen
et al 2013) are generally linked to South–North trade.
Our review of quantitative estimates of the environ-
mental impacts of food trade does not further address
potential ethical and fairness questions (developed e.g
in (Hornborg 1998)), but we highlight the importance
of the perspective taken when estimating trade envir-
onmental impacts (e.g. global or regional). We suggest
that quantitative estimates of impacts account for
varying levels of exposure, such as local resource scar-
city and ecosystem fragility.

Research directions

We have highlighted key issues on the environmental
impacts of food trade, via land and water use and

greenhouse gas emissions, discussing the complexity
of these impacts and some difficulties in their estima-
tion. We draw from this discussion three broad
recommendations for future research aiming at
improving the understanding, accounting and appli-
cation of the environmental impacts of food trade.

First, the vast majority of studies focuses on one
type of environmental effect, namely reduced water
availability, global warming, biodiversity threat, etc. In
the future, there is a clear need for more comprehen-
sive approaches accounting for the multiple environ-
mental effects of agriculture, and for the creation of
consistent global indicators reflecting these effects. As
part of such effort, understanding and accounting for
the interactions within the water–food-trade-climate
system is an important and challenging task going
forward.

Second, the role of food trade in alleviating or wor-
sening environmental impacts of agricultural produc-
tion is often assessed by comparing relative impacts
between importers and exporters. For this comparison
to be useful and realistic, detailed contextual informa-
tion, on issues like local resource scarcity, are required.
Moreover, approaches to properly account for these
contextual issues need to be further developed. In
particular, for the impact of water use on water avail-
ability, the types of water resource and characteristics
of the local hydrological cycle need to be included. For
the effect of nutrient use on soil and water quality, the
surplus amounts and the properties affecting their rate
of transfers to soils, atmosphere and water should be
measured and analyzed. To translate this accounting
of spatially detailed resource scarcity or ecological vul-
nerability into trade analysis, it is important to con-
sider subnational trade, especially in large,
heterogeneous countries, to avoid loss of information
by spatial averaging.

Third, as food production and consumption
become increasingly global, accounting for trade lin-
kages is key to track environmental and sustainability
objectives in agricultural policy. The resource saving
potential of trade is high, especially for water, even
though careful attention to each specific trade rela-
tionship and local socio–economic context is required
to avoid misinterpretations. Research is needed to
provide relevant, multi-dimensional information to
allow for the accounting of environmental impacts
in decision-making. The applicability of research
findings on the environmental impacts of food pro-
duction and trade would be greatly facilitated by
approaches focused on the future evolution of the
food–environment trade system, such as scenario
analyses informed by projected socio–economic and
climate change. In addition, more research is needed
to improve the accounting and inclusion of key envir-
onmental issues such as deforestation, loss of soil
fertility and groundwater exhaustion.
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