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Abstract
In this study, a state-of-the-art articulatory speech synthesiser
was used as the basis for simulating the exploration of CV
sounds imitating speech stimuli. By adopting a relevant kine-
matic model and systematically reducing the search space of
consonant articulatory targets, intelligible CV sounds can be
found. Derivative-free optimisation strategies were evaluated
to speed up the process of exploring articulatory space and the
possibility of using automatic speech recognition as a means of
evaluating intelligibility was explored.
Index Terms: computational phonetics, articulatory speech
synthesis, early vocal learning.

1. Introduction
The task of obtaining articulatory trajectories from speech ex-
emplars has been attempted with different motivations includ-
ing (i) to model and understand the process of learning articula-
tion to produce speech and (ii) to reproduce utterances using an
articulatory synthesiser, i.e. copy synthesis. The former could
serve as a basis for studies in speech and phonetic sciences [1]
and early vocal learning [2]. The latter could have a direct
impact on the development of speech technologies, especially
where it is not possible or economical to use current state-of-
the-art methods. For example, to bootstrap rapid development
of real-world text-to-speech (TTS) synthesisers from limited or
compromised data [3] or for data augmentation when building
automatic speech recognition (ASR) systems [4, 5].

The recent development of the state-of-the-art articulatory
synthesiser VocalTractLab [6, 7] has provided a compelling tool
to investigate the discovery of articulatory targets necessary to
produce intelligible and natural sounding speech. While previ-
ous studies have considered the task of modelling articulatory
movements [8, 9, 10], the emphasis has been on modelling the
articulatory to acoustic and inverse mappings. Consequently,
the scope of these works has often been limited to analysis of ar-
ticulatory or formant trajectories of vowels or artificial segment
sequences, with limited evaluation of the generated speech.

In this work the focus is on imitative articulatory explo-
ration as an important component of early vocal learning [8, 11].
The approach in [12] is followed in adopting a kinematic model
for generating articulatory trajectories [13] and evaluating the
outcomes in terms of intelligibility. The current paper extends
that work by:

1. Evaluating derivative-free optimisation for speeding up
the process of CV discovery compared to uniform sam-
pling.

2. Comparing the articulatory parameter-tying configura-
tion used in [12], motivated by the syllable-synchronised

sequential target approximation hypothesis which as-
serts that articulatory dimensions not involved in imple-
menting the consonant start moving towards the vowel
target at the start of the syllable [14], with an uncon-
strained configuration.

3. Exploring the use of automatic speech recognition
(ASR) as a means of estimating intelligibility.

In the following section a brief description of related work
is presented and contrasted with the current work. Section 3 de-
scribes the experimental setup with results presented in Section
4. Finally, Section 5 contains a discussion with conclusions and
proposals for future work.

2. Approach
Finding and refining articulatory movements to produce speech
sounds imitatively is assumed to be an important stage of early
vocal learning [8, 11] and is sometimes viewed as learning goal-
directed sensori-motor control [8, 15]. Previous studies have
often focused on the type of model and algorithms for learning
the articulatory to acoustic and inverse mappings, including dis-
tal supervised learning [8, 9], reinforcement learning [16] and
others [10] and sometimes assume that articulatory trajectories
are the outputs of the learned model [9, 10].

Copy synthesis efforts typically focus on evaluating the
generated speech against the target utterance [17]. The work by
Gao et al. [17] adopts a kinematic model for articulator move-
ments [13] and pragmatic constraints of parameters to reduce
the computational demands of the optimisation process.

This paper considers the task of imitative articulatory ex-
ploration as a component of early vocal learning, differing in
the following ways from the above studies: (i) intelligibility is
the primary measure of success (ii) a simple kinematic model is
adopted to produce articulatory trajectories [13] as in [17], and
(iii) a phonetically motivated model of coarticulation is used;
syllable-synchronised sequential target approximation is evalu-
ated (point 2, Section 1).

3. Experimental setup
Two experiments were set up to simulate articulatory explo-
ration with the goal of imitating CV onsets from a set of pre-
recorded acoustic templates produced as complete words by a
British male speaker (Table 1). In the first experiment, the input
space was reduced using parameter tying described in Section
3.3. The second experiment compared different optimisation
algorithms (Section 3.4) against uniform sampling of the in-
put space. Results are presented in terms of recognition rates
obtained from an online listening task and an ASR system de-
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Table 1: Acoustic templates (CVC words).

Vowel /bV / /dV / /gV /

/i:/ bead deed
/I/ bid did
/E/ bed dead
/æ/ bad dad
/6/ bod god
/u:/ booed good
/2/ bud
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Figure 1: Objective function implementation.

scribed in sections 3.5 and 3.6. The implementation of the sim-
ulation is described in the following two sections.

3.1. Synthesis and objective function

During articulatory exploration samples are synthesised using
the VocalTractLab1 articulatory synthesiser. A single iteration
of the simulation is shown in Figure 1. The articulatory tar-
gets are determined at each iteration by the optimisation algo-
rithm and consist of one complete set of 26 parameters for each
of the segments C and V. Given these two targets and the seg-
ment durations from the acoustic template, 24 articulatory tra-
jectories are synthesised which drive the acoustic simulation by
VocalTractLab. The vocal tract and glottis parameters as well
as the two additional time-constants which determine the rate
of target approximation are given with their ranges in Table 2
(these ranges are relevant to the adult male speaker, referred to
as “JD2”, with triangular glottis model defined in VocalTract-
Lab). As can be seen, the tongue side elevation, lip minimum
area and glottis parameters are kept constant during our simu-
lations and all simulation runs are initialised with the neutral
parameters which produce a schwa. As a result, the number
of free parameters per segment is 15. The acoustic feature tra-
jectories are 12-dimensional static Mel-frequency cepstral co-
efficients (including energy) extracted every 5 ms in a 10 ms
Hamming window using librosa2 [18]. The error function used
is the mean squared error (MSE) assuming one-to-one frame
alignment since the length corresponds to the durations in the
template for both trajectories (this means that the scoring of the
C segment is sensitive to the vocal tract time-constant τvt be-
cause of the effect on temporal alignment).

3.2. Articulatory exploration

The task of finding articulatory targets that best reproduce the
acoustic template is defined as

xo = argmin
x∈X

f(x), (1)

where x is a concatenation-vector of articulatory targets rep-
resenting the C and V segments3, f is the objective function

1http://www.vocaltractlab.de/ (v2.3-beta)
2https://github.com/librosa/librosa (v0.7.2)
3This is 30-dimensional given the 15 free parameters from Table 2
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Figure 2: Articulatory exploration: (a) Uniform sampling, and
(b) sampling determined by optimisation algorithm.

Table 2: Target parameters with ranges used.

Articulatory dimensions (d) Neutral Range

Hyoid position (horz.) HX 1.00 [0.0, 1.0] cm
Hyoid position (vert.) HY −4.75 [−6.0,−3.0] cm
Jaw position (horz.) JX 0.00 [−0.5, 0.0] cm
Jaw angle JA −2.00 [−7.0, 0.0] deg.
Lip protrusion LP −0.07 [−1.0, 1.0] cm
Lip distance LD 0.95 [−2.0, 4.0] cm
Velum shape V S 0.00 [0.0, 1.0]
Velic opening V O −0.10 [−0.1, 1.0] cm2

Tongue body (horz.) TCX −0.40 [−3.0, 4.0] cm
Tongue body (vert.) TCY −1.46 [−3.0, 1.0] cm
Tongue tip (horz.) TTX 3.50 [1.5, 5.5] cm
Tongue tip (vert.) TTY −1.00 [−3.0, 2.5] cm
Tongue blade (horz.) TBX 2.00 [−3.0, 4.0] cm
Tongue blade (vert.) TBY 0.50 [−3.0, 5.0] cm
Tongue side elevation 1 TS1 0.00 0.00 cm
Tongue side elevation 2 TS2 0.00 0.00 cm
Tongue side elevation 3 TS3 0.00 0.00 cm
Lip minimum area LMA −0.05 −0.05 cm2

Fundamental frequency F0gl 120.00 120.00 Hz
Sub-glottal pressure SPgl 8000.00 8000.00 dPa
Lower rest displacement LDgl 0.01 0.01 cm
Upper rest displacement UDgl 0.01 0.01 cm
Arytenoid area AAgl 0.00 0.00 cm2

Aspiration strength ASgl −40.00 −40.00 dB

Vocal tract time-constant τvt 0.015 [0.005, 0.039] s−1

Glottis time-constant τgl 0.015 0.015 s−1

described in 3.1 and X is the set of vectors evaluated during
the exploration process. Two distinct processes are compared
(implementations shown in Figure 2):

1. Uniform sampling of the input space (as in [12]).

2. Derivative-free or zeroth-order optimisation algorithms.

In both cases we apply a simple validity test, g : X → {0, 1},
which asserts whether the V target (if achieved) would result in
a relatively open vocal tract.4 This avoids the computationally
expensive process of synthesising and comparing the complete
sample where possible. For uniform sampling, the set of sam-
ples does not depend on the output of previous iterations and
invalid targets are simply filtered out in advance. For the op-
timisation algorithms X depends on the objective function and
the specific algorithm; in this case the validity test was incorpo-

4This is implemented by thresholding the magnitude of the volume velocity
transfer function.
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Table 3: Target parameters used for tied onsets
(definitions in Table 2).

Consonant Control parameters

/b/ {JX, JA,LD, τvt}
/d/ {JX, JA, TTX, TTY, TBX, TBY, τvt}
/g/ {JX, JA, TCY, τvt}

rated into the objective function as follows:

f0(x) =

{
f(x), where g(x) = 1

c� max
x∈X

f(x), otherwise

3.3. Parameter tying

The effect of systematically reducing the search space for the
consonant targets was investigated. Firstly, as done in [12],
a specific subset of the articulatory parameters (the consonant
control parameters listed in Table 3) was selected for optimi-
sation, depending on the consonant identity (this constitutes a
form of prior knowledge). The remaining undefined parameter
values of the consonant target are copied from the vowel tar-
get, i.e. the parameters are tied to the vowel. This is a direct
implementation of the assumption of syllable-synchronised se-
quential target approximation. Secondly, the jaw angle (JA)
parameter was further limited (to the range [−7.0,−2.0]) to
prevent closing the mouth for /d/ and /g/. The number of free
parameters for the tied-onset configuration is thus 19 or 22 for
the bilabial and velar or alveolar CVs respectively compared to
30 without parameter tying (free-onset).

3.4. Optimisation algorithms

The following two optimisation algorithms were investigated:
(i) A model-based algorithm (referred to as forest in Section 4)
which uses a regression model of the objective function to select
the next point for evaluation [19]. The scikit-optimize package5

was used to construct an extra-trees regressor [20] initialised
with the neutral parameters and a uniform sampling of 10% of
the maximum number of iterations. The selection of the next
sample (acquisition function) was determined by the minimisa-
tion of the lower confidence bound (LCB) of the model. (ii)
The controlled random search (CRS) with local mutation algo-
rithm [21] which starts with a random “population” of points
and evolve them using an algorithm similar to the Nelder-Mead
method [22] as implemented in the NLopt package6 [23].

3.5. Listening test

The CV targets obtained from exploration were evaluated us-
ing a free-recognition listening test. Firstly, the set of template
words (Table 1) were synthesised using VocalTractLab to ap-
pend a /d/ coda. The randomised word samples were presented
to 9 listeners in an online experiment.7 Listeners were expected
to type in the word played back through headphones or indi-
cate if the sample was unintelligible after listening to it no more
than 3 times. For the listening test, only samples from uniform
sampling and CRS were included.

5https://github.com/scikit-optimize (v0.7.4)
6https://github.com/stevengj/nlopt (v2.6.2)
7Run on Gorilla during May 2020 (https://gorilla.sc/)
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Figure 3: Mean recognition rates using ASR with 95% conf.
intervals.
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Figure 4: Mean recognition rates (ASR and listeners) with 95%
conf. intervals and exploration iteration limits: 1k, 5k and 10k.

3.6. ASR-based evaluation

As a proxy for online listening tests, off-the-shelf ASR was in-
vestigated to estimate the intelligibility of the CV targets em-
bedded in words as used in the listening test. For this purpose
the Google Speech-to-Text service8 was used. The latest version
(v1p1beta1) of the synchronous recognition endpoint was called
using the Python client9 with default settings, i.e. the service au-
tomatically determines the appropriate back-end model to use
based on the input. In addition to the 44.1 kHz audio samples,
the set of words in Table 1 was submitted as “speech contexts”.
This adjusts the language model component in favour of this set
of words and is considered best-practice for recognising short
utterances.10 A single request for the 10-best list was made to
the service for each sample which was padded to ensure a min-
imum duration of 1.5s. However, the results in Section 4 only
considered the 1-best output.

4. Results
4.1. Parameter tying

The CRS algorithm was used to compare CV outcomes with the
reduced and full input space described in Section 3.3 over 20 ex-
ploration runs limited to 10k iterations. The mean recognition
rates by the ASR system are presented in Figure 3, showing

8https://cloud.google.com/speech-to-text accessed during
April and May 2020.

9
https://pypi.org/project/google-cloud-speech/ (v1.3.2)

10
https://cloud.google.com/speech-to-text/docs/best-practices
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Figure 5: Confusion matrix for online listeners (darker shades indicate higher values and white represents zero).

significantly improved outcomes for 2 bilabial templates with
tied onsets, with results for the remaining templates being sim-
ilar. An analysis of the outputs confirm a higher number of
misrecognitions due to consonant confusion for the free-onset
configuration. This confirms that it is difficult to find the correct
consonant articulation with the current simulation configuration
in a limited number of iterations without prior knowledge of the
consonant type.

4.2. Optimisation algorithms

With the tied-onset configuration, the outcomes using the differ-
ent optimisation algorithms were compared with uniform sam-
pling (RND). Figure 4 shows the overall recognition rates from
the ASR system for a range of iteration limits and the listen-
ing test for 10k iterations (the listening test was limited to this
setting and only compared RND and CRS). Firstly, CRS-based
exploration resulted in significantly better results compared to
uniform sampling at the 1k iteration limit. With 10k iterations
the results from CRS and uniform sampling was similar both
according to the ASR system and listeners. Secondly, over-
all recognition rates by listeners were not significantly differ-
ent from rates with ASR (using Welch’s unequal variances t-
test: p = 0.455). However, more detailed analysis showed
that recognition rates with ASR were significantly lower for
“bod”, “bud” and “did” and higher for “dad” and “dead”. Rea-
sons for lower rates may include lower language model weights
for infrequent words (“bod” and “bud”) and possibly hyper-
articulation of “did” compared to what is typical in sentence
context (function words are typically under-articulated [24]).
For “dad” and “dead” higher confusion rates between /b/ and
/d/ were found with listeners and “dead” was also often con-
fused with “did”.

The confusion matrix for online listeners (Figure 5) enables
further analysis of the recognition rates over templates and pos-
sible sources of errors. The templates “bead”, “booed” and
“good” had the lowest recognition rates. The templates involv-
ing /u:/ were most frequently indicated as completely unintelli-
gible and in the case of /bu:/ the vowel often tends erroneously
towards /i/. The case of “bead” is different, with the prob-
lem most frequently being consonant confusion with /d/ which
seems to be part of a systematic problem of confusion between
/b/ and /d/ when combined with /i, I, E, æ/. The fact that
“god” is most often misrecognised due to the consonant and the
parameter tying result (Figure 3) suggests that the tying config-
uration may need to be reconsidered in this case. Lastly, smaller
systematic effects include /bæ/ tending toward /bA/ and some
errors attributable to the coda.

5. Conclusion and discussion
This paper simulated the task of imitative articulatory explo-
ration as a component of early vocal learning. Of particular
relevance to this context are the results presented in terms of
intelligibility and the fact that little prior information about ar-
ticulatory targets are included in the process (only the conso-
nant class used for parameter tying). The results are encourag-
ing given that only global optimisation and a relatively simple
objective function was used without attempting to maximise in-
telligibility. A summary of key findings are (using Welch’s un-
equal variances t-test):

• The parameter tying configuration significantly im-
proves success rates (p = 0.033), demonstrating its ef-
fectiveness in simulating coarticulation.

• The CRS algorithm is significantly more successful than
uniform sampling when the number of iterations is lim-
ited (p = 0.034 at 1k).

• ASR success rates largely agree with results from our
listening tests with a few exceptions.

As a result the approach and implementation presented here can
serve as a technical and methodological basis for further work
on early vocal learning, for example, to find samples for training
articulatory to acoustic and inverse mappings without relying on
predefined sets of articulatory targets.

Future work may include:

• Investigating and eliminating some of the systematic de-
ficiencies pointed out in the results,

• Further testing the parameter tying configuration moti-
vated by the syllable-synchronised sequential target ap-
proximation hypothesis in new scenarios (e.g. different
consonant types and onset clusters), and

• Linking the task of articulatory exploration with other
stages of early vocal learning, e.g. to learn constraints
necessary for successful exploration and possibly to ex-
plicitly incorporate intelligibility into the simulation, po-
tentially using ASR results as a feedback mechanism.

6. Acknowledgements
This work has been funded by the Leverhulme Trust Research
Project Grant RPG-2019-241: “High quality simulation of early
vocal learning”.

4460



7. References
[1] E. L. Saltzman and K. G. Munhall, “A Dynamical Approach to

Gestural Patterning in Speech Production,” Ecological Psychol-
ogy, vol. 1, no. 4, pp. 333–382, Dec. 1989.

[2] P. K. Kuhl, “Early language acquisition: cracking the speech
code,” Nature Reviews Neuroscience, vol. 5, no. 11, pp. 831–843,
Nov. 2004.

[3] A. Gutkin, L. Ha, M. Jansche, K. Pipatsrisawat, and R. Sproat,
“TTS for Low Resource Languages: A Bangla Synthesizer,” in
Proc. LREC, Portoroz̆, Slovenia, May 2016, pp. 2005–2010.

[4] A. Ragni, K. M. Knill, S. P. Rath, and M. J. Gales, “Data Augmen-
tation for Low Resource Languages,” in Fifteenth Annual Con-
ference of the International Speech Communication Association.
Singapore: ISCA, Sep. 2014, pp. 810–814.

[5] X. Cui, V. Goel, and B. Kingsbury, “Data Augmentation for Deep
Neural Network Acoustic Modeling,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 23, no. 9, pp.
1469–1477, Sep. 2015.

[6] P. Birkholz, 3D-Artikulatorische Sprachsynthese. Berlin: Logos
Verlag, 2005.

[7] ——, “Modeling Consonant-Vowel Coarticulation for Articula-
tory Speech Synthesis,” PLoS ONE, vol. 8, no. 4, Apr. 2013.

[8] G. Bailly, “Learning to speak. Sensori-motor control of speech
movements,” Speech Communication, vol. 22, no. 2, pp. 251–267,
Aug. 1997.

[9] I. S. Howard and M. A. Huckvale, “Training a Vocal Tract Syn-
thesizer to Imitate Speech using Distal Supervised Learning,” in
International Conference on Speech and Computer (SpeCom), Pa-
tras, Greece, 2005, pp. 159–162.

[10] A. K. Philippsen, R. F. Reinhart, and B. Wrede, “Learning how
to speak: Imitation-based refinement of syllable production in
an articulatory-acoustic model,” in International Conference on
Development and Learning and on Epigenetic Robotics (ICDL-
EpiRob), Genoa, Italy, Oct. 2014, pp. 195–200.

[11] P. K. Kuhl, R. R. Ramı́rez, A. Bosseler, J.-F. L. Lin, and T. Imada,
“Infants’ brain responses to speech suggest Analysis by Synthe-
sis,” Proceedings of the National Academy of Sciences, vol. 111,
no. 31, pp. 11 238–11 245, 2014.

[12] A. Xu, P. Birkholz, and Y. Xu, “Coarticulation as synchronized
dimension-specific sequential target approximation: An articu-
latory synthesis simulation,” in Proceedings of the International
Congress of Phonetic Sciences (ICPhS), Melbourne, Australia,
Aug. 2019, pp. 205–209.

[13] P. Birkholz, “Control of an Articulatory Speech Synthesizer Based
on Dynamic Approximation of Spatial Articulatory Targets,” in
Proc. Interspeech, Antwerp, Belgium, Aug. 2007, pp. 2865–2868.

[14] Y. Xu, “Syllable is a synchronization mechanism that makes
human speech possible,” PsyArXiv, Mar. 2020. [Online].
Available: https://osf.io/9v4hr

[15] B. Parrell, V. Ramanarayanan, S. Nagarajan, and J. Houde, “The
FACTS model of speech motor control: Fusing state estimation
and task-based control,” PLOS Computational Biology, vol. 15,
no. 9, p. e1007321, Sep. 2019.
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